TS-Rep: Self-supervised time series representation
learning from robot sensor data

Pratik Somaiya Harit Pandya
Lincoln Centre for Autonomous Systems Toshiba Research Europe
University of Lincoln, UK Cambridge, UK
psomaiya@lincoln.ac.uk harit.pandya@crl.toshiba.co.uk
Riccardo Polvara Marc Hanheide
Lincoln Centre for Autonomous Systems Lincoln Centre for Autonomous Systems
University of Lincoln, UK University of Lincoln, UK
rpolvara@lincoln.ac.uk mhanheide@lincoln.ac.uk

Grzegorz Cielniak
Lincoln Centre for Autonomous Systems
University of Lincoln, UK
gcielniak@lincoln.ac.uk

Abstract

In this paper, we propose TS-Rep, a self-supervised method that learns
representations from multi-modal varying-length time series sensor data from
real robots. TS-Rep is based on a simple yet effective technique for triplet learn-
ing, where we randomly split the time series into two segments to form anchor
and positive while selecting random subseries from the other time series in the
mini-batch to construct negatives. We additionally use the nearest neighbour in
the representation space to increase the diversity in the positives. For evalua-
tion, we perform a clusterability analysis on representations of three heteroge-
neous robotics datasets. Then learned representations are applied for anomaly
detection, and our method consistently performs well. A classifier trained on
TS-Rep learned representations outperforms unsupervised methods and performs
close to the fully-supervised methods for terrain classification. Furthermore, we
show that TS-Rep is, on average, the fastest method to train among the baselines.
Our code is available athttps://github. com/imprs/TS-Repl

1 Introduction

Time series are often sparsely labelled, making it challenging to use them in a supervised learn-
ing paradigm. Therefore, representation learning methods are employed to learn general-purpose
representations that are not limited to any single supervised task. Learning a good representation
of time series data is often difficult due to its complexity and high dimensionality. Furthermore,
representation learning is well studied in domains like vision and language; however, it is a relatively
underexplored theme in the time series domain [28]], especially in the robotics context. To learn
representation for anomaly detection [4}29] and terrain classification [31]] in robotics, autoencoder
(AE) and variational autoencoder-based architectures have been the most common in the literature.

Recent works [[14} 28], [13 30] employ self-supervised contrastive learning to learn time series
representations. When these existing methods were evaluated on multi-modal time series datasets of

3rd Workshop on Self-Supervised Learning - Theory and Practice (NeurIPS 2022).

https://github.com/imprs/TS-Rep

Triplet Learning
Mini-batch of raw time series

fo(-

tznn < tpos > jlﬂ

-
4
<4
£
7]

Train Set

Representations Attract
e e

J)
T ‘ Tneg Tpos . Triplet loss
. . Liriplet
: el - -
s . <
! Jeare
1

Weights

Eq. (1)

»> Time

Figure 1: TS-Rep overview: (left) Anchor z,,, Positive z,,, and Negatives x,,., sampling from a
mini-batch of time series. (right) Triplet loss brings anchor representation 2. closer to the nearest
neighbour of positive representation z,,, while pushing apart negative representations 2.

varied sizes collected from a variety of real robots and scenarios, they struggled to learn effective
representations, as we show later in experiments. Our proposed approach, TS-Rep, not only learns
effective representations through a simple technique to sample positives and negatives in its triplet
loss objective but also reduces the training time significantly. To support our claims, we conduct
extensive experiments through clusterability analysis on three different datasets, including a mobile
robot and manipulator and compare TS-Rep with recent self-supervised and AE-based approaches.
Furthermore, we showcase the effectiveness of the learned representation by applying them to
downstream tasks of anomalous instance detection and terrain classification, where our approach
outperforms unsupervised methods and is at par with even supervised approaches.

2 Methodology

Given the time series data obtained from the robot’s sensors, our approach aims at learning a
representation in a self-supervised fashion. We represent the dataset of N given time series as
X = {2} . Each time series is F'-dimensional and is written as 2 € R* *¥, where ¢ is the length
of the i*" time series. The time series are univariate when ' = 1 and multivariate when F' > 1. We
sample a mini-batch of time series BB, from dataset X . For each sample z* in B,,, we obtain the anchor
(Tanc) and the positive (z,,) subseries through randomised cropping of the original time series,
and we sample random segments from all the remaining time series in the mini-batch as negatives
(Tneg) (refer to section %These subseries (i.€., Tanc, Tpos and T,,c4) are propagated through the
network (refer to section for obtaining the hidden representations (2qnc,» Zpos and Zpeq), and
the mini-batch of these representations is denoted by B.. Triplet loss (refer to section [2.3) brings
the representation of anchor (z,,.) and positive (z,,,) closer while pushing apart representations
of negatives (2,.4). We further use the nearest neighbour in the representation space for positive
sampling (refer to section[2.2). An overview of the proposed approach is presented in Fig. [T}

2.1 Network Architecture

Our network is identical to T-Loss [14]], and further details about the network are given in Appendix [D]
The network outputs a mini-batch of representations B, € RE*L for anchor, positive and negative
subseries. Here, B is the mini-batch size and z* € B, is an L dimensional vector.

