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Abstract

Recent empirical studies have found inductive biases in supervised learning toward
simple features that may be spuriously correlated with the label, resulting in
suboptimal performance on minority subgroups. Despite the growing popularity
of methods which learn representations from unlabeled data, it is unclear how
potential spurious features may be manifested in the learnt representations. In this
work, we explore whether recent Self-Supervised Learning (SSL) methods would
produce representations which exhibit similar behaviors under spurious correlation.
First, we show that classical approaches in combating spurious correlations, such as
dataset re-sampling during SSL, do not consistently lead to invariant representation.
Second, we find that spurious information is represented disproportionately heavily
in the later layers of the encoder. Motivated by these findings, we propose a method
to remove spurious information from these representations during pretraining, by
pruning or re-initializing later layers of the encoder. We find that our method
produces representations which outperform the baseline on three datasets, without
the need for group or label information during SSL.

1 Introduction

Many real-world predictive tasks contain spurious correlations – features that are correlated with the
label only for certain subsets of the data [1, 2, 3]. For instance, models trained to detect pneumonia [4]
or COVID-19 [5], from chest X-rays across hospitals use a spurious underlying feature – information
about the source hospital – as a shortcut for predicting the pathology, rather than invariant pulmonary
characteristics which are the core or invariant features. In cases where spurious correlations are
easier to learn than invariant correlations [6, 7], Empirical Risk Minimization (ERM) models have
been shown to make predictions based on spurious correlations. These models have systematically
poor performance for minority subgroups where such correlations do not hold [8]. Learning to
mitigate spurious shortcuts is well explored in supervised learning with targeted solutions like
importance weighting [9], re-sampling [10, 11], or approaches based on group distributionally robust
optimization [12].
Spurious learning becomes more complex when such correlations appear in unlabeled data. Self-
Supervised Learning (SSL) methods aim to learn representations from unlabeled datasets through
solving an auxiliary pretext tasks [13]. For instance, recently proposed SSL algorithms learn
representations [14, 15, 16, 17, 18, 19] by discriminating instances within the training set [20]. In
this context, important underlying features of the data, e.g., different identifiers of the disease, should
be captured in the representations for downstream tasks rather than a simple proxy. For instance,
in a setting where we have unlabeled x-rays from multiple hospital sites, we may want to perform
SSL initially on this unlabeled data, and use the learnt representations for a downstream task like
infection prediction. During SSL the spurious feature (hospital) could be correlated with core feature
(infection present in x-ray), and be more easily learnt for pre-text tasks. However, this spurious
feature is not invariantly useful for determining infection status – our intended downstream task.
In this setting, biases embedded in latent correlations propagate to downstream tasks where the



Figure 1: We use model transformation modules to create new views of training examples in the
representation space. The introduced set of transformations removes the features learned in the final
few layers, and final representations are invariant to such transformations.

association is spurious, e.g, while there are more infected patients in large hospitals, infected patients
should still be classified as infected in all hospitals. Importantly, we cannot directly penalize this
spurious learning in vanilla SSL as the data is unlabeled, and the final downstream task is unspecified.
In this work we address the open question of how spurious correlations are reflected in the representa-
tions that SSL models learn. We consider a simple setting where we are interested in capturing one
core feature in the representations, which is correlated with a spurious, simpler feature. Inspired by
a crucial observations from supervised learning on overparameterized models, we target a method
that addresses two potential issues. First, overparameterized models have an inductive bias towards
learning the spurious feature and “memorizing" the minority examples, even after re-weighting [10]
or re-sampling [7]. Second, memorization predominately occurs in the deeper layers [21, 22] where
earlier layers of the network correctly classify the easier examples while the final layers memorize
the difficult examples [23].
We propose model transformations or Late-TVG - a method that induces invariance to spurious feature
in the representation space by eliminating the memorization of minority groups. We run experiments
in different settings on four datasets, and find that we are able to maintain discriminative ability for
downstream predictive tasks, without access to group or label information. Our work makes the
following contributions:

• We find that known techniques for avoiding spurious correlations during supervised learning,
such as re-weighting or re-sampling of the training set with group information, does not
consistently improve representations learnt with SSL.

• We show that minority groups are predicted by features learnt in the final layers of SSL
networks, and hypothesize that regularizing the final layers improves learning of the more
complex, or core, features [24].

• We find that Late-TVG effectively improves worst-group performance in downstream tasks
in four datasets by enforcing core feature learning.

