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Abstract

Simplicial Embeddings (SEM) are representations learned through self-supervised
learning (SSL), wherein a representation is projected into L simplices of V dimen-
sions each using a softmax operation. This procedure conditions the representa-
tion onto a constrained space during pretraining and imparts an inductive bias for
group sparsity. For downstream classification, we formally prove that the SEM
representation leads to better generalization than an unnormalized representation.
Furthermore, we empirically demonstrate that SSL methods trained with SEMs
have improved generalization on natural image datasets such as CIFAR-100 and
ImageNet. Finally, when used in a downstream classification task, we show that
SEM features exhibit emergent semantic coherence where small groups of learned
features are distinctly predictive of semantically-relevant classes.

1 Introduction

Over-complete representations are representations of an input that are non-unique combinations of
a number of basis vectors greater than the input’s dimensionality [Lewicki and Sejnowski, 2000].
Mostly studied in the context of the sparse-coding literature [Gregor and LeCun, 2010; Goodfellow
et al., 2012; Olshausen, 2013], sparse over-complete representations have been shown to increase
stability in the presence of noise [Donoho et al., 2006], have applications in neuroscience [Olshausen
and Field, 1996; Lee et al., 2007] and lead to more interpretable representations [Murphy et al., 2012;
Fyshe et al., 2015; Faruqui et al., 2015]. However, the choice of basis vectors is generally assumed to
be learned using traditional methods such as ICA [Teh et al., 2003] or fitting linear models [Lewicki
and Sejnowski, 2000], limiting the expressive power of the encoding function.

Meanwhile, self-supervised learning (SSL) is an emerging family of methods that aims to learn an
encoding of the data without manual supervision, such as through class labels, and using neural
network encoders. Recent work [Hjelm et al., 2019; Grill et al., 2020; Saeed et al., 2020; You et al.,
2020] learn dense representations that can solve complex tasks by simply fitting a linear model on top
of the learned representation. While this demonstrates SSL’s efficacy, we demonstrate that sparse and
overcomplete representations can further improve the downstream performance of these methods.

Inspired by work on language emergence, Dessì et al. [2021] propose to induce a discrete represen-
tation at the output of the encoder in a SSL model. Contrary to their work, we demonstrate that
hard-discretization during pre-training is not necessary to achieve a sparse representation. Instead,
we propose to project the encoder’s output into L vectors of V dimensions onto which we apply
a softmax function to impart an inductive bias toward sparse vectors [Correia et al., 2019; Goyal
et al., 2022], also alleviating the need to use high-variance estimators to back-propagate the gradient
through the encoder. We refer to this embedding as Simplicial Embeddings (SEM) because the
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softmax functions map the unnormalized representations onto L simplices. The procedure to induce
SEM is simple, efficient, and generally applicable.

The SSL pre-training phase, used with SEM, learns the set of L approximately-sparse vectors. Key to
controlling the inductive bias of SEM during pre-training is the softmax temperature parameter: the
lower the temperature, the stronger the bias toward sparsity. Consistent with earlier attempts at sparse
representation learning [Coates and Ng, 2011], we find that the optimal sparsity for pre-training need
not correspond to the optimal for downstream learning.

For downstream classification, we may discretize the learned representation by, for example, taking
the argmax for each simplex. But, we can also leverage the SEM to control the representation’s
expressivity via the softmax’s temperature.

Empirically, we provide evidences that SEM is applicable to most recent SSL methods and lead to a
better representation. For the seven SSL methods probed [Chen et al., 2020; He et al., 2020; Grill et al.,
2020; Caron et al., 2020, 2021; Zbontar et al., 2021; Bardes et al., 2022], SEM increases the accuracy
by 2% to 4% on CIFAR-100 over the baseline without SEM. We observe constant improvement as
we increase the number of vectors L showing benefits of overcomplete representation in SEM. We
also observe important improvement when training a SSL method with SEM on ImageNet on in-
distribution test sets as well as several out-of-distribution test sets and transfer learning benchamarks,
demonstrating the potential of SEM for large scale applications. Finally, we perform a qualitative
analysis, and find that SEM learns features that are closely aligned to the semantic categories extant
in the data, demonstrating evidence of disentangled and more interpretable representations, as it was
previously observed in overcomplete representations [Faruqui et al., 2015].

2 Simplicial Embeddings

Simplicial Embeddings (SEM) are representations that can be integrated easily into a contrastive
learning model [Hjelm et al., 2019; Chen et al., 2020], the BYOL method [Grill et al., 2020], and
other SSL methods [Caron et al., 2020, 2021; Zbontar et al., 2021]. For example, in BYOL, we insert
SEM after the encoder and before the projector and the rest is unchanged as shown in Figure 2c.
There, t and t′ are augmentations defined by the practitioner, ξ would be a moving average of θ
defined as follow: ξ ← αξ + (1 − α)θ, with α ∈ [0, 1]. The SSL loss is defined as the cosine
similarity.

To produce an SEM representation, the encoder’s output eθ is embedded into L vectors zi ∈ RV . A
temperature parameter τ scales zi then a softmax re-normalizes each vector zi to produce z̄i. Finally,
the normalized vectors z̄i are concatenated to produce the vector ẑ of length L · V . Formally, the
re-normalization is as follows:

z̄i := στ (zi), στ (zi)j =
ezij/τ∑V
k=1 e

zik/τ
, ẑ := Concat(z̄1, . . . , z̄L), ∀i ∈ [L],∀j ∈ [V ]. (1)

3 Empirical analysis

We empirically study the effect of SEM on the representation of SSL methodsand demonstrate that
SEM improves the test set accuracy on CIFAR-100 [Krizhevsky, 2009]. On IMAGENET [Deng et al.,
2009], we study the effect of SEM on robustness and transfer learning datasets. Finally, we present
evidences that features that result from SEMs appear to be more naturally aligned to the semantic
categories found in the data.

Training setup For all experiments, we build off the implementation of the baseline models from the
Solo-Learn library [da Costa et al., 2021].