2.2 Positive and Negative Selection for Triplet Learning

%

For any time series x*, T-Loss [14] selects positive subseries T, Such that the positive subseries
itself is part of the anchor subseries, i.e., xéos € gt Instead, in TS-Rep, we randomly crop the time

anc*®
series into two non-overlapping and temporally adjacent subseries to form the anchor and positive. If
the length of the it" time series in the mini-batch is ¢’ and the length of the shortest time series is
"™, then we first randomly sample the length of the positives (055 tpos < t"7*'™"). We keep tp0, the

same for all time series in the mini-batch. The length of the anchor ¢% . is the remaining length of

L ne = t' — tpos. This sampling technique allows TS-Rep to learn temporally
invariant representations and it is illustrated in Fig.[I]

the time series, i.e., ¢’

In T-Loss, K negatives are sampled from the train set for each time series in the mini-batch of size
B, and thus, the total number of negative representations required to be computed is K B. This
computation makes T-Loss comparatively slower to train than more recent methods such as [30} [13]].
In TS-Rep, we tackle this by using the remaining time series from the mini-batch for negatives which
only requires computing B representations while improving the training time considerably, as shown
empirically in our results.

In addition to using a temporally adjacent subseries as a positive, we further leverage the diversity in
the training data and sample positive from the nearest neighbour of z,,, as illustrated in Fig. E} This
idea of using the nearest neighbour has been studied before in visual and neural activity representation
learning [12, 3], and our approach is in a similar direction. To further randomise the selection process
of a positive, we sample from a Bernoulli distribution. If the outcome is 1, we use the nearest
neighbour of z,,, as a positive, else we use the 2,5 (representation of the subseries) itself. To obtain
the nearest neighbour, we use the train set representations S (see Fig. [I)) from the previous epoch.

2.3 Triplet loss

Our triplet loss formulation is based on word2vec [[19]] and T-Loss [[14]]. Given representations of
anchor (zqnc), positive (zp0s) and negatives (znc4), Our training objective for a mini-batch is:

B

Loriprer = 3 D0 | o8 (0 ((zhe) " NN(:5,5))) - S tog (o (~(2tne) (3heg))) | ()

i=1 =l

where o is the sigmoid function, B is the mini-batch size, and NN () returns the nearest neighbour of
Zpos ITOM train set representations S.

3 Experiments

In this section, we present the experiments to evaluate the quality of the learned representations
through clusterability analysis, anomaly detection and terrain classification. We refer our readers to
Appendix [C|and Appendix [E|for details about the datasets and evaluation metrics, respectively.

3.1 Clusterability Analysis of Learned Representations

We first assess the quality of the learned representations through clusterability analysis, as in [28]].
Real-world time series data in robotics often have a multi-categorical underlying structure, which
leads to clustering properties in low-dimensional representation. Learning such clustering properties
is an indicator of a well-learned representation [28| [8]].

We compare TS-Rep with the self-supervised methods [[14} [13) [30], and a VAE-based method
Incr-VAE [4]. We use Normalized Mutual Information (NMI) as in [20], and Silhouette score and
Davies-Bouldin index (DBI) following TNC [28]].

Table 1: Comparison of clustering results on train set representations.

Training Manipulation Water Monitoring Robot QCAT-6
time (hrs) NMI 1 Silhouette T DBI | NMI 1 Silhouette T DBI | NMI 1 Silhouette T DBI |
Incr-VAE [4] 0.86 0.70+0.05 0.26+0.04 1.3940.15 0.19£0.17 0.224+0.05 1.44+0.13 0.654+0.05 0.16+0.01 2.14+0.12
T-Loss [14] 4.83 0.45+0.11 0.11£0.02 2.3440.15 0.844+0.03 0.254+0.03 1.72£0.14 0.72+0.06 0.11£0.01 2.7540.15
TS-TCC[13] 3.09 0.20£0.05 0.1740.06 1.70£0.15 0.974+0.04 0.67£0.04 0.83%+0.12 0.65+0.06 0.154+0.01 2.01+0.06
TS2Vec [30] 0.72 0.34£0.09 0.1140.02 2.14+£0.11 0.804+0.06 0.11£0.01 2.2740.10 0.48+0.07 0.074+0.01 2.75+0.09
TS-Rep 0.64 0.65+0.06 0.31+0.05 1.26+0.22 1.00+0.00 0.70+£0.04 0.50+0.07 0.80+0.02 0.41+0.02 1.10:0.06

We present our results in Table[T] which shows that our method TS-Rep outperforms all the baselines
in all three metrics, except in Manipulation on NMI, where Incr-VAE achieves better results. Incr-VAE

also performs well on QCAT-6 dataset but achieves the lowest performance on the Water Monitoring
Robot (WMR) dataset. After TS-Rep, T-Loss performs consistently on all datasets. The results of
TS-TCC are close to TS-Rep on WMR, but TS-TCC still falls behind on the other datasets. TS2Vec
achieves the lowest scores on QCAT-6 and falls behind TS-Rep and T-Loss on Manipulation and
WMR. These results indicate that TS-Rep is able to learn the underlying patterns in the data and
group instances with similar characteristics. The baselines do not achieve as competitive performance
as TS-Rep and do not perform consistently well across different datasets. Qualitative results and
more details on training time are provided in Appendix [F.2]and Appendix [FI] respectively.

3.2 Anomaly Detection

Anomaly detection refers to the identification of anomalous instances in the data, which is an
important application in robotics. We train a one-class SVM (OCSVM) classifier on the nominal
class representations for instance-wise anomaly detection. OCSVM has been previously used for
anomaly detection tasks on learned features [29,[25] and on raw features [26].

We assess anomaly detection performance with F1-score, area under a receiver operating characteristic
(AUROC) and False-positive rate (FPR) at 95% True-positive rate (TPR) following [29} 22, {10} [15].

Table 2: Comparison of anomaly detection results on Test set.

