
Matryoshka Representation Learning

Aditya Kusupati∗†⋄, Gantavya Bhatt∗†, Aniket Rege∗†,
Matthew Wallingford†, Aditya Sinha⋄, Vivek Ramanujan†, William Howard-Snyder†,

Kaifeng Chen⋄, Sham Kakade‡, Prateek Jain⋄ and Ali Farhadi†
†University of Washington, ⋄Google Research, ‡Harvard University
{kusupati,ali}@cs.washington.edu, prajain@google.com

Abstract

Learned representations are a central component in modern ML systems, serv-
ing a multitude of downstream tasks. When training such representations, it
is often the case that computational and statistical constraints for each down-
stream task are unknown. In this context, rigid fixed-capacity representations
can be either over or under-accommodating to the task at hand. This leads us
to ask: can we design a flexible representation that can adapt to multiple down-
stream tasks with varying computational resources? Our main contribution is

Matryoshka Representation Learning (MRL) which encodes information at
different granularities and allows a single embedding to adapt to the computational
constraints of downstream tasks. MRL minimally modifies existing representation
learning pipelines and imposes no additional cost during inference and deployment.
MRL learns coarse-to-fine representations that are at least as accurate and rich as
independently trained low-dimensional representations. MRL is task agnostic and
can be easily adapted to self-supervised learning setups even at web-scale. The
flexibility within the learned Matryoshka Representations offer: (a) up to 8×
smaller embedding size for web-scale ALIGN model at the same level of accuracy;
(b) Within 0.5% accuracy of pretrained masked-language model (BERT) with no
hyperparameter tuning. MRL code and pretrained models will be open-sourced.

1 Introduction

Learned representations [28] are fundamental building blocks of real-world ML systems [32, 46].
Trained once and frozen, d-dimensional representations encode rich information and can be used
to perform multiple downstream tasks [3]. The deployment of deep representations has two steps:
(1) an expensive yet constant-cost forward pass to compute the representation [15] and (2) utilization
of the representation for downstream applications [25, 45]. Compute costs for the latter part of the
pipeline scale with the embedding dimensionality as well as the data size (N ) and label space (L). At
web-scale [7, 43] this utilization cost overshadows the feature computation cost. The rigidity in these
representations forces the use of high-dimensional embedding vectors across multiple tasks despite
the varying resource and accuracy constraints that require flexibility.

Human perception of the natural world has a naturally coarse-to-fine granularity [14, 18]. However,
perhaps due to the inductive bias of gradient-based training [42], deep learning models tend to diffuse
“information” across the entire representation vector. The desired elasticity is usually enabled in the
existing flat and fixed representations either through training multiple low-dimensional models [15],
jointly optimizing sub-networks of varying capacity [5, 52] or post-hoc compression [21, 29]. Each
of these techniques struggle to meet the requirements for adaptive large-scale deployment either due
to training/maintenance overhead, numerous expensive forward passes through all of the data, storage
and memory cost for multiple copies of encoded data, expensive on-the-fly feature selection or a
significant drop in accuracy.
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We introduce Matryoshka Representation Learning (MRL) to induce flexibility in the learned
representation. MRL learns representations of varying capacities within the same high-dimensional
vector through explicit optimization of O(log(d)) lower-dimensional vectors in a nested fashion,
hence the name Matryoshka. MRL can be adapted to any existing representation pipeline and
is easily extended to many standard tasks in computer vision and natural language processing.
Figure 1 illustrates the core idea of Matryoshka Representation Learning (MRL) and the adaptive
deployment settings of the learned Matryoshka Representations.
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Figure 1: Matryoshka Representation Learning is
adaptable to any representation learning setup and begets
a Matryoshka Representation z by optimizing the orig-
inal loss L(.) at O(log(d)) chosen representation sizes.
Matryoshka Representation can be utilized effectively for adap-
tive deployment across environments and downstream tasks.

The first m-dimensions, m ∈ [d], of
the Matryoshka Representation is
an information-rich low-dimensional
vector, at no additional training cost,
that is as accurate as an indepen-
dently trained m-dimensional repre-
sentation. The information within
the Matryoshka Representation in-
creases with the dimensionality creat-
ing a coarse-to-fine grained represen-
tation, all without significant training
or additional deployment overhead.
MRL equips the representation vector
with the desired flexibility and multi-
fidelity that can ensure a near-optimal
accuracy-vs-compute trade-off. With
these advantages, MRL enables adap-
tive deployment based on accuracy
and compute constraints.