We probe the encoder’s output for the baseline methods, as typically done in the litterature. For
models with SEM, we probe the SEM. In our experiments, the embedder is a linear layer followed by
BatchNorm [Ioffe and Szegedy, 2015]. Unless mentioned otherwise, we use L = 5000 and V = 13
for the SEM representation. We do not perform any search for the non-SEM hyper-parameters.
The SEM Hyper-parameters are selected by using a validation set of 10% of the training set of
CIFAR-100 and 10 samples per class for IMAGENET. The test accuracy is obtained by retraining
the model with all of the training data using the parameters found with the validation set. We use a
batch size of 256, and train models for 200 epochs on IMAGENET and 1000 epochs on CIFAR-100.
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3.1 SEM improves on downstream classification

We evaluate the effect of adding SEMs in seven modern SSL approaches. We take standard Sim-
CLR [Chen et al., 2020], MoCo-v2 [He et al., 2020], BYOL [Grill et al., 2020] Barlow-Twins [Zbontar
et al., 2021], SwAV [Caron et al., 2020], DINO [Caron et al., 2021] and VicReg [Bardes et al., 2022]
models and implement SEM after the encoder. We compare our approach on CIFAR-100 with a
ResNet-18 in Table 1. The reported numbers are the means and the standard deviations over 5 random
seeds. For every SSL methods, using SEMs improves the baseline methods by a margin of 2% to 4%
demonstrating that SEM is a general approach that improves in-distribution generalization for SSL
methods.

SimCLR MoCo BYOL Barlow-Twins SwAV DINO VicReg
Baseline 65.8± 0.3 69.3± 0.3 70.7± 0.2 70.7± 0.3 64.6± 0.3 66.8± 0.3 68.5± 0.2
With SEM 69.5± 0.2 71.0± 0.3 73.9± 0.2 73.0± 0.2 67.7± 0.2 69.2± 0.3 71.4± 0.4

Table 1: Linear probe accuracy on CIFAR-100 trained for 1000 epochs with ResNet-18 encoder. We
compare the test accuracy of several SSL models with and without SEM. The baseline models are
taken from [da Costa et al., 2021]. The SEM normalized output (ẑθ) is used for the linear probe with
SEM. Boldface indicates highest accuracy. Green rows indicate a SSL method + SEM.

3.2 SEM improvement on large-scale datasets with ImageNet

We demonstrate that SEM improves the accuracy on large scale datasets, such as IMAGENET. We
demonstrate that SEM generally improves the test set accuracy on several robustness test sets, transfer
learning datasets and semi-supervised via fine-tuning with 1% and 10% of the data. The embedding
is pre-trained for 200 epochs using the BYOL SSL procedure.

IN IN-V2 IN-R IN-C FLOPs
ResNet50:
BYOL* 70.6 - - - -
BYOL 71.9 59.2 18.8 39.5 4.1e9
BYOL+SEM 74.1 61.2 22.1 43.4 4.7e9
ResNet50-x2:
BYOL 74.2 62.1 22.2 47.3 1.1e10
BYOL+SEM 75.9 63.7 23.5 48.8 1.2e10
ResNet50-x4:
BYOL 75.8 64.0 22.9 49.8 3.7e10
BYOL+SEM 77.2 64.8 25.1 52.0 3.8e10

Table 2: Test accuracies of a linear probe
trained with the IMAGENET samples on a
pre-trained representation trained for 200
epochs. * Taken from [Chen and He, 2020]

FOOD101 C10 C100 SUN DTD FLOWER
Linear probe:
BYOL 74.2 91.8 74.9 60.9 72.2 88.9
BYOL+SEM 74.7 93.5 78.6 62.1 71.9 91.5
Fine-tuned:
BYOL 83.1 97.2 83.6 59.1 68.8 85.4
BYOL+SEM 84.7 97.2 85.6 63.3 71.3 91.7

Table 3: Transfer learning accuracy by training a linear
probe on a pre-trained representation with IMAGENET
for 200 epochs.

Top-1 Top-5
1% 10% 1% 10%

BYOL 51.6 67.5 78.0 88.9
BYOL+SEM 56.7 69.9 81.0 90.0

Table 4: Semi-supervised learning top-1 and top-5 ac-
curacy by fine-tuning a model on ImageNet.

3.3 Semantic coherence of SEM features

Here we demonstrate that SEM features are coherently aligned with the semantics present in the
training data. Qualitatively, we visualize the most predictive features of a downstream linear classifier
trained on CIFAR-100 and see that the classes with similar predictive features are semantically related.
Quantitatively we propose a metric that returns the ratio of features mostly predictive for a classes
that are in the same super class to total number of class predictive for this feature.

For both our analysis, we use a linear classifier trained on the features extracted from BYOL with
and without SEM. Consider the trained linear classifier with a weight matrix W ∈ RN×C , with N
features, and C classes. By preserving the top K parameters of the weight matrix W for each class
and pruning the features predictive for only one class, we create a bipartite graph between two set of
nodes: the CIFAR-100 classes and the features of the representation. We denote this graphWK .

The qualitative analysis is given by plotting the subsetW5, obtained by taking the top 5 features for
each class. We present a subset of the graph for BYOL+SEM in Figure 1a and for BYOL in Figure 1b.
The full graphs are presented in the Appendix. In the SEM plot, a set of connected components
emerge, and the connected components of the graph are semantically related. For example, the
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Figure 1: Semantic coherence of the features. (a) and (b) Subset ofWK , the bipartite graph of the
most important features shared between at least two classes of a classifier trained on BYOL + SEM
features in (a) and BYOL on the encoded features in (b). The connected components emerge without
additional interventions in BYOL + SEM. (c) Coherence of the top K features to the semantics of
the super-class of the categories of CIFAR-100. It is taken as the number of pairwise categories in
the same super-class for which a feature is among its top K most predictive features over the total
number of pairwise categories.

first set of connected components are flowers, and the last set of connected components are aquatic
mammals. The same class coherence is not observed with either the BYOL baseline or with BYOL
augmented with a large representation. In particular, we do not see a small number of semantically
related connected components. Instead, we see a large fully connected graphs.

Next, we describe how we quantitatively measure the semantic coherence of the features. Notice that
two classes share a common predictive feature onWK if they are 2-neighbour. Let N (ci) returns
all pairs (ci, cj) for all j 2-neighbour of ci. Moreover, define the operation is_super(ci, cj) which
returns 1 if ci and cj are from the same CIFAR-100 superclass and 0 otherwise. We reproduce the
superclass of CIFAR-100 in Table 7 in the Appendix. We measure semantic coherence as follows:

Coherence(WK) :=
1

C

C∑
i=1

∑
(ci,cj)∈N (ci)

is_super(ci, cj)

|N (ci)|
, (2)

where C = 100 for CIFAR-100 and | · | is the cardinality of a set.