Manipulation Water Monitoring Robot QCAT-6
FPR- FPR- FPR-
F1 1 AUROCT gs¢ TpR + F1 1 AUROCT gs¢ Tpr + F1 1 AUROCT g5 rpr +

Incr-VAE [4] 0.83+0.25 0.99+0.02 0.02+0.06 0.33+0.41 0.80+0.13 0.56+0.24 0.99+0.01 1.00+0.00 0.0140.02
T-Loss [14] 0.774+0.12 0.90£0.06 0.37+0.21 1.00+0.00 1.00£0.00 0.00£0.00 1.00£+0.00 1.00+0.00 0.00+0.00
TS-TCC [13] 0.39+0.05 0.584+0.05 0.69+0.15 1.00£0.00 1.004+0.00 0.00£0.00 0.92+0.09 0.974+0.04 0.10£0.08
TS2Vec [30] 0.76+0.03 0.75£0.04 0.50£0.13 0.9940.01 1.00£0.00 0.00£0.00 0.9610.01 0.98+0.01 0.09+0.06

TS-Rep 0.81+0.05 0.854+0.05 0.33+0.05 1.00£0.00 1.004+0.00 0.00+0.00 0.98+0.02 1.00+0.00 0.01+£0.03

As we see in Table[2] there is no clear winner, but T-Loss and TS-Rep perform consistently well across
all three datasets. Incr-VAE achieves the best results in all three metrics on the Manipulation dataset
and achieves near-perfect scores on QCAT-6; however, it performs poorly on the Water Monitoring
Robot (WMR) dataset. Incr-VAE struggles to separate all the classes in the WMR dataset, as shown
by the clustering results in section[3.1} and that possibly explains Incr-VAE’s poor performance in
anomaly detection. TS-TCC and TS2Vec achieve perfect scores in the WMR dataset but fall behind
in the other two datasets. These consistent results show that TS-Rep learned representations are
useful for downstream tasks such as anomaly detection across different datasets.

3.3 Terrain Classification

Terrain classification is the task of identifying the type of terrain that the robot is traversing based
on the sensor feedback. We utilise two terrain classification datasets, PUTany [7] and QCAT [1]].
Following [14}30], we fit an SVM classifier on the learned representations for classification.

On the QCAT dataset, existing baselines use
10-Fold Cross-Validation for evaluation and)) o
use classification accuracy for assessment. We ~Table 3: Comparison of Terrain classification accu-

evaluate against two fully-supervised methods, racy on the QCAT with 10-fold Cross-Validation.

namely RNN-FCL [1] and HAPTR2 [6]. Force Force + IMU
Acc (%) Acc (%)

When evaluating with only force readings, TS- _ HAPTR2[6] 97.33+1.21 B

Rep achieves lower accuracy compared to super- ~ SPVISed o ONFCLIT) 96.604089 97.641.03

vised methods RNN-FCL and HAPTR2. When ~ Self-supervised ~ TS-Rep 94.144047 98.31£0.33
considering both force and Inertial Measure-
ment Unit (IMU) sensors, TS-Rep outperforms
the supervised method RNN-FCL, as shown in Table[3] TS-Rep also reports lower standard deviations
and is a little more robust. We present the results of the PUTany dataset in Appendix [F3]

We provide ablation studies in Appendix [G]and implementation details in Appendix [H]

4 Conclusion

We presented a self-supervised method for learning generalised representations from time series data.
Our approach, TS-Rep, uses a triplet loss objective and crops time series into two temporally adjacent
subseries to create an anchor-positive pair and further uses the nearest neighbour in the representation
space to increase the variety in positives. TS-Rep employs negatives from the mini-batch itself,
which substantially improves the training time compared to T-Loss. Our extensive evaluation through
clusterability analysis, anomaly detection and terrain classification shows the effectiveness of TS-Rep
learned representations for downstream applications. Although the focus of this paper was time series
data from robotics, TS-Rep can also be used for time series from other domains, e.g., healthcare,
energy, etc.

Acknowledgments

We would like to thank the reviewers for their constructive comments. This work has been supported
by the European Commission as part of H2020 under grant number 871704 (BACCHUS) and UK
Research and Innovation (InnovateUK) under the grant number 51367 (Robot Highways).

References

[1] Ahmadreza Ahmadi, Tgnnes Nygaard, Navinda Kottege, David Howard, and Nicolas Hudson.
Semi-supervised gated recurrent neural networks for robotic terrain classification. IEEE Robotics
and Automation Letters, 6(2):1848-1855,2021. @ 9]

[2] Shahin Amiriparian, Michael J. Freitag, Nicholas Cummins, and Bjorn Schuller. Sequence to
sequence autoencoders for unsupervised representation learning from audio. In DCASE, 2017.
8]

[3] Mehdi Azabou, Mohammad Gheshlaghi Azar, Ran Liu, Chi-Heng Lin, Erik C Johnson, Kiran
Bhaskaran-Nair, Max Dabagia, Bernardo Avila-Pires, Lindsey Kitchell, Keith B Hengen, et al.

Mine your own view: Self-supervised learning through across-sample prediction. arXiv preprint
arXiv:2102.10106, 2021. 3|

[4] Davide Azzalini, Luca Bonali, and Francesco Amigoni. A minimally supervised approach
based on variational autoencoders for anomaly detection in autonomous robots. IEEE Robotics
and Automation Letters, 6(2):2985-2992, 2021. [1] 3] @ [8L BL [I0L [13]

[5] Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convo-
lutional and recurrent networks for sequence modeling. CoRR, abs/1803.01271, 2018. [T0}
o4

[6] Michat Bednarek, Michat R Nowicki, and Krzysztof Walas. Haptr2: Improved haptic trans-
former for legged robots’ terrain classification. Robotics and Autonomous Systems, page 104236,

2022. @[14)

[7] Michat Bednarek, Mikotaj Lysakowski, Jakub Bednarek, Michat R. Nowicki, and Krzysztof
Walas. Fast haptic terrain classification for legged robots using transformer. In 2021 European
Conference on Mobile Robots (ECMR), pages 1-7, 2021. 4] Ol [14]

[8] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and

new perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798—
1828, 2013. 3

[9] Russell Buchanan, Jakub Bednarek, Marco Camurri, Michat R Nowicki, Krzysztof Walas, and
Maurice Fallon. Navigating by touch: haptic monte carlo localization via geometric sensing
and terrain classification. Autonomous Robots, 45(6):843-857, 2021. [14]

[10] Charles Corbiere, Nicolas Thome, Avner Bar-Hen, Matthieu Cord, and Patrick Pérez. Ad-
dressing failure prediction by learning model confidence. Advances in Neural Information
Processing Systems, 32, 2019.]