We make the following key contributions:
1. We introduce Matryoshka Representation Learning (MRL) to obtain flexible representa-

tions (Matryoshka Representations) for adaptive deployment (Section 3).
2. Up to 8× smaller embedding for web-scale classification using MRL (Section 4.1).
3. Seamless adaptation of MRL across representation learning setups, modalities (vision - ViT,

vision + language - ALIGN, language - BERT) and to web-scale data (JFT-300M & ALIGN data).

2 Related Work

Representation Learning. Large-scale datasets like ImageNet [8, 38] and JFT [43] enabled the
learning of general purpose representations for computer vision [3, 50]. These representations
are typically learned through supervised and un/self-supervised learning paradigms. Supervised
pretraining [15, 26, 40] casts representation learning as a multi-class/label classification problem,
while un/self-supervised learning learns representation via proxy tasks like instance classification [49]
and reconstruction [17, 31]. Recent advances [6, 16] in contrastive learning [13] enabled learning
from web-scale data [11] that powers large-capacity cross-modal models [9, 23, 35, 53]. Similarly,
natural language applications are built [22] on large language models [4] that are pretrained [33, 37]
in a un/self-supervised fashion with masked language modeling [10] or autoregressive training [34].

3 Matryoshka Representation Learning

For d ∈ N, consider a set M ⊂ [d] of representation sizes. For a datapoint x in the input do-
main X , our goal is to learn a d-dimensional representation vector z ∈ Rd. For every m ∈ M,
Matryoshka Representation Learning (MRL) enables each of the first m dimensions of the em-
bedding vector, z1:m ∈ Rm to be independently capable of being a transferable and general purpose
representation of the datapoint x. We obtain z using a deep neural network F ( · ; θF ) : X → Rd

parameterized by learnable weights θF , i.e., z := F (x; θF ). The multi-granularity is captured through
the set of the chosen dimensions M, that contains less than log(d) elements, i.e., |M| ≤ ⌊log(d)⌋.
The usual set M consists of consistent halving until the representation size hits a low information
bottleneck. We discuss the design choices in Section 4 for each of the representation learning settings.
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Suppose we are given a labelled dataset D = {(x1, y1), . . . , (xN , yN )} where xi ∈ X is an input
point and yi ∈ [L] is the label of xi for all i ∈ [N ]. MRL optimizes the multi-class classification loss
for each of the nested dimension m ∈ M using standard empirical risk minimization using a separate
linear classifier, parameterized by W(m) ∈ RL×m. All the losses are aggregated after scaling with
their relative importance (cm ≥ 0)m∈M respectively. That is, we solve

min
{W(m)}

m∈M
, θF

1

N

∑
i∈[N ]

∑
m∈M

cm · L
(
W(m) · F (xi; θF )1:m ; yi

)
, (1)

where L : RL × [L] → R+ is the multi-class softmax cross-entropy loss function. This is a stan-
dard optimization problem that can be solved using sub-gradient descent methods. We set all the
importance scales, cm = 1 for all m ∈ M.

We call this formulation as Matryoshka Representation Learning (MRL). A natural way to make
this efficient is through weight-tying across all the linear classifiers, i.e., by defining W(m) = W1:m

for a set of common weights W ∈ RL×d. This would reduce the memory cost due to the linear
classifiers by almost half, which would be crucial in cases of extremely large output spaces [45, 51].
This variant is called Efficient Matryoshka Representation Learning (MRL–E). Refer to Alg 1
and Alg 2 in Appendix A for the building blocks of Matryoshka Representation Learning (MRL).

Adaptation to Self-Supervised Learning Frameworks. MRL can be adapted seamlessly to most
representation learning frameworks at web-scale with minimal modifications (Section 4.1). For
example, MRL’s adaptation to masked language modeling reduces to MRL–E due to the weight-
tying between the input embedding matrix and the linear classifier. For contrastive learning, both
in context of vision & vision + language, MRL is applied to both the embeddings that are being
contrasted with each other.