We compare the semantic coherence of BYOL+SEM with the control experiments on BYOL: regular
BYOL, BYOL with an embedding of the same size as BYOL+SEM but without the normalization
and BYOL to which we applied linear ICA [Hyvärinen and Oja, 2000] in an attempt to disentangle
the features. In Figure 6, we plot the full graphW5 for BYOL+SEM and the baselines. We observe
that using the SEM yields semantically coherent features for all the classes of CIFAR-100. This
observation is consistent with the qualitative and quantitative experiments presented earlier and
demonstrates that SEM’s inductive bias during pre-training leads to features that are semantically
coherent with the semantic categories extant in the data.

4 Conclusion

SEMs are representations that can be obtained by embedding partitions of a latent representation using
a softmax operation. This simple modification leads to improved generalization on downstream
classification for several SSL methods. Furthermore, our semantic coherence analysis indicates
that SEMs can naturally disentangle the semantic categories of the data without explicit training
objectives. We hope that this work motivates the use of SEM with pre-training to learn discrete
representation useful for downstream applications and the study of architectural inductive biases for
SSL representations towards more explainable and performant models.
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Figure 2: (a) Procedure to obtain Simplicial Embeddings (SEM). A matrix z ∈ RL×V contains L
vectors zi ∈ RV . The vectors zi are normalized with στ , the softmax operation with temperature τ .
The normalized vectors are concatenated into the vector ẑ. (b) Normalized histogram of the entropies
H(z̄i) of each simplex z̄i for the sample in CIFAR’s training dataset at the end of pre-training with
various τ . The peak at ln(2) for τ = 0.01 and τ = 0.1 are a large number of simplices with two
elements close to 0.5. (c) Integration of SEM with BYOL [Grill et al., 2020]. The encoder outputs a
latent vector which is embedded into the matrix z ∈ RL×V and then transformed into SEM.

A Properties of the Simplicial Embeddings

In this subsection, we discuss some of the properties of the Simplcial Embeddings during pre-training
and for the downstream tasks.

A.1 Inductive bias towards sparsity during pre-training

In SEM, L controls the numbers of vectors and V controls the number of component that each vectors
may have. As such, the higher V is, the sparser the representation is and also the stronger the bias
toward sparsity as discussed in Vaswani et al. [2017]; Wang et al. [2021a]. During pre-training, the
constraints of the simplex biases each vector towards sparsity by creating a zero-sum competition
between the elements. In order for an element of a vector to increase by α, then the other elements
must decrease by α and all elements are bounded by 0. For networks to learn useful features, they
must prioritize some at the expense of others. For SSL methods with a target network, the temperature
for the target network can be different of the online network’s as no gradient is back-propagated.

To visualize the effect of the temperature on SEM after pre-training, we interpret each simplex as
a probability mass function p(z̄ij) where, for all i ∈ [L],

∑V
j=1 p(z̄ij) = 1 and p(z̄ij) ≥ 0 ∀j. The

entropy of a simplex z̄i, defined H(z̄i) := −
∑V
j=1 p(z̄ij) log p(z̄ij), informs whether the simplex is

a sparse or a dense vector. That is, if H(z̄
(x)
i ) = 0 then the vector is one-hot. On the other hand, if

H(z̄
(x)
i ) = ln(V ) then the vector is dense and uniform. While the temperature τp is merely a scaling

of the logits, it has an important control over the learned representation’s entropy and resulting SEM
sparsity. We demonstrate this by learning a representation on CIFAR-100, using BYOL, and analyze
the entropies of the resulting simplices. In Figure 2b, we plot the histogram of the entropies H(z̄i),
for a given τp, of each simplex for each sample in the training set of CIFAR-100. We observe that,
even after pre-training, small temperatures (τp = 0.01) yields representations that are close to one-hot
vectors while high temperatures yields vectors that are close to uniform vectors.

By pre-training using a softmax, SEMs create representations that are conditioned to fit onto
simplices. In pre-training, we select τp for optimal inductive bias: τp too small yields vanishing
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gradients [Wang et al., 2021b] and τp too large yields a bias that is too weak. We may select a
different optimal τd for downstream performance as discussed formally in the next subsection.

A.2 Reducing the memory footprint of SEM

A large over-complete representation may induce a significant memory footprint due to the additional
parameters of the fully connected linear layer used to map to and from the representation. For SEM we
require two such mappings as depicted in Figure 2c for BYOL. To reduce the amount of parameters,
we propose to partition the matrix multiplication into n small non-overlapping matrix multiplications.
Formally, let v ∈ Rb×mo, w ∈ Rm×o and y = v · w be the fully connected matrix multiplication.
Instead, we partition v into n blocks with vi ∈ Rb×mn and define n smaller wi ∈ Rm

n ×
o
n , where

i ∈ [L] is the ith block. Then, we perform a batch matrix multiplication of vi and wi that we
concatenate as follows: yi = vi ·wi and ȳi = Concat([y1, . . . , yn]). Thus, the amount of parameters
of this matrix multiplication scales in O(m·on ), allowing us to reduce the memory consumption by
increasing n, the number of blocks.

A.3 SEM improvement on the generalization of the downstream classifier

In this subsection, we mathematically analyze the effect of using SEM for downstream classification.
We aim to understand the benefit of training a downstream classifier with SEM normalized input
compared to a baseline classifier with unnormalized input. In summary, we show that: (1) there is a
trade-off between the training loss and the generalization gap, which is controlled by the value of τd,
(2) SEM can improve the base model performance when we attain good balance in this trade-off, and
(3) the improvement due to SEM is expected to improve or stay constant as L and V increase. In the
remaining of this subsection, we consider τ = τd.