[11] Angus Dempster, Francois Petitjean, and Geoffrey I Webb. Rocket: exceptionally fast and
accurate time series classification using random convolutional kernels. Data Mining and
Knowledge Discovery, 34(5):1454—-1495, 2020. [E]

[12] Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre Sermanet, and Andrew Zisserman.
With a little help from my friends: Nearest-neighbor contrastive learning of visual representa-
tions. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
9588-9597, 2021. [3]

[13] Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee Keong Kwoh, Xiaoli Li,
and Cuntai Guan. Time-series representation learning via temporal and contextual contrasting.
In Zhi-Hua Zhou, editor, Proceedings of the Thirtieth International Joint Conference on Arti-
ficial Intelligence, IICAI-21, pages 2352-2359. International Joint Conferences on Artificial

Intelligence Organization, 8 2021. [T} 3] [[8] [10] [13] [13]

[14] Jean-Yves Franceschi, Aymeric Dieuleveut, and Martin Jaggi. Unsupervised scalable repre-
sentation learning for multivariate time series. In Advances in Neural Information Processing

Systems, volume 32. Curran Associates, Inc., 2019. [T} 21 [3] @ [B] [10} [[3] T3]

[15] Tianchen Ji, Arun Narenthiran Sivakumar, Girish Chowdhary, and Katherine Driggs-Campbell.
Proactive anomaly detection for robot navigation with multi-sensor fusion. /EEE Robotics and
Automation Letters, 7(2):4975-4982, 2022. [4]

[16] Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised represen-

tations for reinforcement learning. In International Conference on Machine Learning, pages
5639-5650. PMLR, 2020. [3]

[17] Jason Lines and Anthony Bagnall. Time series classification with ensembles of elastic distance
measures. Data Mining and Knowledge Discovery, 29(3):565-592, 2015. [T4]

[18] Pankaj Malhotra, Vishnu TV, Lovekesh Vig, Puneet Agarwal, and Gautam Shroff. Timenet:
Pre-trained deep recurrent neural network for time series classification, 2017. B]

[19] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed represen-
tations of words and phrases and their compositionality. In C.J. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K.Q. Weinberger, editors, Advances in Neural Information Processing
Systems, volume 26. Curran Associates, Inc., 2013. E]

[20] Erxue Min, Xifeng Guo, Qiang Liu, Gen Zhang, Jianjing Cui, and Jun Long. A survey of
clustering with deep learning: From the perspective of network architecture. IEEE Access,
6:39501-39514, 2018.

[21] Tgnnes F. Nygaard, Jgrgen Nordmoen, Kai Olav Ellefsen, Charles P. Martin, Jim Tgrresen, and
Kyrre Glette. Experiences from real-world evolution with dyret: Dynamic robot for embodied
testing. In Kerstin Bach and Massimiliano Ruocco, editors, Nordic Artificial Intelligence
Research and Development, pages 58—68, Cham, 2019. Springer International Publishing. [9]

[22] Daehyung Park, Yuuna Hoshi, and Charles C Kemp. A multimodal anomaly detector for robot-
assisted feeding using an Istm-based variational autoencoder. IEEE Robotics and Automation
Letters, 3(3):1544-1551, 2018. [

[23] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library, 2019.

[24] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825-2830, 2011.

[25]

[26]

[27]

(28]

[29]

[30]

[31]

Kihyuk Sohn, Chun-Liang Li, Jinsung Yoon, Minho Jin, and Tomas Pfister. Learning and
evaluating representations for deep one-class classification. arXiv preprint arXiv:2011.02578,
2020. @

Pratik Somaiya, Marc Hanheide, and Grzegorz Cielniak. Unsupervised anomaly detection for
safe robot operations. In UKRAS20 Conference: “Robots Into The Real World” Proceedings,
pages 154-156. UKRAS, 2020. 4]

Santosh Thoduka, Juergen Gall, and Paul G. Ploger. Using visual anomaly detection for task
execution monitoring. In 2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 4604—4610, 2021. 0]

Sana Tonekaboni, Danny Eytan, and Anna Goldenberg. Unsupervised representation learning
for time series with temporal neighborhood coding. In International Conference on Learning
Representations, 2021.