4 Applications

4.1 Representation Learning

We adapt Matryoshka Representation Learning (MRL) to various self-supervised representation
learning setups (a) Contrastive learning for vision + language: ALIGN model with ViT-B/16 vision
encoder and BERT language encoder on ALIGN data [23] and (b) Masked language modeling:
BERT [10] on English Wikipedia and BooksCorpus [54]. Please refer to Appendices B and D for
details regarding the model architectures, datasets and training specifics.

We do not search for best hyper-parameters for all MRL experiments but use the same hyper-
parameters as the independently trained baselines. ViT-B/16 and BERT-Base output 768-dimensional
embeddings for each data point. We use M = {12, 24, 48, 96, 192, 384, 768} as the explicitly
optimized nested dimensions.

In section 4.2, we evaluate the quality and capacity of the learned representations through 1-nearest
neighbour (1-NN) accuracy. Experiments show that MRL models remove the dependence on |M|
resource-intensive independently trained models for the coarse-to-fine representations while being as
accurate. Lastly, we show that despite optimizing only for |M| dimensions, MRL models diffuse the
information, in an interpolative fashion, across all the d dimensions providing the finest granularity
required for adaptive deployment.

4.2 Classification

We evaluate the quality of the representations from training ViT-B/16 on JFT-300M alongside the
ViT-B/16 vision encoder of the ALIGN model – two web-scale setups. Due to the expensive nature
of these experiments, we only train the highest capacity fixed feature model and choose random
features for evaluation in lower-dimensions. Web-scale is a compelling setting for MRL due to its
relatively inexpensive training overhead while providing multifidelity representations for downstream
tasks. Figure 2, evaluated with 1-NN on ImageNet-1K, shows that all the MRL models for JFT
and ALIGN are highly accurate while providing an excellent cost-vs-accuracy trade-off at lower-
dimensions. These experiments show that MRL seamlessly scales to large-scale models and web-
scale datasets while providing the otherwise prohibitively expensive multi-granularity in the process.
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Figure 2: ImageNet-1K 1-NN accuracy for
ViT-B/16 models trained on JFT-300M & as
part of ALIGN. MRL scales seamlessly to
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Figure 3: Despite optimizing MRL only for
O(log(d)) dimensions for ResNet50 and ViT-
B/16 models; the accuracy in the intermediate
dimensions shows interpolating behaviour.

Table 1: Masked Language Modeling (MLM)
accuracy (%).

Rep. Size BERT-FF BERT-MRL

12 60.12 59.92
24 62.49 62.05
48 63.85 63.40
96 64.32 64.15

192 64.70 64.58
384 65.03 64.81
768 65.54 65.00

We also evaluated the capability of
Matryoshka Representations to extend to other
natural language processing via masked language
modeling (MLM) with BERT [10], whose results are
tabulated in Table 1. Without any hyper-parameter
tuning, we observed Matryoshka Representations to
be within 0.5% of FF representations for BERT MLM
validation accuracy. This is a promising initial result
that could help with large-scale adaptive document
retrieval using BERT–MRL.

4.3 Robustness

We find that the zero-shot robustness of ALIGN-MRL (Table 8 in Appendix G) agrees with the
observations made by Wortsman et al. [48]. Table 7 in Appendix F shows that MRL also improves
the cosine similarity span between positive and random image-text pairs.

5 Conclusions

In conclusion, we presented Matryoshka Representation Learning (MRL), a flexible represen-
tation learning approach that encodes information at multiple granularities in a single embedding
vector. This enables the MRL to adapt to a downstream task’s statistical complexity as well as
the available compute resources. We show that MRL is extremely easy to adapt to self-supervised
learning setups like ALIGN and BERT – making it a strong alternative to simple dense and rigid rep-
resentations. Finally, we demonstrate that Matryoshka Representations provide excellent accuracy-
compute tradeoff at lower dimensions, even at web-scale (ALIGN and JFT).
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A Code for Matryoshka Representation Learning (MRL)

We use Alg 1 and 2 provided below to train supervised ResNet50–MRL models on ImageNet-1K.
We provide this code as a template to extend MRL to any domain.