Notation We consider a training dataset S = (z(i), y(i))ni=1 of n samples that is used for supervised
training of a classifier using the representation z, which are extracted from the pre-trained model1,
and the corresponding label y. Let g represent the downstream classifier trained on the representation.
We can define a baseline model where g is trained without normalization as fbase(z) = g(z) and
the corresponding model trained with the SEM normalization of the representation’s features as
fSEMτ (z) = (g ◦ στ )(z). Here, στ is applied to each vector zi. To compare the quality of the base
model and the model with SEM normalization, we analyze the generalization gap Ez,y[l(f(z), y)]−
1
n

∑n
i=1 l(f(z(i)), y(i)) for each f ∈ {fSSEM(τ), f

S
base}, where l : R × Y → R≥0 is the per-sample

loss and fSSEM(τ), f
S
base are the models obtained from fitting the dataset S.

To simplify the notation, we consider the normalization to [−1,+1]; i.e., the encoder’s output
z ∈ Z = [−1,+1]L×V . Next, we define Qi = {q ∈ [−1,+1]V : i = arg maxj∈[V ] qj}, the
partition of the space [−1,+1]V . I.e. we have V partitions Qi with i ∈ [V ] and Qi is the partition of
the space where i = arg maxj∈[V ] q. We use Qi to define the following measure that allows us to
understand the effect of the SEM normalization on the representation given to the classifier g and
thus to compare fSSEM and fSbase, a model with and without SEM normalization respectively:

ϕ(σf ) = sup
i∈[V ]

sup
q,q′∈Qi

‖σf (q)− σf (q′)‖2 (3)

where σfS
SEM(τ)

= στ and σfSbase
is the identity function. Here, στ (q)j = eqj/τ∑V

t=1 e
qt/τ

for j = 1, . . . , V .
Intuitively, ϕ is a measure on the expressivity of the representation and depends on V and τ .

We also make the following assumptions. We assume that there exists ∆ > 0 such that for any
i ∈ [L], if k = arg maxj∈[V ] zij , then zik ≥ zij + ∆ for any j 6= k. Since ∆ can be arbitrarily small
(e.g., much smaller than machine precision), this assumption typically holds in practice. Next, we
define B to be the upper bound on the per-sample loss such that l(f(z), y) ≤ B for all f ∈ H and
for all (z, y) ∈ Z × Y , where H is the union of the hypothesis spaces of fSEM(τ) and fbase. For
example, B = 1 for the 0-1 loss.

Finally, we define GS to be the set of classifiers g returned by the training algorithm using dataset S,
and R to be the Lipschitz constant of ly ◦ g for all y ∈ Y and g ∈ GS ; i.e., |(ly ◦ g)(σf (z))− (ly ◦

1In this subsection, we assume that the extracted representation is z, the embedder’s output
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g)(σf (z′))| ≤ R‖σf (z)− σf (z′)‖F , where ly(g ◦ σf (z)) = l(g ◦ σf (z), y). We denote by c > 0 a
constant in (n, f,H, δ,H, τ, S).

Using the established notation, Theorem 1 illuminates the advantage of SEM and the effect of
the hyper-parameter τ on the performance of the downstream classifier. We present the proof in
Appendix B and we present empirical evidence of the theorem’s prediction in Figure 5.

Theorem 1. Let V ≥ 2. For any δ > 0, with probability at least 1− δ, the following holds for any
fS ∈ {fSSEM(τ), f

S
base}:

Ez,y[l(fS(z), y)] ≤ 1

n

n∑
i=1

l(fS(z(i)), y(i)) +R
√
Lϕ(σfS ) + c

√
ln(2/δ)

n
.

Moreover,

ϕ(σfS
SEM(τ)

)→ 0 as τ → 0 and ϕ(σfS
SEM(τ)

)− ϕ(σfSbase) ≤
3

4
(1− V ) < 0 ∀τ > 0.

The first statement of Theorem 1 shows that the expected loss is bounded by the three terms: the

training loss 1
n

∑n
i=1 l(fS(z(i)), y(i)), the second term R

√
Lϕ(fS), and the third term c

√
ln(2/δ)
n .

Since c is a constant in (n, f,H, δ,H, τ, S), the third term goes to zero as n→∞ and is the same
with and without SEM. Thus, for the purpose of assessing the impact of SEM, we can focus on the
second term, where a difference arises.

Theorem 1 shows that R
√
Lϕ(fS) goes to zero with SEM; i.e., ϕ(fSSEM(τ)) → 0 as τ → 0. Also,

for any τ > 0, the second term with SEM is strictly smaller than that without SEM as ϕ(fSSEM(τ))−
ϕ(fSbase) ≤ 3

4 (1 − V ) < 0 and demonstrates that the improvement due to SEM is expected to
asymptotically increase as V increases. Also, L is a multiplicative constant of ϕ which shows that as
L increases, the expect improvement due to SEM is also expected to be higher.

Overall, Theorem 1 shows the benefit of SEM as well as the trade-off with τ . When τ → 0, the
second term goes to zero, but the training loss (the first term) can increase due to the reduction in
expressivity and increased difficulty in optimization. Thus, τ should be chosen to optimally balance
this trade-off.

B Proof of Theorem 1

Let us introduce additional notations used in the proofs. Define r = (z, y) ∈ R, `(f, r) = l(f(z), y),

C̃y,k1,...,kL = {(z, ŷ) ∈ Z × Y : ŷ = y, kj = arg max
t∈[V ]

zj,t ∀j ∈ [L]},

and
Z̃k1,...,kL = {z ∈ Z : kj = arg max

t∈[V ]

zj,t ∀j ∈ [L]}.

We then define Ck to be the flatten version of C̃y,k1,...,kL ; i.e., {Ck}Kk=1 =

{C̃y,k1,...,kL,y}y∈Y,k1,...,kL∈[V ] with C1 = C̃1,1,...,1, C2 = C̃2,1,...,1, C|Y| = C̃|Y|,1,...,1, C|Y|+1 =

C̃1,2,1,...,1, C2|Y| = C̃|Y|,2,1,...,1, and so on. Similarly, define Zk to be the flatten version of Z̃k1,...,kL .
We also use Qi = {q ∈ [−1,+1]V : i = arg maxj∈[V ] qj}, Ik := ISk := {i ∈ [n] : ri ∈ Ck},
and αk(h) := Er[`(h, r)|r ∈ Ck]. Moreover, we define ϕ(fSbase) = supi∈[V ] supq,q′∈Qi ‖q − q

′‖22,
and ϕ(fSSEM(τ)) = supi∈[V ] supq,q′∈Qi ‖στ (q) − στ (q′)‖22 where στ (q)j = eqj/τ∑V

t=1 e
qt/τ

for
j = 1, . . . , V .