Julian Wiederer, Arij Bouazizi, Marco Troina, Ulrich Kressel, and Vasileios Belagiannis.
Anomaly detection in multi-agent trajectories for automated driving. In Proceedings of the 5th
Conference on Robot Learning, volume 164 of Proceedings of Machine Learning Research,
pages 1223-1233. PMLR, 08-11 Nov 2022. [T} {]

Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang, Yunhai Tong, and
Bixiong Xu. Ts2vec: Towards universal representation of time series, 2021. [T} 3] [[8} [T0} [13]

Mikotaj Lysakowski, Michat R. Nowicki, Russell Buchanan, Marco Camurri, Maurice Fallon,
and Krzysztof Walas. Unsupervised learning of terrain representations for haptic monte carlo
localization. In 2022 International Conference on Robotics and Automation (ICRA), pages
4642-46438, 2022. [1}[8] [T4]

A Related Work

Autoencoder (AE) based methods have been widely used to learn time series representation by
reconstructing the input series [[18| 2]]. In robotics, recently, Azzalini et al. [4] proposed Incr-VAE,
a two-stage approach based on Variational Autoencoder (VAE) for anomaly detection in robotics,
where the first stage is representation learning and the second stage is anomaly detection. Wiederer
et al. [29] combined Graph Neural Networks (GNNs) with AE and presented a Spatio-temporal
graph autoencoder (STGAE) to detect abnormal driving behaviour in a multi-agent system. Similar
to Incr-VAE, STGAE first learns the low-dimensional representation and then performs anomalous
behaviour detection. Lysakowski et al. [31] introduced an improved autoencoder (IAE) based method
for representation learning and haptic localisation from force/ torque sensor data in a quadruped
robot.

In recent years, self-supervised contrastive learning-based methods have gained attention for gener-
alised time series representation learning 28\ [13} |14} 30]]. Franceschi et al. [14] presented T-Loss, a
time series representation learning method based on triplet loss and time-based negative sampling.
T-Loss suggested that using the encoder alone significantly reduces the computation cost while
learning superior representations. In TS-TCC [[13], the authors proposed the cross-view prediction
technique for temporal contrasting and an additional contextual contrasting for learning discrimi-
native representations. TNC [28] introduced an unsupervised representation learning method for
non-stationary time series and presented the concept of temporal neighbourhood. Another recent
work, called TS2Vec [30], proposed a universal time series representation learning framework, where
they applied temporal-level and instance-level contrastive loss hierarchically at different time scales to
learn a fine-grained representation of time series. TS2Vec also obtained state-of-the-art performance
on downstream tasks and outperformed the unsupervised methods for time series forecasting, classifi-
cation and anomaly detection. In the context of robotics, CuRL [[16] applies instance contrastive loss
on images and shows significant improvement in reinforcement learning tasks.

B Visulisation: Positive and Negative sampling

Mini-batch of raw time series Anchor-Positive
sampling

B
| i

‘ Time

H@ .

‘ Lneg ‘

Time zJ ‘ ‘ By ‘ ‘

Negative
sampling

Time

Figure 2: Anchor % 4y,., Positive 2,5 and Negatives ., sampling from a mini-batch of size B.

C Datasets

We validate our proposed method against state-of-the-art approaches on four different publicly
available robotic datasets: (i) the Manipulation dataset [27], collected during a manipulative task
of a robot placing books in a shelf, (ii) the Water Monitoring Robot dataset [4]], representing runs
performed by an unmanned surface vehicle to collect water samples, (iii) the QCAT dataset [1]],
recorded with quadruped robot DyRET [21] walking over different type of terrains, and (iv) the
PUTany dataset [[7], was recorded with the ANYmal robot walking over samples from different
real-world terrains. We are now going to describe each individual dataset in detail.

Table 4: Datasets used in this study and their properties.

Properties Data Splits
Dataset

Samples Max len Features Classes Train Test

Manipulation [27] 121 640 84 5 100 21
Water Monitoring Robot [4] 1000 440 6 9 800 200
QCAT [1] 2880 662 22 6 2304 576
QCAT-6 [1]] 480 400 22 6 384 96
PUTany [7] 5739 160 6 8 3443 1147

C.1 Manipulation

The manipulation dataset [27]] was originally developed for visual anomaly detection for a mobile
manipulator placing a book on a shelf. It contains runs of varied time lengths and each run includes
joint position, velocity, and acceleration for all the 7 joints in joint space, and signals from the
force-torque sensor mounted on the end-effector of the manipulator, which results in 84 features in
total. The dataset originally presents annotations for anomalous behaviours such as books falling
down, the robot being disturbed by collision, etc; however, these events and annotations are at a
timestep level. In our approach, we require the whole time series to have a single label and so we
reannotated the dataset based on the shelf the robot is placing the book onto.

C.2 Water Monitoring Robot

The water monitoring dataset [4] describes a water drone performing a coverage and sampling task,
and it has been collected as part of the H2020 EU project INTCATCH. Each run in the dataset is
described by 6 features: latitude, longitude, sine of heading, cosine of heading, and power signals to
the left and right motors. A visualisation of the dataset classes is presented in Fig.

C.3 QCAT

The QCAT dataset [1] was recorded during walking sessions of the DyRET [21]] quadruped robot on
different types of terrains. The dataset includes measurements from force-torque sensors mounted on
all four feet of the robot, and the IMU sensor mounted on the body. The walking sessions include
DyRET traversing over 6 different types of terrains at 6 different speeds. The terrains include grass,
concrete, gravel, dirt, mulch, and sand. We additionally create QCAT-6 datasets from QCAT by using
data from only one speed, which results in 480 samples.

C4 PUTany

The PUTany dataset [7]] was collected by the ANYmal quadruped robot traversing on 8 types of
terrain samples, namely carpet, artificial grass, sand, rocks, rubber, ceramic tiles, foam, and PVC.
Each sample consists of force/ torque feedback from the feet of the robot. For a fair comparison, we
follow baselines in section [F:3]to split the dataset and use 3443 samples for training the network and
keep 1147 in the test. We do not use the remaining 1149 in this case.