Algorithm 1 Pytorch code for Matryoshka Cross-Entropy Loss

class Matryoshka_CE_Loss(nn.Module):
def __init__(self, relative_importance, **kwargs):

super(Matryoshka_CE_Loss, self).__init__()
self.criterion = nn.CrossEntropyLoss(**kwargs)
self.relative_importance = relative_importance # usually set

to all ones

def forward(self, output, target):
loss=0
for i in range(len(output)):
loss+= self.relative_importance[i] * self.criterion(output[

i], target)
return loss

Algorithm 2 Pytorch code for MRL Linear Layer

class MRL_Linear_Layer(nn.Module):
def __init__(self, nesting_list: List, num_classes=1000, efficient=

False, **kwargs):
super(MRL_Linear_Layer, self).__init__()
self.nesting_list=nesting_list # set of m in M (Eq. 1)
self.num_classes=num_classes
self.is_efficient=efficient # flag for MRL-E

if not is_efficient:
for i, num_feat in enumerate(self.nesting_list):

setattr(self, f"nesting_classifier_{i}", nn.Linear(
num_feat, self.num_classes, **kwargs))

else:
setattr(self, "nesting_classifier_0", nn.Linear(self.

nesting_list[-1], self.num_classes, **kwargs)) #
Instantiating one nn.Linear layer for MRL-E

def forward(self, x):
nesting_logits = ()
for i, num_feat in enumerate(self.nesting_list):

if(self.is_efficient):
efficient_logit = torch.matmul(x[:, :num_feat],

(self.nesting_classifier_0.weight[:, :
num_feat]).t())

else:
nesting_logits.append(getattr(self, f"

nesting_classifier_{i}")(x[:, :num_feat]))

if(self.is_efficient):
nesting_logits.append(efficient_logit)

return nesting_logits
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B Datasets

ImageNet-1K [38] contains 1,281,167 labeled train images, and 50,000 labelled validation images
across 1,000 classes. The images were transformed with standard procedures detailed by FFCV [27].

JFT-300M [43] is a large-scale multi-label dataset with 300M images labelled across 18,291 cate-
gories.

ALIGN [23] utilizes a large scale noisy image-text dataset containing 1.8B image-text pairs.

ImageNet Robustness Datasets We experimented on the following datasets to examine the robust-
ness of MRL models:

ImageNetV2 [36] is a collection of 10K images sampled a decade after the original construction of
ImageNet [8]. ImageNetV2 contains 10 examples each from the 1,000 classes of ImageNet-1K.

ImageNet-A [20] contains 7.5K real-world adversarially filtered images from 200 ImageNet-
1K classes.

ImageNet-R [19] contains 30K artistic image renditions for 200 of the original ImageNet-1K classes.

ImageNet-Sketch [47] contains 50K sketches, evenly distributed over all 1,000 ImageNet-1K classes.

ObjectNet [2] contains 50K images across 313 object classes, each containing ∼160 images each.

C Supervised Learning

To demonstrate the flexibility of MRL, we also present its formulation for fully supervised repre-
sentation learning via multi-class classification. Matryoshka Representation Learning modifies
the typical setting to become a multi-scale representation learning problem on the same task. For
example, we train ResNet50 [15] on ImageNet-1K [38] which embeds a 224× 224 pixel image into
a d = 2048 representation vector and then passed through a linear classifier to make a prediction,
ŷ among the L = 1000 labels. For MRL, we choose M = {8, 16, . . . , 1024, 2048} as the nesting
dimensions. Note that we do not search for best hyper-parameters for all MRL experiments but
use the same hyper-parameters as the independently trained baselines. We extensively compare the
MRL and MRL–E models to independently trained low-dimensional (fixed feature) representations
(FF), dimensionality reduction (SVD), sub-net method (slimmable networks [52]) and randomly
selected features of the highest capacity FF model. We discuss the implementation and results of
supervised classification in Appendix D and E respectively. We also discuss in-practice costs of MRL
and ablation studies over training methodologies in Appendix H and I.

