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Abstract

Recent advances in deep learning and computer vision have reduced many barriers
to automated medical image analysis, allowing algorithms to process label-free
images and improve performance. However, existing techniques have extreme
computational requirements and drop a lot of performance with a reduction in
batch size or training epochs. This paper presents Cross Architectural - Self
Supervision (CASS), a novel self-supervised learning approach that leverages
Transformer and CNN simultaneously. Compared to the existing state of the art
self-supervised learning approaches, we empirically show that CASS-trained CNNs
and Transformers across four diverse datasets gained an average of 3.8% with 1%
labeled data, 5.9% with 10% labeled data, and 10.1% with 100% labeled data while
taking 69% less time. We also show that CASS is much more robust to changes
in batch size and training epochs. Notably, one of the test datasets comprised
histopathology slides of an autoimmune disease, a condition with minimal data
that has been underrepresented in medical imaging.

1 Introduction

In recent years, medical image analysis has seen tremendous growth due to the availability of
powerful computational modelling tools, such as neural networks, and the advancement of techniques
capable of learning from partial annotations. Medical imaging is a field characterized by minimal
data availability. First, data labeling typically requires domain-specific knowledge. Therefore, the
requirement of large-scale clinical supervision may be cost and time prohibitive. Second, due to
patient privacy, disease prevalence, and other limitations, it is often difficult to release imaging
datasets for secondary analysis, research, and diagnosis. Third, due to an incomplete understanding
of diseases. This could be either because the disease is emerging or because no mechanism is in place
to systematically collect data about the prevalence and incidence of the diseases. An example of the
latter is autoimmune diseases. Statistically, autoimmune diseases affect 3% of the US population or
9.9 million US citizens. On the other hand, 4% of the US population or 13.6 million US citizens are
affected by cancer. Cancer has been widely studied in medical science as well as at the intersection
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of medical science and artificial intelligence. However,the application of artificial intelligence in
medical image analysis for autoimmune diseases has received much less attention. Furthermore,
there are still major outstanding research questions for autoimmune diseases regarding the presence
of different cell types and their role in inflammation at the tissue level. Their study is critical not
only because they affect a large part of society but also because they have been on the rise recently
Galeotti and Bayry [2020], Lerner et al. [2015], Ehrenfeld et al. [2020].

To overcome these limitations, we turn to self-supervised learning, a learning paradigm that allows
for learning useful data representations label-free. Models extracting these representations can later
be fine-tuned with a small amount of labeled data for each downstream task Sriram et al. [2021].
As a result, this learning approach avoids the relatively expensive and human-intensive task of data
annotation and makes it an effective tool for the image analysis of emerging diseases that often have
limited data availability (e.g., dermatomyositis, an autoimmune disease, or COVID-19, the cause of
a recent worldwide pandemic). Existing approaches in the field of self-supervised learning rely on
Convolutional Neural Networks (CNNs) or Transformers as the feature extraction backbone and learn
feature representations by teaching the network to compare the extracted representations. Instead,
we propose to combine a CNN and Transformer in a response-based contrastive method. In CASS,
the extracted representations of each input image are compared across two branches representing
each architecture (see Figure 1). By transferring features sensitive to translation equivariance and
locality from CNN to Transformer, CASS learns more predictive data representations in limited
data scenarios where a Transformer-only model cannot find them. We studied this qualitatively and
quantitatively in Section 5. Our contributions are as follows:

• We introduce Cross Architectural - Self Supervision (CASS), a hybrid CNN-Transformer
approach for learning improved data representations in a self-supervised setting in limited
data availability problems in the medical image analysis domain
1.

• We evaluate CASS on three challenging medical image analysis problems (autoimmune
disease cell classification, brain tumor classification, and skin lesion classification) on four
datasets (Dermatomyositis dataset Van Buren et al. [2022], Dermofit Project Dataset Fisher
and Rees [2017], brain tumor MRI Dataset Cheng [2017], Kang et al. [2021] and ISIC
2019 Tschandl et al. [2018], Gutman et al. [2018], Combalia et al. [2019]) and find that
CASS outperforms existing state of the art self-supervised techniques by an average of
3.8% using 1% label fractions, 5.9 % with 10% label fractions and 10.1% with 100% label
fractions.

• Existing methods also suffer a severe drop in performance when trained for a reduced
number of epochs or batch size (Caron et al. [2021], Grill et al. [2020], Chen et al. [2020]).
We show that CASS is robust to these changes in Section 5.6.