2 Methods

We assume that data is generated from underlying latent feature space Z = {zcore, zspur, . . . }, where
zcore and zspur are correlated for unlabeled data available for pre-text task, and zcore determines labels
y for our downstream task of interest, while zspur determines the spurious attribute, which is easier to
learn, and is not of interest of downstream tasks. Our goal, is to be able to predict y from the learned
representations in the downstream task where such correlations do not hold.
Motivated by improved SSL model invariance when trained with augmentations in image space [14],
we propose a model transformation module that specifically targets augmentations that modify
the spurious feature in representation space. We propose Late-layer Transformation-based View
Generation - Late-TVG , which uses transformations to overcome spurious learning in SSL models
and improve core feature representation.

2.1 Late-layer Transformation-based View Generation

Formally, we consider a model transformation module U , that transforms any given function fθ
parameterized by θ = {W1, . . . ,Wn} to fθ̃. At each step, we draw a transformation ϕM,θ′ form U
to obtain transformed encoder fθ̃ from fθ. Each model transformation can be defined with a mask
M ∈ {0, 1}|θ| = {M1, . . . ,Mn}, where we re-parameterize the unmasked weights (1−M)⊙ θ′
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(either reinitialize or set them to 0), and keep the rest of the weights M ⊙ θ the same, thus θ̃ =
ϕM,θ′(θ) = M ⊙ θ + (1−M)⊙ θ′.
Transformations: In our experiments, we consider two types of transformation modules as below:

• Re-initialization of the final-layers (SSLReinit, L): Re-initializing the weights in layers deeper
than L: U Reinit, L = {ϕML,θReinit | θReinit ∼ Dθ} where ML is masking all weights before
layer L or ML = {M l

L | M l
L = 1(l < L)|Wl|, l ∈ [n]}, and Dθ is the parameter

initialization distribution.

• Threshold Pruning (SSLPrune, L, a): Magnitude pruning a% of the weights in all layers deeper
than L: U Prune, L, a = {ϕML,a,θ0 ; θ0 = (0)|θ|} where ML,a = {M l

L ⊙ Topa(Wl) | l ∈ [n]}
and Topa(Wl)i,j = I(Wl(i,j) in top a% of θ)

To learn these representations, given two random augmentations t, t′ ∼ T from the augmentation
module T , two views x1 = t(x) and x2 = t′(x) are generated from an input image x. At each
step, given a feature encoder f , and an augmentation module U , we obtain a transformed model
f̃ = ϕ(f), ϕ ∼ U . During training, one example x1 and x2 are respectively passed through the
normal encoder v1 = f(x1), and the transformed encoder ṽ2 = f̃(x2). Encoded feature ṽ2 is now a
positive example that should be close to v1 in the representation space (see Appendix D).
Similarly to Image Augmentation modules inducing representation space invariance based on visual
similarities, View Generation modules encourage the encoder to be invariant to final layer transforma-
tions. We hypothesize that this enables learning more complex features in the earlier layers of the
encoder.

3 Experiments

3.1 Investigating the Extent of Spurious Learning in SSL

We design three experiments to establish the extent of spurious learning in SSL, how easily it can be
removed by simple solutions, and the impact of using Late-TVG.
Baseline Evaluation of Spurious Learning in SSL: We first empirically evaluate learning of the
core and spurious features on self-supervised representations. Furthermore, we compare features of a
supervised model trained by ERM, to self-supervised representations.
Spurious Feature Removal Effectiveness using Group Information: In the next step, we examine
whether classical approaches for combating spurious correlations, such as re-sampling training
examples [10], are effective in removing spurious information during SSL. Assuming that group
information is available, we train SimSiam on datasets re-sampled using the following strategies: (i)
downsampling examples in majority groups to have the same number of examples in all groups, (ii)
upsampling minority examples to have the same number of examples in all groups.
Investigating Spurious Signals in Layer-Wise Feature Representations: We also design experi-
ments to verify that spurious features are easier to extract than core features in SSL, and are sufficient
for the instance discrimination task. To do so, we evaluate the mutual information between feature
representations across the layers of the trained encoder with (1) the labels I(Z;Y ), and (2) the
spurious attribute I(Z;G).