Latitude

45362

45.362

45361+

45361

45.36

45.362-
45362°
45.361-
45.361

4536

45362

45362

45361

45361

45.36

Class-2|

11.018 11019

45362
45.362
453611
45361
4536

11018 11019 1102

XY Plot

45362
45362
45361
453614
4536

11.018 1019

1102
XY Plot

11.02
XY Plot

11.021

121

11.021

11.022

11022

11.022

11018

45362

45352:
45.361-
is361

4536

11018

45362

45362+

45361

45361

4536~

11.018

11.019 11.02 11.021 11.022
XY Plot

11019 102 11021 11.022

XY Plot

11.019 11.02 11.021 11.022
XY Plot

11.018

45362

45362

45361

45361

45.36

11.018

45362

45362

45361

45361

4536

11018

11.019

11.019

11.019

11.02
XY Plot

11.02

1

XY Plot

.02
XY Plot

11.021

11.021

11.021

11.022

“Class 5|

11022

wClass 8

11.022

Longitude

Figure 3: Visualisation of the Water Monitoring Robot dataset with Longitude and Latitude features.

D Choice of Encoder

Our network consists of stacked causal dilated convolutional layers, weight normalisation, Leaky
ReLU, and residual connections. The output from these stacked layers is first passed through the
global pooling layer to squeeze the time dimension, and then through the linear layer to apply the
linear transformation.

Previous studies in [14, 30] show that the dilated CNN-based networks, such as the temporal
convolutional network (TCN) [5], are better at capturing the long-term dependencies in time series
than the Recurrent Networks or Transformer based networks. In our experiments, we observed that
the T-Loss [14] learns better representations (i.e., clusterable) than the other self-supervised and
VAE-based methods such as [30} 13} 4] and so, we kept the network architecture similar to T-Loss
[14].

E Evaluation Metrics

E.1 Clusterability

To evaluate the clustering performance on the learned representation, we use three commonly used
metrics, namely the Silhouette score and Davies-Bouldin index (DBI) and Normalized Mutual
Information (NMI).

Normalized Mutual Information (NMI): Normalized Mutual Information (NMI) measures the
agreement between the true and predicted cluster assignments. The NMI is bounded between 0
and 1, and the higher number represents a better agreement between the true and predicted cluster
assignments. NMI is given by:

MI (ytrum ypred)
%[H(ytme) + H(ypred)]

NMI(ytruea ypred) =)

where ¥ie is ground-truth labels, 1/preq is predicted labels, M I is mutual information metric and H is
entropy.

10

Silhouette score: The Silhouette score measures how similar an instance is to the other instances
within the same cluster compared to other clusters. The Silhouette score is between —1 and 1, and
the higher number indicates the sample is well-matched with its own cluster and poorly matches the
other clusters. The Silhouette score for any sample ¢ is given as:

b(i) — a(7)
max{a(i),b(i)}’

where a(7) is the mean distance between the 7" sample and all other samples in the same cluster and
is given by:

3

Silhouette score s(i) =

mean intra-cluster distance a (i) = Gi=1 Ck| Z d(i,7) @
JECk i#]

| represents the number of samples in the cluster k and d(%, j) denotes
distance between the sample ¢ and j.

b(i) is the mean distance between the i*" sample and all other samples in the nearest or neighbouring
cluster and is written as:

mean nearest-cluster distance b(7) = min —— d(i ()]
(@) 1#k |Cl| Z)

Davies-Bouldin index (DBI): The Davies-Bouldin index or DBI measures how separated all clusters
are and how close samples are within the cluster. The lower number for DBI indicates low intra-cluster
and high inter-cluster distances. DBI is given as,

K
1
KZ; max Ry ©)

where K is the number of clusters and 2;; is defined as,

S; + 85
mij

R = @)

In Equation|/] s is the average distance of all points in the cluster to the cluster centre, and subscript
i and j denote the cluster number. Here, s; and s; measure the cluster scatter in cluster ¢ and j,
respectively. m,;; measures the separation between the cluster ¢ and j and can be calculated by
measuring the distance between the cluster centroids.

E.2 Anomaly Detection

To calculate F1-score, we learn Gaussian distribution over raw scores of the nominal time series
obtained using the OCSVM and log/ store the mean and standard deviation. During inference, we
check if the predicted score is within the three standard deviations of the training scores. If it is inside
the range, we predict it as nominal, and if out of range, we predict it as anomalous.

We additionally use AUROC and FPR at 95% TPR, which are directly calculated with the raw
prediction scores.

We first explain True Positive (TP), False Positive (FP), True Negative (TN) and False Negative (FN)
before going into evaluation metrics.

True Positive (TP): actual positive (anomalous) that is classified correctly as a positive (anomalous).
False Positive (FP): actual negative (nominal) that is misclassified as a positive (anomalous).
True Negative (TN): actual negative (nominal) that is correctly classified as a negative (nominal).

False Negative (FN): actual positive (anomalous) that is misclassified as a negative (nominal).

11

F1-score: Fl-score is often used to evaluate a classifier’s performance. It combines precision and
recall into a single metric and is the harmonic mean of precision and recall. The range for the F1-score
is 0 to 1. Fl-score is defined as,

precision * recall

Fl-score =2 ——————— ®
precision + recall
and precision and recall are given by,
#TP
Precision = ———)
#TP + #FP
#TP
Recall = ——— (10)
#TP + #FN

where #TP and #FP are the number of true and false positives, respectively, and #FN is the number of
false negatives.

Area under the receiver operating characteristic (AUROC): AUROC is obtained by calculating
the area under the receiver operating characteristic (ROC) curve. The ROC is a probability curve
obtained by calculating the false positive rate (FPR) and true positive rate (TPR). Here, FPR and TPR
are calculated with different classification threshold values, and a graphical plot of TPR vs FPR at
these thresholds is called the ROC curve. The area under this ROC curve is measured to evaluate the
classifier’s performance and is referred to as AUROC. It ranges from 0 to 1. FPR and TPR are given
by,

#TN
False positive rate (FPR) =1 — ————— (11)
#TN + #FP
#FP
= —— (12)
#TN + #FP
#TP
True positive rate (TPR) = ———— (13)
#TP + #FN

where #TN is the number of true negatives.