D Matryoshka Representation Learning Model Training

We trained all ResNet50–MRL models using the efficient dataloaders of FFCV [27]. We utilized the
rn50_40_epochs.yaml configuration file of FFCV to train all MRL models defined below:

• MRL: ResNet50 model with the fc layer replaced by MRL_Linear_Layer(efficient=False)

• MRL–E: ResNet50 model with the fc layer replaced by MRL_Linear_Layer(efficient=True)

• FF–k: ResNet50 model with the fc layer replaced by torch.nn.Linear(k, num_classes),
where k ∈ [8, 16, 32, 64, 128, 256, 512, 1024, 2048]. We will henceforth refer to these models as
simply FF, with the k value denoting representation size.

We trained all ResNet50 models with a learning rate of 0.475 with a cyclic learning rate schedule [41].
This was after appropriate scaling (0.25×) of the learning rate specified in the configuration file to
accommodate for 2xA100 NVIDIA GPUs available for training, compared to the 8xA100 GPUs
utilized in the FFCV benchmarks. We trained with a batch size of 256 per GPU, momentum [44] of
0.9, and an SGD optimizer with a weight decay of 1e-4.

Our code (Appendix A) makes minimal modifications to the training pipeline provided by FFCV to
learn Matryoshka Representations.
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We trained ViT-B/16 models for JFT-300M on a 8x8 cloud TPU pod [24] using Tensorflow [1] with a
batchsize of 128 and trained for 300K steps. Similarly, ALIGN models were trained using Tensorflow
on 8x8 cloud TPU pod for 1M steps with a batchsize of 64 per TPU. Both these models were trained
with adafactor optimizer [39] with a linear learning rate decay starting at 1e-3.

Lastly, we trained a BERT-Base model on English Wikipedia and BookCorpus. We trained our models
in Tensorflow using a 4x4 cloud TPU pod with a total batchsize of 1024. We used AdamW [30]
optimizer with a linear learning rate decay starting at 1e-4 and trained for 450K steps.

In each configuration/case, if the final representation was normalized in the FF implementation, MRL
models adopted the same for each nested dimension for a fair comparison.

E Classification Results

We show the top-1 classification accuracy of ResNet50–MRL models on ImageNet-1K in Table 2.
We compare the performance of MRL models (MRL, MRL–E) to several baselines:

• FF: We utilize the FF-k models described in Appendix D for k ∈ {8, ...2048}.

• SVD: We performed a low rank approximation of the 1000-way classification layer of FF-2048,
with rank = 1000.

• Rand. LP: We compared against a linear classifier fit on randomly selected features [16].

• Slim. Net: We take pretrained slimmable neural networks [52] which are trained with a flexible
width backbone (25%, 50%, 75% and full width). For each representation size, we consider the
first k dimensions for classification. Note that training of slimmable neural networks becomes
unstable when trained below 25% width due to the hardness in optimization and low complexity of
the model.

At lower dimensions ( d ≤ 128), MRL outperforms all baselines significantly, which indicates that
pretrained models lack the multifidelity of Matryoshka Representations and are incapable of fitting
an accurate linear classifier at low representation sizes.

Table 2: Top-1 classification accuracy (%) for ResNet50 MRL and baseline models on ImageNet-1K.

Rep. Size Rand. LP SVD FF Slim. Net MRL MRL–E

8 4.56 2.34 65.29 0.42 66.63 56.66
16 11.29 7.17 72.85 0.96 73.53 71.94
32 27.21 20.46 74.60 2.27 75.03 74.48
64 49.47 48.10 75.27 5.59 75.82 75.35

128 65.70 67.24 75.29 14.15 76.30 75.80
256 72.43 74.59 75.71 38.42 76.47 76.22
512 74.94 76.78 76.18 69.80 76.65 76.36

1024 76.10 76.87 76.63 74.61 76.76 76.48
2048 76.87 – 76.87 76.26 76.80 76.51

We compared the performance of MRL models at various representation sizes via 1-nearest neighbors
(1-NN) image classification accuracy on ImageNet-1K in Table 3. We compared against a baseline
of attempting to enforce nesting to a FF-2048 model by 1) Random Feature Selection (Rand. FS):
considering the first m dimensions of FF-2048 for NN lookup, and 2) FF+SVD: performing SVD
on the FF-2048 representations at the specified representation size. We also compared against the
1-NN accuracy of slimmable neural nets [52] as an additional baseline. We observed these baseline
models to perform very poorly at lower dimensions, as they were not explicitly trained to learn
Matryoshka Representations.