3.1.1 Experimental Setup

We investigate the performance of Late-TVG on four commonly used datasets containing spurious
correlations – CMNIST [25], MetaShift [26], Spurious CIFAR-10 [6], and Waterbirds [27] (See
Appendix F for dataset descriptions). We train SimSiam [17] models with ResNet-18 backbones on
these datasets which contain spurious correlations. Then, we evaluate the learned representations
using a balanced dataset where the correlation does not hold. To create the downstream training
dataset, we subsample majority groups [7, 10], to avoid the statistical and geometrical skews [6] when
of the linear classifier on representations. In each case we report the average and worst-group accuracy
of downstream logistic regression (LR) and k-nearest neighbors (KNN) classifiers. For completeness,
we also report the mutual information between the representations and the label (I(Z;Y )) and group
variables (I(Z;G)), as well as the alignment loss [28]. We compare our method against standard
SSL without model transformations (SSLBase).
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4 Results

SSL Suffers From Spurious Correlations. From Table 2, we find that across all datasets, SSL
models exhibit gaps between worst-group and average accuracy when predicting the core feature,
indicating that even when spurious correlation does not hold for downstream tasks, the learnt features
are more predictive of the spurious feature in comparison to the core one. This is in contrast with
supervised learning [29], where such models contain enough core information to perform well on all
subgroups, and only needing a re-training of the final layer on a balanced validation set. [30].

Re-sampling During SSL is Not Useful. From Table 2, we observe that re-sampling during self-
supervised training does not improve downstream worst-group accuracy. Given that the downstream
linear model is trained on a down-sampled dataset where such correlations do not exist, this means
that re-sampling during self-supervised training does not necessarily improve linear separability of
representations with respect to the core feature, even in balanced datasets.

Layer-Wise Feature Representations. In Figure 2, we see that spurious features are disproportion-
ately represented in later layers of the network, while invariant features are represented throughout
the network. This confirms our hypothesis that later layers contain more spurious information during
SSL, and motivates our proposed method.

Transformation-based Disentanglement in Final Layers Improves Worst-group Performance.
As shown in Table 1, Late-TVG improves the worst-group accuracy of the linear classifier is improved
by up to more than 10% on spurcifar10. However, it does not seem to improve the worst-group
accuracy in metashift. We suspect that this is due to the spurious feature (outdoor vs. indoor) being
more difficult to infer than the invariant feature, which violates the assumptions of our method.

kNN (Target) LR (Target) LR (Group) Other Metrics
Dataset Method Worst Group Average Worst Group Average Average I(Z; Y) I(Z; G) Lalign

cmnist

SSLBase 41.91% 86.72% 37.61% 83.67% 85.92% 8.56E-01 5.40E-05 1.148
SSLReinit, 15 33.90% 86.19% 42.37% 78.89% 79.72% 8.42E-01 8.89E-01 0.511

SSLPrune, 0.7, 19 37.04% 88.49% 50.00% 81.62% 82.07% 8.60E-01 9.03E-01 1.21
SSLPrune, 0.9, 18 32.20% 89.04% 44.07% 84.32% 81.55% 8.54E-01 9.02E-01 1.12
SSLPrune, 0.99, 19 35.19% 88.31% 44.07% 79.64% 82.00% 8.51E-01 8.73E-01 0.947

metashift

SSLBase 28.82% 54.17% 27.68% 66.57% 65.00% 1.07E-01 6.17E-02 0.848
SSLReinit, 18 21.38% 61.23% 18.64% 62.95% 66.52% 1.54E-03 1.86E-01 0.940

SSLPrune, 0.7, 17 27.59% 60.09% 18.64% 63.09% 67.24% 1.31E-01 1.89E-01 0.958
SSLPrune, 0.8, 17 24.83% 58.66% 20.34% 64.95% 64.66% 7.37E-02 1.58E-01 0.955
SSLPrune, 0.9, 18 25.52% 59.23% 18.64% 64.66% 65.52% 3.85E-02 1.46E-01 0.947

spurcifar10

SSLBase 22.12% 57.05% 36.24% 60.36% 52.02% 1.96E+00 3.43E-03 1.072
SSLPrune, 0.3, 18 31.25% 61.60% 45.83% 66.86% 48.91% 1.98E+00 1.10E-05 1.08
SSLPrune, 0.5, 18 30.77% 58.44% 43.75% 66.23% 49.37% 2.06E+00 1.98E-09 1.05
SSLPrune, 0.7, 19 35.42% 58.06% 41.67% 65.80% 49.79% 2.03E+00 2.30E-02 1.04
SSLPrune, 0.9, 17 25.00% 50.98% 39.58% 58.59% 48.66% 1.65E+00 5.56E-05 0.630

waterbirds

SSLBase 49.72% 53.40% 48.04% 56.18% 87.45% 8.63E-02 5.84E-01 0.867
SSLPrune, 0.3, 17 48.29% 50.59% 52.34% 55.59% 86.54% 5.03E-02 5.92E-01 0.858
SSLPrune, 0.7, 17 43.77% 54.99% 51.56% 62.10% 81.76% 7.86E-02 5.72E-01 0.873
SSLPrune, 0.8, 18 35.83% 60.23% 50.78% 60.10% 84.10% 1.01E-01 4.60E-01 0.802
SSLPrune, 0.9, 17 47.54% 50.88% 52.18% 57.82% 89.80% 9.63E-02 0.595E-01 0.702