We first decompose the generalization gap into two terms using the following lemma:

Lemma 1. For any δ > 0, with probability at least 1− δ,the following holds for all h ∈ H:

Er[`(h, r)]−
1

n

n∑
i=1

`(h, ri) ≤
1

n

K∑
k=1

|Ik|

αk(h)− 1

|Ik|
∑
i∈Ik

`(h, ri)

+ c

√
ln(2/δ)

n
.
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Proof. We first write the expected error as the sum of the conditional expected error:

Er[`(h, r)] =

K∑
k=1

Er[`(h, r)|r ∈ Ck] Pr(r ∈ Ck) =

K∑
k=1

Erk [`(h, rk)] Pr(r ∈ Ck),

where rk is the random variable for the conditional with r ∈ Ck. Using this, we decompose the
generalization error into two terms:

Er[`(h, r)]−
1

n

n∑
i=1

`(h, ri) (4)

=

K∑
k=1

Erk [`(h, rk)]

(
Pr(r ∈ Ck)− |Ik|

n

)
+

 K∑
k=1

Erk [`(h, rk)]
|Ik|
n
− 1

n

n∑
i=1

`(h, ri)

 .

The second term in the right-hand side of (4) is further simplified by using

1

n

n∑
i=1

`(h, ri) =
1

n

K∑
k=1

∑
i∈Ik

`(h, ri),

as
K∑
k=1

Erk [`(h, rk)]
|Ik|
n
− 1

n

n∑
i=1

`(h, ri) =
1

n

K∑
k=1

|Ik|

Erk [`(h, rk)]− 1

|Ik|
∑
i∈Ik

`(h, ri)


Substituting these into equation (4) yields

Er[`(h, r)]−
1

n

n∑
i=1

`(h, ri) (5)

=

K∑
k=1

Erk [`(h, rk)]

(
Pr(r ∈ Ck)− |Ik|

n

)
+

1

n

K∑
k=1

|Ik|

Erk [`(h, rk)]− 1

|Ik|
∑
i∈Ik

`(h, ri)


≤ B

K∑
k=1

∣∣∣∣Pr(r ∈ Ck)− |Ik|
n

∣∣∣∣+
1

n

K∑
k=1

|Ik|

Erk [`(h, rk)]− 1

|Ik|
∑
i∈Ik

`(h, ri)


By using the Bretagnolle-Huber-Carol inequality [van der Vaart and Wellner, 1996, A6.6 Proposition],
we have that for any δ > 0, with probability at least 1− δ,

K∑
k=1

∣∣∣∣Pr(r ∈ Ck)− |Ik|
n

∣∣∣∣ ≤
√

2K ln(2/δ)

n
. (6)

Here, notice that the term of
∑K
k=1

∣∣∣Pr(r ∈ Ck)− |Ik|n
∣∣∣ does not depend on h ∈ H. Moreover,

note that for any (f, h,M) such that M > 0 and B ≥ 0 for all X , we have that P(f(X) ≥ M) ≥
P(f(X) > M) ≥ P(Bf(X) + h(X) > BM + h(X)), where the probability is with respect to the
randomness of X . Thus, by combining (5) and (6), we have that for any h ∈ H, for any δ > 0, with
probability at least 1− δ, the following holds for all h ∈ H,

Er[`(h, r)]−
1

n

n∑
i=1

`(h, ri) ≤
1

n

K∑
k=1

|Ik|

αk(h)− 1

|Ik|
∑
i∈Ik

`(h, ri)

+ c

√
ln(2/δ)

n
.

In particular, the first term from the previous lemma will be bounded with the following lemma:
Lemma 2. For any f ∈ {fSSEM(τ), f

S
base},

1

n

K∑
k=1

|Ik|

αk(f)− 1

|Ik|
∑
i∈Ik

`(f, ri)

 ≤ R√Lϕ(f).
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Proof. By using the triangle inequality,

1

n

K∑
k=1

|Ik|

Er[`(f, r)|r ∈ Ck]− 1

|Ik|
∑
i∈Ik

`(f, ri)


≤ 1

n

K∑
k=1

|Ik|

∣∣∣∣∣∣Er[`(f, r)|r ∈ Ck]− 1

|Ik|
∑
i∈Ik

`(f, ri)

∣∣∣∣∣∣ .
Furthermore, by using the triangle inequality,∣∣∣∣∣∣Er[`(f, r)|r ∈ Ck]− 1

|Ik|
∑
i∈Ik

`(f, ri)

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1

|Ik|
∑
i∈Ik

Er[`(f, r)|r ∈ Ck]− 1

|Ik|
∑
i∈Ik

`(f, ri)

∣∣∣∣∣∣
≤ 1

|Ik|
∑
i∈Ik

∣∣Er[`(f, r)|r ∈ Ck]− `(f, ri)
∣∣

≤ sup
r,r′∈Ck

∣∣`(f, r)− `(f, r′)∣∣ .
If f = fSSEM(τ) = gSSEM(τ)◦στ , since gSSEM(τ) ∈ GS , by using the Lipschitz continuity, boundedness,
and non-negativity,

sup
r,r′∈Ck

∣∣`(f, r)− `(f, r′)∣∣ = sup
y∈Y

sup
z,z′∈Zk

|(ly ◦ gSSEM(τ))(στ (z))− (ly ◦ gSSEM(τ))(στ (z′))|

≤ R sup
z,z′∈Zk

‖στ (z)− στ (z′)‖F

= R sup
z,z′∈Zk

√√√√ L∑
t=1

V∑
j=1

(στ (zt,j)− στ (z′t,j))
2
2

≤ R

√√√√ L∑
t=1

sup
i∈[V ]

sup
q,q′∈Qi

‖στ (q)− στ (q′)‖22

= R
√
Lϕ(fSSEM(τ))

Similarly, if f = fSbase = gSbase, since gSbase ∈ GS , by using the Lipschitz continuity, boundedness,
and non-negativity,

sup
r,r′∈Ck

∣∣`(f, r)− `(f, r′)∣∣ = sup
y∈Y

sup
z,z′∈Zk

|(ly ◦ gSbase)(z)− (ly ◦ gSbase)(z′)|

≤ R sup
z,z′∈Zk

‖z − z′‖F

≤ R
√
Lϕ(fSbase).