TPR is also known as sensitivity, and FPR is known as 1— specificity, where specificity shows the
proportion of correctly classified negatives.

FPR at 95% TPR: FPR at 95% TPR measures the probability of misclassifying a negative (normal
data) as positive (anomalous) when the TPR is as high as 95%. The range for FPR at 95% TPR is
from O to 1.

E.3 Terrain Classification

We follow the baselines and use the classification accuracy to measure the performance. Accuracy is
defined as,

number of correct predictions

Accuracy = 14
Y total number of predictions (14
Mathematically, it is written as,
N
AccuraCY(ytruea ypred Z ym.e, ypred (15)

In Equation 1 is an indicator function that returns 1 when g, . is the same as yéred, and O otherwise.

Accuracy is reported in percentage (%) and is in the range of 0 to 100%.

12

F Additional Results

F.1 Training Time

We report training time for each method on all three datasets in Table [5] and it shows that, on average,
TS-Rep is the fastest method to train among the baselines.

Table 5: Training time (in hours) for Manipulation, Water Monitoring Robot, and QCAT-6 datasets.

Manipulation Wateré\i[) ggitormg QCAT-6 Total

Training time Training time Training time Training time
(hrs) (hrs) (hrs) (hrs)
Incr-VAE[4] 0.14 0.50 0.22 0.86
T-Loss[14] 0.40 2.28 2.14 4.83
TS-TCCJ[13] 1.03 1.03 1.03 3.09
TS2Vec[30] 0.12 0.31 0.29 0.72
TS-Rep 0.05 0.29 0.30 0.64

F.2 Clusterabilty Analysis

A qualitative evaluation of representations generated by TS-Rep and baselines on Manipulation,
Water Monitoring Robot and QCAT-6 is given in Fig.]

Incr-VAE T-Loss TS-TCC TS2Vec TS-Rep

‘oo ° 1 2 3.4‘

Manipulation
t-SNE Feature 2

Water Monitoring
t-SNE Feature 2
&
o
e
L
g
4
*
Y 4

QCAT-6
t-SNE Feature 2
3

t-SNE Feature 1 t-SNE Feature 1 t-SNE Feature 1 t-SNE Feature 1 t-SNE Feature 1

Figure 4: Qualitative analysis of the representation obtained by our method TS-Rep and the other
baselines using t-SNE projection, for the manipulation dataset (top), the water monitoring robot
dataset (center), and the QCAT-6 (bottom).

The t-SNE projection of the Manipulation dataset with shelves is presented in Fig.[3]

13

t-SNE Feature 2 a

t-SNE Feature 1

Figure 5: Learned representations on the manipulation dataset by TS-Rep. Here, the manipulator
is placing books on different shelves, denoted by 0 to 4 in different colors. Our approach is able
to separate different classes from the robot’s sensory data in a self-supervised fashion without any
labels.

F.3 Terrain Classification

We evaluate TS-Rep on the PUTany dataset through 10-Fold CV and on a hold-out test set as in the
existing methods. For 10-Fold CV we use the same baselines as QCAT as in section[3.3] For test set
evaluation, we compare our method against two non-deep learning methods DTW-KNN [[17] and
ROCKET [[11], supervised methods TCN [5], HAPTR [7], HAPTR?2 [6] and CNN-RNN [9] and an
unsupervised method IAE [31].

We present results on the test dataset in Table @ Our method achieves the accuracy of 87.4% and
performs better than the non-deep learning methods DTW-KNN (74.0%) and ROCKET (84.9%),
unsupervised method TAE (74.2%) and performs close to the supervised method TCN (87.5%).
However, TS-Rep is still behind the other supervised methods HAPTR (91.7%), HAPTR2 (92.7%)
and CNN-RNN (93.0%). Similar to TS-Rep, IAE is also a two-stage learning method, namely the
representation learning stage and the classification stage. For a better comparison and to study the
effect of output dimension L, we increase the L to 512 as in IAE. We achieve 90.2% accuracy, which
is a +2.8% gain from the previous result with L = 100.

Table 6: Comparison of Terrain classification
accuracy on the PUTany Test dataset.

Acc (%) Table 7: Comparison of Terrain classification
DTW-KNN [[17] 74.0 accuracy on the PUTany dataset with 10-Fold
ROCKET (11} 84.9 Cross-Validation.
TCN [5] 87.5 Acc (%)
1 . HAPTR2[6] 93.85+0.82
Supervised HAPIR [7] L7 Supervised 7
HAPTR2 [6] 27 RNN-FCLIL 93.20+0.89
i TS-Rep (L=1 .4940.4
CNN-RNN [9] 93.0 Self-supervised S-Rep (L=100) ~ 89.49:£0.49
*********************** TS-Rep (L=512 2.0140.41
IAE BT] (L=512) 742 S-Rep (L=512) 92.01+0
Unsupervised/

TS-Rep (L=100) 87.4

Self-supervised
TS-Rep (L=512) 90.2

We present 10-Fold CV results in Table[7} and TS-Rep (89.49 £ 0.49) achieves accuracy close to the
supervised methods HAPTR2 (93.85 £ 0.82) and RNN-FCL (93.20 4 0.89). Again, when L = 512,
the performance improves from 89.49 + 0.49 to 92.01 £+ 0.41.