Table 1: Top model transformations for each dataset; The learned representations in each case, we
freeze the representations to evaluate the representations with: (i) average and worst-group of a 5-NN
classifier (ii) Average and worst-group of a linear classifier (iii) Average accuracy of a linear classifier
trained to infer the spurious feature (iv) Mutual information between representations and classes (v)
Mutual information between representations and spurious feature (vi) Alignment loss [28] which
is indicator of how close examples within the same class are in the representation space. In many
cases, the worst-group accuracy of linear classifier is improved; in other cases kNN accuracy has
improvements;

5 Conclusion

We proposed a method - Late-TVG - that improves the worst-group downstream performance of
SSL models on spuriously correlated data without having access to group or label information, and
empirically validated its performance. Future work include benchmarking other SSL methods such
as SimCLR [14], and adapting the method to other modalities such as natural language [11], and
considering multiple core features in the underlying feature space.
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Appendix

A Summary of Related Work

Spurious Correlations Spurious correlations arise in supervised learning models in a variety
of domains, from medical imaging [4, 5] to natural language processing [11, 31]. A variety of
approaches have been proposed to learn classifiers which do not make use of spurious information.
Methods like GroupDRO [12] and DFR [32] require group information during training, while methods
like JTT [33], LfF [34], CVaR DRO [35], CnC [28] do not. However, all methods require group
information for model selection.

Self-supervised Representation Learning Self-supervised learning methods learn representations
from large-scale unlabeled datasets where annotations are scarce. In vision applications, the pretext
task is typically to maximize similarity between two augmented views of the same image [36]. This
can be done in a contrastive fashion using the InfoNCE loss [37], as in SimCLR [14] and MoCo [38],
or without the need for negative samples at all, as in BYOL [39], SwAV [18], SimSiam [40], and
Barlow Twins [19].

Learning under Dataset Imbalance and Shortcuts Self-supervised models have been found to
be more robust to dataset imbalance [41, 42, 43, 41]. Prior work addressed shortcut learning in
contrastive learning by adversarially modifying encoded features [44]. Other works in addressing
group robustness or fairness in SSL, however, require group information or labels [45, 46, 47]. In
the supervised setting, how subnetworks of a trained model can affect minority examples [48] or
out-of-distribution generalization [49], and forgetting features via final-layer re-initialization [50],
have also been studied.
For a more comprehensive summary of the background and related work, see Appendix E.

B Evaluating Spurious Learning in Self-supervised Learning

kNN (Target) LR (Target) LR (Group)
Dataset SSL Training Average Worst Average Worst Average

waterbirds
Normal 53.4 49.7 56.2 48.0 87.4

Downsample 51.7 47.0 55.5 50.5 85.3
Upsample 66.3 9.5 62.3 46.7 81.5

metashift
Normal 54.2 28.8 66.6 27.6 64.9

Downsample 45.1 0.0 59.8 0.0 57.4
Upsample 56.5 32.9 65.8 24.2 65.1

spurcifar10
Normal 57.1 22.1 60.3 36.2 52.0

Downsample 36.0 19.6 48.8 28.8 48.3
Upsample 43.8 20.7 53.6 9.3 70.7

cmnist
Normal 86.7 42.0 83.7 37.6 85.9

Downsample 86.2 23.7 80.0 35.2 83.2
Upsample 86.9 39.4 80.0 43.7 79.6

Table 2: Effect of resampling on worst group accuracy: Accuracy of ResNet-18 encoders trained
using SSL on four datasets, evaluated on a balanced test set. We vary the SSL training set used
(Normal: original dataset, Downsample: downsampling majority groups, Upsample: upsampling
minority groups). kNN and LR represent the k-NN classifier or Logistic regression model, trained for
the downstream tasks based on self-supervised representations. Re-sampling does not necessarily
improve worst-group accuracy in the downstream task.
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C Spurious vs. Core feature learning across layers
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Figure 2: Comparison of Mutual Information between features and labels (top) vs. spurious attribute
and labels (bottom) across layers of a ResNet-18 model trained with SimSiam on coloured MNIST.
We observe that I(Z;G) decreases in the intermediate layers, and grows back in the final layers,
indicating that the final representations rely on the spurious feature for the instance discrimination
task in SSL.