Therefore, for any f ∈ {fSSEM(τ), f
S
base},

1

n

K∑
k=1

|Ik|

αk(f)− 1

|Ik|
∑
i∈Ik

`(f, ri)

 ≤ 1

n

K∑
k=1

|Ik|R
√
Lϕ(f) = R

√
Lϕ(f).

Combining Lemma 1 and Lemma 2, we obtain the following upper bound on the gap:
Lemma 3. For any δ > 0, with probability at least 1 − δ, the following holds for any f ∈
{fSSEM(τ), f

S
base}:

Er[`(f, r)]−
1

n

n∑
i=1

`(f, ri) ≤ R
√
Lϕ(f) + c

√
ln(2/δ)

n
.
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Proof. This follows directly from combining Lemma 1 and Lemma 2.

We now provide an upper bound on ϕ(fSSEM(τ)) in the following lemma:

Lemma 4. For any τ > 0,

ϕ(fSSEM(τ)) ≤

∣∣∣∣∣ 1

1 + (V − 1)e−2/τ
− 1

1 + (V − 1)e−∆/τ

∣∣∣∣∣
2

+ (V − 1)

∣∣∣∣∣ 1

1 + e∆/τ (1 + (V − 2)e−2/τ )
− 1

1 + e2/τ (1 + (V − 2)e−∆/τ )

∣∣∣∣∣
2

.

Proof. Recall the definition:

ϕ(fSSEM(τ)) = sup
i∈[V ]

sup
q,q′∈Qi

‖στ (q)− στ (q′)‖22.

where

στ (q)j =
eqj/τ∑V
t=1 e

qt/τ
,

for j = 1, . . . , V . By the symmetry and independence over i ∈ [V ] inside of the first supremum, we
have

ϕ(fSSEM(τ)) = sup
q,q′∈Q1

‖στ (q)− στ (q′)‖22.

For any q, q′ ∈ Q1 and i ∈ {2, . . . , V } (with q = (q1, . . . , qV ) and q′ = (q′1, . . . , q
′
V )), there exists

δi, δ
′
i > 0 such that

qi = q1 − δi
and

q′i = q′1 − δ′i.

Here, since zik −∆ ≥ zij from the assumption, we have that for all i ∈ {2, . . . , V },

δi, δ
′
i ≥ ∆ > 0.

Thus, we can rewrite

V∑
t=1

eqt/τ = eq1/τ +

V∑
i=2

e(q1−δi)/τ

= eq1/τ + eq1/τ
V∑
i=2

e−δi/τ

= eq1/τ

1 +

V∑
i=2

e−δi/τ


Similarly,

V∑
t=1

eq
′
t/τ = eq

′
1/τ

1 +

V∑
i=2

e−δ
′
i/τ

 .

Using these,

στ (q)1 =
eq1/τ∑V
t=1 e

qt/τ
=

eq1/τ

eq1/τ
(

1 +
∑V
i=2 e

−δi/τ
) =

1

1 +
∑V
i=2 e

−δi/τ
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and for all j ∈ {2, . . . , V },

στ (q)j =
eqj/τ∑V
t=1 e

qt/τ

=
e(q1−δj)/τ

eq1/τ
(

1 +
∑V
i=2 e

−δi/τ
)

=
e−δj/τ

1 +
∑V
i=2 e

−δi/τ

=
1

1 + eδj/τ +
∑V
i∈Ij e

(δj−δi)/τ

where Ij := {2, . . . , V } \ {j}. Similarly,

στ (q′)1 =
1

1 +
∑V
i=2 e

−δ′i/τ
,

and for all j ∈ {2, . . . , V },

στ (q′)j =
1

1 + eδ
′
j/τ +

∑V
i∈Ij e

(δ′j−δ′i)/τ
.

Using these, for any q, q′ ∈ Q1,

|στ (q)1 − στ (q′)1| =

∣∣∣∣∣ 1

1 +
∑V
i=2 e

−δi/τ
− 1

1 +
∑V
i=2 e

−δ′i/τ

∣∣∣∣∣
≤

∣∣∣∣∣ 1

1 +
∑V
i=2 e

−2/τ
− 1

1 +
∑V
i=2 e

−∆/τ

∣∣∣∣∣
=

∣∣∣∣∣ 1

1 + (V − 1)e−2/τ
− 1

1 + (V − 1)e−∆/τ

∣∣∣∣∣ ,
and for all j ∈ {2, . . . , V },

|στ (q)j − στ (q′)j | =

∣∣∣∣∣∣ 1

1 + eδj/τ +
∑V
i∈Ij e

(δj−δi)/τ
− 1

1 + eδ
′
j/τ +

∑V
i∈Ij e

(δ′j−δ′i)/τ

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1

1 + e∆/τ +
∑V
i∈Ij e

(∆−2)/τ
− 1

1 + e2/τ +
∑V
i∈Ij e

(2−∆)/τ

∣∣∣∣∣∣
=

∣∣∣∣∣ 1

1 + e∆/τ + (V − 2)e(∆−2)/τ
− 1

1 + e2/τ + (V − 2)e(2−∆)/τ

∣∣∣∣∣
=

∣∣∣∣∣ 1

1 + e∆/τ (1 + (V − 2)e−2/τ )
− 1

1 + e2/τ (1 + (V − 2)e−∆/τ )

∣∣∣∣∣ .
By combining these,

sup
q,q′∈Q1

‖στ (q)− στ (q′)‖22

= sup
q,q′∈Q1

V∑
j=1

|στ (q)j − στ (q′)j |2

≤

∣∣∣∣∣ 1

1 + (V − 1)e−2/τ
− 1

1 + (V − 1)e−∆/τ

∣∣∣∣∣
2

+ (V − 1)

∣∣∣∣∣ 1

1 + e∆/τ (1 + (V − 2)e−2/τ )
− 1

1 + e2/τ (1 + (V − 2)e−∆/τ )

∣∣∣∣∣
2

.
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Using the previous lemma, we will conclude the asymptotic behavior of ϕ(fSSEM(τ)) in the following
lemma:
Lemma 5. It holds that

ϕ(fSSEM(τ))→ 0 as τ → 0.