14

G Ablation Studies

We additionally perform studies to understand the importance of different components in TS-Rep.
As shown in Table[8] in our experiments, we first change the positive selection method from non-
overlapping subseries to overlapping subseries, similar to T-Loss, and we see a drop in performance
in all three datasets in all three metrics. In the second case, we randomly sample negatives from the
train set similar to T-Loss, as opposed to batch negatives in TS-Rep, and the results are very close
to the TS-Rep results except the training time increased significantly (roughly 7 times). Third, we
remove the nearest neighbour strategy, and we see notice the drop in performance in all three datasets,
which validates our intuition that the nearest neighbours provide a more diverse set of positives. In
the end, we perform experiments without any padding or resampling and use the varying length time
series directly, and we see that TS-Rep has gained in NMI (+0.03) in Manipulation and Silhouette
score (+0.03) in WMR but a loss in Silhouette score (—0.01) in Manipulation and overall training
time increases. This suggests that TS-Rep can be directly used in the case of varying length time
series and does not require any padding strategies.

Table 8: Ablation studies with clusterability evaluation.

. Training Manipulation ‘Water Monitoring Robot QCAT-6
Configuration
Time (hrs) NMI 1 Silhouette t DBI] NMI1 Silhouette 1 DBI| NMI1 Silhouette t DBI |
TS-Rep (fixed length) 0.64 0.65 0.31 1.26 1.00 0.70 0.50 0.80 0.41 1.10
TS-Rep (varying length) 0.95 0.68 0.30 1.26 1.00 0.73 0.50

‘W/o Non-overlapping subseries 0.71 0.52 0.20 1.83 0.85 0.35 1.26 0.76 0.19 2.10
W/o Batch Negatives 4.93 0.66 0.31 1.24 1.00 0.68 0.53 0.81 0.43 1.09

W/o NN 0.71 0.63 0.24 1.51 1.00 0.67 0.55 0.79 0.36 1.17

H Implementation Details

As a pre-processing step, we standardise all the datasets such that the mean of each feature in the
dataset is close to 0 and the standard deviation is close to 1. Additionally, for a fair comparison
across all methods, we convert varying length time series into fixed length time series. We perform
zero-padding in Water Monitoring Robot and QCAT datasets, data resampling in the Manipulation
dataset and we use QCAT-6 and PUTany datasets as it is. We use a batch size of 8, 64, and 64 for
the training of Manipulation, Water Monitoring Robot, and QCAT-6, respectively. Furthermore, we
fix the output representation dimension L to 100 for all datasets and approaches. We use the Adam
optimizer with a learning rate of 0.001 and with decay rates of (0.9, 0.999). To crop time series into 2
non-overlapping subseries, for each crop, we set the minimum and maximum length to 30% and 70%
of the original length respectively, which was chosen without any tuning. We follow T-Loss [[14] and
TS2Vec [30] to obtain the instance-level representation by performing max pooling over all timesteps.
For the nearest neighbour, we have a warm-up period of 30 epochs for all the datasets, and we use the
L1 distance and probability p = 0.6 for the Bernoulli distribution. The mean and standard deviation
for all experiments are obtained through 10 independent runs with random initialization of weights.

To train the network on QCAT and PUTany, we use a batch size of 256. For comparison with IAE in
Table [6]in addition to standard configuration of mini-batch size B = 256 and output representation
dimension L = 100, we also use B = 64 and L = 512 (bottom row in Tables[6] & [7).

For clustering, we use Gaussian Mixture Model (GMM). We use implementations from scikit-
learn [24] for GMM, OCSVM and SVM. For OCSVM, we use the default parameters. In the case of
SVM, we follow [1430] and perform a grid search using training labels to find the best classifier.

The implementation of our method is based on Python 3, PyTorch [23] 1.10 with CUDA 11.1 on
Nvidia GeForce GTX 1080 Ti GPU (11GB).

For T-Loss [14] and TS2Vec [30], we use the default parameters as described in the original papers.
For TS-TCC [13]], we refer to their default parameters used for the Human Activity Recognition
(HAR) dataset.

Further details are reported in Table O] Our implementation is publicly available at
https://github.com/imprs/TS-Rep.

15

https://github.com/imprs/TS-Rep

Table 9: TS-Rep configuration and implementation details.

Manipulation ~ Water Monitoring Robot QCAT-6 PUTany QCAT

Pre-processing

Standardisation (mean 0 and standard deviation 1)

Resampling Zero-padding - - Zero-padding

CNetwork
 Number of channels in the intermediate layers 0

Number of layers/ depth of the network 10

Kernel size of convolutions 3

Negative slope for leaky ReLU 0.01

Number of output channels from the %0

causal network (before max pooling)

Dimensions of output representation (L) 100
7 :Friai;lirilgip;r;r;ls 77
Batchsize(s« 64 64 256 256

Number of iterations 2000

Optimizer Adam, leaning rate o = 0.001 with decay rates 8 = (0.9, 0.999)

Nearest neighbour ‘Warm-up for 30 epochs, Distance = L1, Bernoulli dist. probability p = 0.6

PyTorch 1.10 with CUDA 11.1
Nvidia GeForce GTX 1080 Ti GPU (11GB)

16

	Introduction
	Methodology
	Network Architecture
	Positive and Negative Selection for Triplet Learning
	Triplet loss

	Experiments
	Clusterability Analysis of Learned Representations
	Anomaly Detection
	Terrain Classification

	Conclusion
	Related Work
	Visulisation: Positive and Negative sampling
	Datasets
	Manipulation
	Water Monitoring Robot
	QCAT
	PUTany

	Choice of Encoder
	Evaluation Metrics
	Clusterability
	Anomaly Detection
	Terrain Classification

	Additional Results
	Training Time
	Clusterabilty Analysis
	Terrain Classification

	Ablation Studies
	Implementation Details