D Experimental Setup

In our experiments, we use SimSiam in which the encoder f aims to maximize the cosine similarity of
the two views via predictor network h, and a stop-gradient operator as in Figure 1. Given previously
defined features v1 and ṽ2, the cosine similarity D(h(v1), stopgrad(ṽ2)) will be maximized at each
step.
Experimental Setup: We train SimSiam models with proposed transformed modules. For simplicity,
we use one module with a fixed pruning percentage and layer threshold throughout training. At
each epoch t, given a transformation from the fixed module is applied to encoder ft to generate
the transformed model f̃t. The model transformations are applied to the branch of SimSiam that a
gradient-stop operation is applied to later. We use group information in the validation set and measure
worst-group accuracy in order to choose layer threshold and pruning percentage hyperparameters
(In Appendix ?? we show that even an uncurated set of model transformations enhance worst-group
performance), and evaluate them similar to previous experiments.

E Background

E.1 Group Robustness

Empirical risk minimization (ERM) minimizes the average training loss across training points.
Given a loss function ℓ(x, y; θ), ERM minimizes the following objective:

JERM(θ) =
1

n

n∑
i=1

ℓ(xi, yi; θ). (1)

Group distributionally robust optimization (Group DRO) uses training group information to
minimize the worst-group error on the training set, assuming we have access to group annotations on
the training data {(x1, y1, g1), . . . (xn, yn, gn)}. Given a loss function ℓ(x, y; θ), the objective can
then be written as:

JgroupDRO(θ) = max
g∈

1

ng

∑
i|gi=g

ℓ(xi, yi; θ) (2)

where ng is the number of training points with group gi = g.

Just Train Twice (JTT) is a simple two-stage approach that does not require group annotations
at training time. First, it trains an identification model f̂id via ERM and then identifies an error set
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E = {(xi, yi) s.t. f̂id(xi) ̸= yi} of training examples that f̂id misclassifies. Then, it trains a final
model f̂final by upweighting the points in the identified error set.

Jup-ERM(θ,E) =

( ∑
(x,y)∈E

ℓ(x, y; θ) +
∑

(x,y) ̸∈E

ℓ(x, y; θ)

)
, (3)

Correct-n-Contrast (CnC) learns an idendification model similar to JTT to identify samples with
the same class but dissimilar spurious features, and then trains a model with contrastive learning to
learn similar representations for same-class samples. More percisely, it jointly trains the model’s
encoder layers fenc with a contrastive loss and the full model fθ with a cross-entropy loss with the
following objective:

L̂ (fθ;x, y) = λL̂sup
con (fenc ;x, y) + (1− λ)L̂cross (fθ;x, y) .

Where L̂sup
con (fenc ;x, y) is the supervised contrastive loss of x and its positive and negative samples,

based on whether the identifier model has made a mistake on samples or no, and L̂cross (fθ;x, y)
is average cross-entropy loss over x, the M positives, and N negatives, and λ is a balancing
hyperparameter.

E.2 Self-supervised Representation Learning

Self-supervised representation learning methods learn visual representations from large-scale un-
labeled images where data annotations are scarce and time-consuming. Contrastive learning is a
discriminative approach to learn representations that aims to attract similar or positive samples and
push apart different or negative samples, which has become increasingly successful in recent years
[14, 15, 16, 18, 19]. The standard approach for generating positive pairs without additional annota-
tions is to create multiple views of each data point using random augmentations. The contrastive
learning loss or InfoNCE [37] then maximizes a lower bound on the mutual information between the
two views.
For instance, SimCLR [14] generates two randomly augmented views of each image x̃i = t(x), x̃j =
t′(x), t, t′ ∼ T given a batch of images, and uses all other augmentated samples from the batch
as negative examples. Then it uses an encoder f to extract representations from these augmented
examples, and a small projection head g which maps these representations to the contrastive loss
space. Given a minibatch of N samples, the InfoNCE loss is optimized for the sum of all examples
in the minibatch.
Some proposed methods discard the need for negative samples in contrastive learning. BYOL [16]
uses a siamese architecture with momentum encoders to prevent different representations from
collapsing into one vector. SwAV [18] exploits online clustering for each batch to enforce consistency
between cluster assignments from different views, and SimSiam [17] uses a simple stop-gradient
operation in a siamese architecture to avoid collapsing.
We use SimSiam [17] in particular in our experiments. Similar to SimCLR it creates two randomly
augmented views x1 and x2 from an image x. Then it uses encoder f consisting of a backbone such
as ResNet and a projection MLP head to create representations of the two views. A prediction MLP
head h, transforms the output of one view and matches it to the other view. Given two output vectors
are 1≜h(f(x1)) and 2≜f(x2); SimSiam minimizes the negative cosine similarity (1,2 ):