E.1 Adaptive Classification (MRL–AC)

In an attempt to use the smallest representation that works well for classification for every image in
the ImageNet-1K validation set, we learned a policy to increase the representation size from mi to
mi+1 using a 10K sized subset of the ImageNet-1K validation set. This policy is based on whether
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Table 3: 1-NN accuracy (%) on ImageNet-1K for various ResNet50 models.

Rep. Size Rand. FS SVD FF Slimmable MRL MRL–E

8 2.36 19.14 58.93 1.00 62.19 57.45
16 12.06 46.02 66.77 5.12 67.91 67.05
32 32.91 60.78 68.84 16.95 69.46 68.60
64 49.91 67.04 69.41 35.60 70.17 69.61

128 60.91 69.63 69.35 51.16 70.52 70.12
256 65.75 70.67 69.72 60.61 70.62 70.36
512 68.77 71.06 70.18 65.82 70.82 70.74

1024 70.41 71.22 70.34 67.19 70.89 71.07
2048 71.19 71.21 71.19 66.10 70.97 71.21

the prediction confidence pi using representation size mi exceeds a learned threshold t∗i . If pi ≥ t∗i ,
we used predictions from representation size mi otherwise, we increased to representation size mi+1.
To learn the optimal threshold t∗i , we performed a grid search between 0 and 1 (100 samples). For
each threshold tk, we computed the classification accuracy over our 10K image subset. We set
t∗i equal to the smallest threshold tk that gave the best accuracy. We use this procedure to obtain
thresholds for successive models, i.e., {t∗j | j ∈ {8, 16, 32, 64, . . . , 2048}}. To improve reliability of
threshold based greedy policy, we use test time augmentation which has been used successfully in
the past [40]. For inference, we used the remaining held-out 40K samples from the ImageNet-1K

Table 4: Threshold-based adaptive classification performance of ResNet50 MRL on a 40K sized
held-out subset of the ImageNet-1K validation set. Results are averaged over 30 random held-out
subsets.

Expected Rep. Size Accuracy

13.43 ± 0.81 73.79 ± 0.10
18.32 ± 1.36 75.25 ± 0.11
25.87 ± 2.41 76.05 ± 0.15
36.26 ± 4.78 76.28 ± 0.16
48.00 ± 8.24 76.43 ± 0.18

64.39 ± 12.55 76.53 ± 0.19
90.22 ± 20.88 76.55 ± 0.20

118.85 ± 33.37 76.56 ± 0.20

validation set. We began with smallest sized representation (m = 8) and compared the computed
prediction confidence p8 to learned optimal threshold t∗8. If p8 ≤ t∗8, then we increased m = 16, and
repeated this procedure until m = d = 2048. To compute the expected dimensions, we performed
early stopping at m = {16, 32, 64, . . . 2048} and computed the expectation using the distribution of
representation sizes. As shown in Table 4, we observed that in expectation, we only needed a ∼ 37
sized representation to achieve 76.3% classification accuracy on ImageNet-1K, which was roughly
14× smaller than the FF–512 baseline. Even if we computed the expectation as a weighted average
over the cumulative sum of representation sizes {8, 24, 56, . . .}, due to the nature of multiple linear
heads for MRL, we ended up with an expected size of 62 that still provided a roughly 8.2× efficient
representation than the FF–512 baseline. However, MRL–E alleviates this extra compute with a
minimal drop in accuracy.
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Figure 4: ImageNet-1K linear classification ac-
curacy of ResNet50 models. MRL is as accurate
as the independently trained FF models for every
representation size.
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Figure 5: ImageNet-1K 1-NN accuracy of
ResNet50 models measuring the representation
quality for downstream task. MRL outperforms
all the baselines across all representation sizes.

F JFT, ALIGN and BERT

Table 5: ViT-B/16 and ViT-B/16-MRL top-1 and top-5 k-NN accuracy (%) for ALIGN and JFT. Top-1
entries where MRL–E and MRL outperform baselines are bolded for both ALIGN and JFT-ViT.