• New state of the art self-supervised techniques often require significant computational
requirements. This is a major hurdle as these methods can take around 20 GPU days to
train Azizi et al. [2021]. This makes them inaccessible in limited computational resource
settings and increase triage in medical image analysis. CASS, on average, takes 69% less
time as opposed to the existing state of the art methods. We further expand on this result in
Appendix A.

2 Methodology

CASS’ goal is to extract and learn representations in a self-supervised way. To achieve this, an image
is passed through a common set of augmentations. The augmented image is then simultaneously
passed though a CNN and Transformer to create positive pairs. The output logits from the CNN
(shown with a R) and Transformer (shown with a T) are then used to find cosine similarity based loss
(equation 1). Since, the two architectures give different output representations as mentioned in Raghu
et al. [2021], the model doesn’t collapse. We also report results for CASS using different set of CNNs
and Transformers in Appendix B and C, and not a single case of model collapse was registered. In
Figure 1, we show CASS on top and DINO Caron et al. [2021] at the bottom.

1The code is open source and available at: github.com/pranavsinghps1/CASS
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Figure 1: (Top) In our proposed self-supervised architecture - CASS, R represents ResNet-50, a CNN
and T in the other box represents the Transformer used (ViT); X is the input image, which becomes
X’ after applying augmentations. Note that CASS applies only one set of augmentations to create X’.
X’ is then passed through both the arms to compute loss as mentioned in Equation 1. This is different
from DINO, which passes different augmentation of the same image through networks with the same
architecture but different parameters. Another key difference is that in CASS, loss is computed over
logits meanwhile in DINO it is computed over softmax output.

3 Results

3.1 Quantitative performance

We provide the compressed results over four datasets in Table 1, we further expand upon the results
in Appendix A and B. Furthermore, we also expand our study to include ablation studies on change
in batch size, training epochs, changing the two architectures used, augmentations, optimization and
initialization in Appendix B and C.

3.2 Qualitative performance

To qualitatively understand the gain of CASS trained CNN and Transformer over supervised CNN
and Transformers, we compare the attention maps of Transformers and feature maps of CNNs. This
would give us an insight into the innate nature of CNNs and Transformer and whats the effect of
training both of them simultaneously with CASS. To do this we studied the class attention maps and
feature maps of CASS and supervised CNN as well as Transformers over a sample image in Figures
2 and 3. We also expand this to study class attention maps and feature maps over multiple samples
over all datasets in Appendix D.
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Figure 2: Overall attention maps from supervised Transformer (on the left) and CASS trained
Transformer (on the right). We pass the same image as input through both of them; the image used is
shown in Figure 2. We observed that the CASS-trained Transformer’s attention is more spread as
compared to supervised Transformer. This can be easily inferred from the right-hand side bottom
portion of both the attention maps.

Figure 3: This figure shows the feature map extracted after the first layer of ResNet-50 for CASS
(on the left) and supervised CNN (on the right). From the four circles, it is clear that CASS-trained
CNN can retain much more intricate detail about the input image (Figure 2) that the supervised CNN
misses.

1% labeled data 10% labeled data 100% labeled data
CNN Transformer CNN Transformer CNN Transformer

Autoimmune Dataset

DINO - - 0.8237 0.844 0.84252 0.8639
CASS - - 0.8158 0.8717 0.8650 0.8894

Supervised - - 0.82095 0.8356 0.831 0.8420

Dermofit Dataset

DINO - - 0.3749 0.332 0.6775 0.4810
CASS - - 0.4367 0.3896 0.7132 0.6667

Supervised - - 0.33 0.299 0.6341 0.456

Brain MRI Dataset

DINO 0.63405 0.3211 0.92325 0.7529 0.9900 0.8841
CASS 0.40816 0.3345 0.8925 0.7833 0.9909 0.9279

Supervised 0.52 0.3017 0.9022 0.747 0.9899 0.8719

ISIC-2019 Dataset

DINO 0.328 0.3676 0.3797 0.3998 0.493 0.5408
CASS 0.3617 0.3973 0.41 0.4395 0.543 0.5819

Supervised 0.2640 0.3074 0.3070 0.3586 0.35 0.42

Table 1: In this table we show the performance of DINO, CASS and supervised training for ResNet-50
as CNN and ViT B/16 as Transformer over our four experimental datasets. We further expand on
these results in Appendix A.2.
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4 Conclusion