(p1,2 ) = − p1
∥p1∥2

· 2

∥2∥2
,

where ∥·∥2 is ℓ2-norm. Then they define a symmetrized loss for each image with a stop-gradient
operator to avoid collapse as below:

L=1

2
(p1, stopgrad(2))+

1

2
(p2, stopgrad(1)).

Note that we use the word encoder to address the backbone in f , since projection layers are thrown
away when evaluating the representations.

E.3 Disentangled Representations

A similar line of research is creating representations where each dimension is independent and
corresponds to a particular attribute [51, 52], some works study learning such representations in a
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supervised manner [53, 54] while unsupervised approaches rely on VAEs [55, 56, 57] and GANs [58,
59].
The works in fair representation learning usually address removing sensitive attributes from the
representations by: obfuscating any information about sensitive attributes in order to approximately
satisfy demographic parity [60], using adversarial methods [61, 62, 63, 64, 65, 66, 67], or feature
disentanglement based using variational approaches. [68, 69, 70, 71, 72, 73, 56, 74, 75].
Perhaps the closest to our work is [47] where samples are partitioned into two subsets that correspond
to an entangled group element followed by minimizing a subset-invariant contrastive loss, where the
invariance guarantees to disentangle the group element.

F Datasets

We make use of the following four image datasets:

• waterbirds [12]: Background (land, water) is spuriously correlated with bird type (labd-
bird, waterbird).

• cmnist (Colored MNIST): Color of digit on the images spuriously correlated with the
binary class based on the number inspired by [25], with no label slipping.

• spurcifar10 (Spurious CIFAR10) [6]: Color of lines on the images spuriously correlated
with the class.

• metashift [26]: Cats vs Dogs task: Background (indoor, outdoor) spuriously correlated
with pet type (cat, dog).

G Comparing SSL to CLIP representations

We train linear classifiers with different re-sampled sets of training examples on frozen CLIP [76]
representations. These representations have found to be more robust to distribution shifts, and we
aim to answer if balanced downstream training set can improve worst-group accuracy. As shown in
table 3, even CLIP representations do not help mitigate the geometrical and statistical skews when
learning the linear classifier on frozen representations.

k-NN Linear probe Spurious Attribute (Linear)
dataset Average Worst-group Average Worst-group Average Worst-group

CelebA

83.51% 20.39% 89.67% 16.98% 77.09% 61.26%
78.57% 75.56% 88.83% 81.11% 97.04% 91.11%
90.89% 28.33% 91.76% 86.11% 98.57% 90.56%

Waterbirds

56.77% 30.53% 61.30% 45.08% 68.06% 45.09%
69.23% 63.81% 79.01% 74.01% 89.59% 86.30%
74.06% 43.93% 75.35% 55.61% 83.26% 68.85%

Metashift

74.44% 50.85% 76.06% 7.91% 63.19% 22.60%
84.69% 68.97% 80.69% 30.51% 73.68% 22.03%
88.41% 73.79% 82.55% 32.20% 75.54% 35.59%

Colored MNIST

73.59% 54.65% 72.64% 55.57% 74.14% 70.40%
91.84% 89.39% 89.04% 85.98% 98.08% 96.21%
97.18% 62.88% 93.76% 88.26% 97.95% 97.16%

Spurious CIFAR10

25.11% 14.58% 35.79% 22.87% 93.62% 0.00%
33.20% 10.42% 52.56% 33.33% 51.29% 30.00%
39.28% 20.83% 58.17% 41.67% 58.14% 35.42%

Table 3: Average and worst-group test accuracy of a logistic regression model trained on CLIP
representations of original train, downsampled train, and upsampled train datasets. Balancing the
training set used for linear evaluation helps us identify the learned representations by avoiding the
statistical and geometrical skews induced by the linear evaluator.
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