Rep. Size ALIGN ALIGN-MRL JFT-ViT JFT-ViT-MRL JFT-ViT-MRL–E

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

12 11.90 28.05 43.57 67.36 27.07 48.57 53.61 75.30 51.54 73.94
24 33.35 55.58 56.44 78.19 48.64 70.20 62.80 81.51 62.40 81.36
48 51.32 73.15 62.33 82.30 63.58 81.80 67.24 84.37 66.89 83.80
96 61.82 81.97 65.72 84.61 68.56 85.13 69.74 85.86 68.80 85.13
192 66.71 85.27 67.00 85.36 71.32 86.21 71.34 86.62 70.41 86.01
384 67.65 85.70 67.70 85.73 71.67 86.98 71.73 87.08 71.18 86.46
768 68.00 86.10 67.85 85.85 72.10 87.20 71.85 86.92 71.31 86.62

Table 6: Examining top-1 and top-5 k-NN accuracy (%) at interpolated hidden dimensions for ALIGN
and JFT. This indicates that MRL is able to scale classification accuracy as hidden dimensions increase
even at dimensions that were not explicitly considered during training.

Interpolated
Rep. Size

ALIGN-MRL JFT-ViT-MRL

Top-1 Top-5 Top-1 Top-5

16 49.06 72.26 58.35 78.55
32 58.64 79.96 64.98 82.89
64 63.90 83.39 68.19 84.85
128 66.63 85.00 70.35 86.24
256 67.10 85.30 71.57 86.77
512 67.64 85.72 71.55 86.67

Table 7: Cosine similarity between embeddings
Avg. Cosine Similarity ALIGN ALIGN-MRL

Positive Text to Image 0.27 0.49
Random Text to Image 8e-3 -4e-03
Random Image to Image 0.10 0.08
Random Text to Text 0.22 0.07
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We examine the k-NN classification accuracy of learned Matryoshka Representations via
ALIGN–MRL and JFT-ViT–MRL in Table 5. For ALIGN [23], we observed that learning
Matryoshka Representations via ALIGN–MRL improved classification accuracy at nearly all
dimensions when compared to ALIGN. We observed a similar trend when training ViT-B/16 [12]
for JFT-300M [43] classification, where learning Matryoshka Representations via MRL and
MRL–E on top of JFT-ViT improved classification accuracy for nearly all dimensions, and signif-
icantly for lower ones. This demonstrates that training to learn Matryoshka Representations
is feasible and extendable even for extremely large scale datasets. We also demonstrate that
Matryoshka Representations are learned at interpolated dimensions for both ALIGN and JFT-
ViT, as shown in Table 6, despite not being trained explicitly at these dimensions. Lastly, Table 7
shows that MRL training leads to a increase in the cosine similarity span between positive and
random image-text pairs.

G Robustness Experiments

We evaluate the robustness of MRL models on out-of-domain datasets (ImageNetV2/R/A/Sketch),
each of which is described in Appendix B. For an ALIGN–MRL model, we examine the the
robustness via zero-shot retrieval on out-of-domain datasets, including ObjectNet, in Table 8.

Table 8: Zero-shot top-1 image classification accuracy (%) of a ALIGN-MRL model on ImageNet-
V1/V2/R/A and ObjectNet.

Rep. Size V1 V2 A R ObjectNet

12 30.57 23.98 14.59 24.24 25.52
24 45.64 37.71 22.75 46.40 35.89
48 53.84 46.16 28.88 60.71 42.76
96 58.31 51.34 33.21 70.12 45.20

192 60.95 53.56 36.10 74.41 48.24
384 62.06 54.77 37.95 76.51 49.10
768 62.26 55.15 37.84 76.73 49.26

Baseline 66.39 59.57 39.97 80.49 51.60

H In Practice Costs

MRL Memory Cost As MRL makes minimal modifications to the ResNet50 model in the final fc
layer via multiple heads for representations at various scales, it has only an 8MB storage overhead
when compared to a standard ResNet50 model. MRL–E has no storage overhead as it has a shared
head for logits at the final fc layer.