Proof. Using Lemma 4,

lim
τ→0

ϕ(fSSEM(τ)) ≤ lim
τ→0

∣∣∣∣∣ 1

1 + (V − 1)e−2/τ
− 1

1 + (V − 1)e−∆/τ

∣∣∣∣∣
2

+ n(V − 1) lim
τ→0

∣∣∣∣∣ 1

1 + e∆/τ (1 + (V − 2)e−2/τ )
− 1

1 + e2/τ (1 + (V − 2)e−∆/τ )

∣∣∣∣∣
2

.

Moreover,

lim
τ→0

∣∣∣∣∣ 1

1 + (V − 1)e−2/τ
− 1

1 + (V − 1)e−∆/τ

∣∣∣∣∣
2

=

∣∣∣∣11 − 1

1

∣∣∣∣2 = 0,

and

lim
τ→0

∣∣∣∣∣ 1

1 + e∆/τ (1 + (V − 2)e−2/τ )
− 1

1 + e2/τ (1 + (V − 2)e−∆/τ )

∣∣∣∣∣
2

= |0− 0|2 = 0.

Therefore,
lim
τ→0

ϕ(fSSEM(τ)) ≤ 0.

Since ϕ(fSSEM(τ)) ≥ 0, this implies the statement of this lemma.

As we have analyzed ϕ(fSSEM(τ)) in the previous two lemmas, we are now ready to compare
ϕ(fSSEM(τ)) and ϕ(fSbase), which is done in the following lemma:

Lemma 6. For any τ > 0,

ϕ(fSSEM(τ))− ϕ(fSbase) ≤ 3

4
(1− V ) < 0.

Proof. From Lemma 4, for any τ > 0,

ϕ(fSSEM(τ)) ≤

∣∣∣∣∣ 1

1 + (V − 1)e−2/τ
− 1

1 + (V − 1)e−∆/τ

∣∣∣∣∣
2

+ n(V − 1)

∣∣∣∣∣ 1

1 + e∆/τ (1 + (V − 2)e−2/τ )
− 1

1 + e2/τ (1 + (V − 2)e−∆/τ )

∣∣∣∣∣
2

≤

∣∣∣∣∣ 1

1 + (V − 1)e−2/τ
− 1

1 + (V − 1)

∣∣∣∣∣
2

+ (V − 1)

∣∣∣∣∣ 1

1 + (1 + (V − 2)e−2/τ )
− 1

1 + e2/τ (1 + (V − 2))

∣∣∣∣∣
2

=

∣∣∣∣∣ 1

1 + (V − 1)e−2/τ
− 1

V

∣∣∣∣∣
2

+ (V − 1)

∣∣∣∣∣ 1

2 + (V − 2)e−2/τ
− 1

1 + e2/τ (V − 1)

∣∣∣∣∣
2

≤
∣∣∣∣11 − 1

V

∣∣∣∣2 + (V − 1)

∣∣∣∣12 − 0

∣∣∣∣2
=

(
1

1
− 1

V

)2

+ (V − 1)
1

4
.
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Recall the definition of
ϕ(fSbase) = sup

i∈[V ]

sup
q,q′∈Qi

‖q − q′‖22.

By choosing an element in the set over which the supremum is taken, for any δ ≥ ∆ > 0,

ϕ(fSbase) ≥ sup
q,q′∈Q1

‖q − q′‖22 ≥ ‖q̂ − q̂′‖22 =

V∑
j=1

(q̂j − q̂′j)2
2 = (2− δ)2V,

where q̂1 = 1, q̂j = 1− δ for j ∈ {2, . . . , V }, q̂′1 = δ − 1, and q̂′j = −1 for j ∈ {2, . . . , V }.
By combining those, for for any τ > 0 and δ ≥ ∆ > 0,

ϕ(fSSEM(τ))− ϕ(fSbase) ≤
(

1

1
− 1

V

)2

+ (V − 1)
1

4
− (2− δ)2V

≤ 1 +
1

4
V − 1

4
− (2− δ)2V

=
3

4
+

1

4
V − (2− δ)2V

=
3

4
− V

(
(2− δ)2 − 1

4

)
≤ 3

4
− V

(
1− 1

4

)
=

3

4
(1− V )

We combine the lemmas above to prove Theorem 1, which is restated below with its proof:
Theorem 1. Let V ≥ 2. For any δ > 0, with probability at least 1− δ, the following holds for any
fS ∈ {fSSEM(τ), f

S
base}:

Ez,y[l(fS(z), y)] ≤ 1

n

n∑
i=1

l(fS(z(i)), y(i)) +R
√
Lϕ(σfS ) + c

√
ln(2/δ)

n
.

Moreover,

ϕ(σfS
SEM(τ)

)→ 0 as τ → 0 and ϕ(σfS
SEM(τ)

)− ϕ(σfSbase) ≤
3

4
(1− V ) < 0 ∀τ > 0.

Proof. The first statement directly follows from Lemma 3. The second statement is proven by
Lemma 5 and Lemma 6.

C Additional experiments on CIFAR-100

Increasing L increases the performance of SEM. We find that increasing L, the number of simplex
of SEM even beyond the over-complete regime increases the downstream accuracy. However, this
increased performance is not observed when we abstain from using the softmax normalization of
SEM. In Figure 3, using a ResNet-50 encoder, we compare BYOL + SEM, with an identical model
without the Softmax normalization which we call BYOL + Embed. As, this is a control experiment,
the extracted representation of BYOL + Embed is the embedder’s output zθ. We fix V = 13 and scale
L ∈ [10, 10000] to get a range of representation sizes. We observe that BYOL + Embed accuracy’s is
decrease from probing zθ instead of eθ showing no gain from larger representations.

Memory and computational efficiency of SEM. We present the memory requirement and the
computational efficiency of SEM in Table 5. The allocated memory represent the VRAM
allocated by PyTorch during pre-training with a Batch Size of 256. As expected, SEM
necessitates much more memory, which can become a practical issue. Fortunately, spar-
sifying the matrix multiplication as discussed in Section A.2, allows to considerably re-
duce the memory requirements while inducing a small reduction in performance. In term
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of computational efficiency, we note that the cost of using SEM is small in comparison
to the total cost of the pre-training and becomes marginal as we scale up the encoder.