MRL Inference Cost Our FF-2048 baseline follows the original ResNet-50 model architecture [15],
which has 3.8 billion floating-point multiply-adds (FLOPs). MRL–E adds zero overhead to FF-2048
due to its shared logit head. MRL adds a cost of 2m ∗ n FLOPs for each additional dimension
m ∈ M, where n is the number of classes, i.e. 1000 for ImageNet-1K. With nesting dimensions
M = {8, 16, . . . , 1024, 2048}, MRL thus adds 4.08 million FLOPs to FF-2048, which is an increase
of merely 0.1%.

I Ablation Studies

I.1 MRL Training Paradigm

Nesting as Finetuning. To observe if nesting can be induced in models that were not explicitly
trained with nesting from scratch, we loaded a pretrained FF-2048 ResNet50 model and initialized
a new MRL layer, as defined in Algorithm 2, Appendix D. We then unfroze different layers of
the backbone to observe how much non-linearity in the form of unfrozen conv layers needed to be
present to enforce nesting into a pretrained FF model. A description of these layers can be found
in the ResNet50 architecture [15]. All models were finetuned with the FFCV pipeline, with same
training configuration as in the end-to-end training aside from changing lr = 0.1 and epochs = 10. We
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Table 9: Top-1 classification accuracy (%) on ImageNet-1K of various ResNet50 models which are
finetuned on pretrained FF-2048 model. We observed that adding more and more non-linearities is
able to induce nesting to a reasonable extent even if the model was not pretrained with nesting in
mind.

Rep. Size fc 4.2 conv3,
fc

4.2 conv2,
conv3, fc

4.2 full,
fc All (MRL)

8 5.15 36.11 54.78 60.02 66.63
16 13.79 58.42 67.26 70.10 73.53
32 32.52 67.81 71.62 72.84 75.03
64 52.66 72.42 73.61 74.29 75.82

128 64.60 74.41 74.67 75.03 76.30
256 69.29 75.30 75.23 75.38 76.47
512 70.51 75.96 75.47 75.64 76.65
1024 70.19 76.18 75.70 75.75 76.76
2048 69.72 76.44 75.96 75.97 76.80

Table 10: An ablation over boosting training loss at lower nesting dimensions, with top-1 and top-5
accuracy (%). The models are described in Appendix I.1.

Model MRL MRL-8boost MRL-8+16boost

Rep. Size Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

8 66.63 84.66 69.53 86.19 69.24 85.96
16 73.53 89.52 73.86 89.44 73.91 89.55
32 75.03 91.31 75.28 91.21 75.10 91.14
64 75.82 92.27 75.84 92.22 75.67 92.06

128 76.30 92.82 76.28 92.74 76.07 92.52
256 76.47 93.02 76.48 92.97 76.22 92.72
512 76.65 93.13 76.56 93.09 76.35 92.85

1024 76.76 93.22 76.71 93.21 76.39 92.98
2048 76.80 93.32 76.76 93.28 76.52 93.05

observed that finetuning the linear layer alone was insufficient to learn Matryoshka Representations
at lower dimensionalities. Adding more and more non-linear conv+ReLU layers steadily improved
classification accuracy of d = 8 from 5% to 60% after finetuning, which was only 6% less than
training MRL end-to-end for 40 epochs. This difference was successively less pronounced as we
increased dimensionality past d = 64, to within 1.5% for all larger dimensionalities. The full results
of this ablation can be seen in Table 9.

Relative Importance. We performed an ablation of MRL over the relative importance, cm, of
different nesting dimensions m ∈ M, as defined in Sec. 3. In an attempt to improve performance at
lower dimensionalities, we boosted the relative importance cm of training loss at lower dimensions as
in Eq. 1 with two models, MRL-8boost and MRL-8+16boost. The MRL-8boost model had cm∈M =
[2, 1, 1, 1, 1, 1, 1, 1, 1] and the MRL-8+16boost model had cm∈M = [2, 1.5, 1, 1, 1, 1, 1, 1, 1]. The
relative importance list cm∈M had a 1-to-1 correspondence with nesting dimension set M. In
Table 10, we observed that MRL-8boost improves top-1 accuracy by 3% at d = 8, and also improves
top-1 of all representation scales from 16 to 256 over MRL, while only hurting the performance at
512 to 2048 representation scales by a maximum of 0.1%. This suggests that the relative importance
cm can be tuned/set for optimal accuracy for all m ∈ M, but we leave this extension for future work.
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