130 6501.3K 6.5K13K 65K130K
Embedding size

68

70

72

74

76

78
To

p-
1 

ac
cu

ra
cy

BYOL + SEM
BYOL + Embed

Figure 3: Effect of the Softmax
when scaling up L of SEM. Using
a RN-50 encoder.

vRAM
(GiB) FLOPs Acc.

Resnet-18:
BYOL 4.0 7.20e8 70.7
BYOL+SEM 13.1 1.01e9 73.9
BYOL+SEM/4 6.2 7.83e8 73.3
Resnet-50:
BYOL 11.1 1.65e9 74.3
BYOL+SEM 21.9 2.04e9 77.4
BYOL+SEM/4 13.5 1.74e9 76.1

Table 5: Allocated memory, com-
putation efficiency (calculated in
FLOPs/sample) and accuracy of
BYOL with SEM.

Acc.
BYOL 70.5
BYOL+REINFORCE 5.60
BYOL+Gumbel S.T. 45.9
BYOL+V.Q. 56.7
BYOL+SEM(τd = 0) 73.2
BYOL+SEM(τd = 0.1) 73.9

Table 6: Comparing SEM
with REINFORCE, Gubel
Straight-Through and Vec-
tor Quantization (V.Q.). Us-
ing a RN-18 encoder.

Comparison of SEM with hard discretization approaches. Several other methods can be used to
induce a sparse representation during pre-training and downstream classification. For example, we
may sample L discrete one-hot codes each with V values using REINFORCE [Williams, 1992] or
Gumbel Straight-Through estimation [Jang et al., 2017] to back-propagate the gradient through the
encoder. We could also use Vector Quantization (VQ) [Oord et al., 2018] as discussed in Liu et al.
[2021] and consider L codebooks with V values each wherein the values are vectors in Rd. However,
when using these approaches instead of SEM, we see a considerable decrease in performance in
comparison to the baseline as demonstrated in Table 6. In this table, we reproduce the same setup
as SEM but we replace the Softmax with hard discretization baselines methods. For discretization
with REINFORCE and Gumbel Straight-Through estimation, we use the same setup as SEM with
L = 5000 and V = 13, that is 5000 one-hot vectors of 13 dimensions and τ = 1 for Gumbel
Straight-Through. For VQ, we found that L = 512 and V = 128 led to the best performance. That
is, we have 512 codebooks, each with 128 possible values that are represented by vectors in R32.
We also present SEM with τDS = 0, which correspond to using the discretized representation for
downstream classification, demonstrating that SEM with pre-training can be used to learn meaningful
discrete codes for downstream task and yields better performance than the baselines, leading us
to believe that SEM could be beneficial in setup where discretization is needed and pre-training is
possible.

C.1 Analyzing the parameters of SEM
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Figure 4: Effect of τp and τd on a RN-50.
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Figure 5: Comparing fSEM and fbase on a RN-18.

We present two figures in this section to better understand the effect of the parameters of SEM on the
downstream accuracy. In Figure 4, we evaluate the effect of changing τp and τd on the downstream
accuracy. In Figure 5, we evaluate the effect of L and V on the downstream accuracy and also
contrast fbase and fSEM(τ = 1), allowing us to confirm two predictions made in Theorem 1. The
expected generalization improvement from SEM increases as we increase L and as we increase V .
We now discuss the effect of each of SEM’s parameter on the resulting downstream classification.

Increasing V yields steep performance increase for small V but quickly plateau. In Figure 5b,
we observe a steep increase of the accuracy for V < 13 followed by a plateau for V > 13. In
Figure 4a, we observe that the optimal accuracy obtained for V = 1024 and L = 64 is similar to the
one obtained for L = 50 (Embedding size=650) in Figure 3.
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Superclass Classes
aquatic mammals beaver, dolphin, otter, seal, whale
fish aquarium fish, flatfish, ray, shark, trout
flowers orchids, poppies, roses, sunflowers, tulips
food containers bottles, bowls, cans, cups, plates
fruit and vegetables apples, mushrooms, oranges, pears, sweet peppers
household electrical devices clock, computer keyboard, lamp, telephone, television
household furniture bed, chair, couch, table, wardrobe
insects bee, beetle, butterfly, caterpillar, cockroach
large carnivores bear, leopard, lion, tiger, wolf
large man-made outdoor things bridge, castle, house, road, skyscraper
large natural outdoor scenes cloud, forest, mountain, plain, sea
large omnivores and herbivores camel, cattle, chimpanzee, elephant, kangaroo
medium-sized mammals fox, porcupine, possum, raccoon, skunk
non-insect invertebrates crab, lobster, snail, spider, worm
people baby, boy, girl, man, woman
reptiles crocodile, dinosaur, lizard, snake, turtle
small mammals hamster, mouse, rabbit, shrew, squirrel
trees maple, oak, palm, pine, willow
vehicles 1 bicycle, bus, motorcycle, pickup truck, train
vehicles 2 lawn-mower, rocket, streetcar, tank, tractor

Table 7: Set of classes for each superclass on CIFAR-100.

Increasing L yields monotonical improvement. In the regime that we can test it, larger L seems to
translate to better accuracy as observed in Figure 3 and Figure 5a.

The optimal τp depends on V . As previously noted in the context of Attention [Vaswani et al., 2017;
Wang et al., 2021a], the optimal attention’s temperature is proportional to attention’s vector size. This
is also observed in SEM. As presented in Figure 4a, the optimal τp for larger V is higher.

Models with larger L are more robust to smaller τd. In Figure 4, we observe that SSL models
are more robust to smaller τd as L increase. As L is larger, we speculate that the information can
be scattered across the simplices, allowing to reduce the expressivity of each vector with minimal
impact on the downstream accuracy.

D CIFAR100 superclass

The 100 classes of CIFAR-100 [Krizhevsky, 2009] are grouped into 20 superclasses. The list of
superclass for each class in Table 7
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E Additional CIFAR-100 coherence graphs
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Figure 6: Comparison of the full semantic coherence graphW5 between BYOL and BYOL + SEM.
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