Based on our experimentation on four diverse medical imaging datasets, we qualitatively and empiri-
cally conclude that CASS gained an average of 3.8% with 1% labeled data, 5.9% with 10% labeled
data, and 10.1% with 100% labeled data and trained in 69% less time than the existing state of the art
self-supervised method. Furthermore, we saw that CASS is robust to batch size changes and training
epochs reduction. To conclude, for medical image analysis, CASS is computationally efficient,
performs better, and overcomes some of the shortcomings of existing self-supervised techniques.
This ease of accessibility and better performance will catalyze medical imaging research to help us
improve healthcare solutions and develop new solutions for underrepresented and emerging diseases.
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A Result Analysis

A.1 Time complexity analysis

From Table 2, we observed that CASS takes 69% less time as compared to DINO. This reduction in
time could be attributed to the follwoing reasons:

1. In DINO, augmentations are applied twice as opposed to just once in CASS. Furthermore,
we per application CASS uses less number of augmentations as compared to DINO.

2. Since the architectures, used are different, there is no scope of parameter sharing between
them. A major chunk of time is saved in just updating the two architectures, after each epoch
instead of re-initializing architectures with lagging parameters.
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Dataset DINO CASS
Autoimmune 1 Hour 13 Mins 21 Mins
Dermofit 3 Hours 9 mins 1 Hour 11 Mins
Brain MRI 26 Hours 21 Mins 7 Hours 11 Mins
ISIC-2019 109 Hours 21 Mins 29 Hours 58 Mins

Table 2: Self-supervised training time comparison for 100 epochs on a single RTX8000 GPU. The
100 epoch mark was chosen because, beyond that, the ISIC-2019 dataset was taking more than 168
hours to train, which was more than the ceiling time we could request on our internal cluster. Hence
due to computational limitations, we chose 100 epochs as our stopping mark.

A.2 Complete results

In this section we present expanded results of Table 1. We preformed each experiments 5 times and
report the average metrics in the following tables.

A.2.1 Autoimmune Diseases Biopsy Slides Dataset

We did not perform 1% training for the autoimmune diseases biopsy slides of 198 images because
using 1% images would be too small number to learn anything meaningful and the results would be
highly randomized.

Following the self-supervised training and fine tuning procedure as described in Appendix E.2 and
E.3, we observed that using CASS with the ViT B/16 backbone and ResNet50 improved upon existing
result of 0.63 Van Buren et al. [2022] to 0.8894. All kinds of Transformers consistently outperformed
CNNs.

Techniques Backbone Testing F1 score
10% 100%

DINO Resnet-50 0.8237±0.001 0.84252±0.008
CASS Resnet-50 0.8158±0.0055 0.8650±0.0001
Supervised Resnet-50 0.82095±0.007 0.831±0.0216
DINO ViT B/16 0.8445±0.0008 0.8639± 0.002
CASS ViT B/16 0.8717±0.005 0.8894±0.005
Supervised ViT B/16 0.8356±0.007 0.8420±0.009

Table 3: Results for autoimmune biopsy slides dataset. In this table we compare the F1 score on
test set. We observed that CASS outperformed the existing state-of-art self-supervised method using
100% labels for CNN as well as for Transformers. Although DINO outperforms CASS for CNN with
10% labeled fraction. Overall CASS outperforms DINO by 2.2% for 100% labeled training for CNN
and Transformer. For Transformers in 10% labeled training CASS’ performance was 2.7% better
than DINO.

A.3 Dermofit Dataset

Similar to the autoimmune dataset, we did not perform 1% training for this dataset as the training set
was too small to draw meaningful results with just 10 samples. We observed that CASS outperformed
both supervised and existing state of the art self-supervised methods for all label fractions. We present
the F1 score for different label fractions in Table 4.

A.4 Brain tumor MRI dataset

We observed that supervised CNNs performed better than Transformers on this dataset. Similarly,
for DINO, CNNs performed better than Transformers by a margin. We observed that this trend is
followed by CASS as well. The difference between CNN and Transformer performance is smaller
for CASS as compared to the difference in performance for CNN and Transformer with supervised
and DINO training. We report these results in Table 5.
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Techniques Testing F1 score
10% 100%

DINO (Resnet-50) 0.3749±0.0011 0.6775±0.0005
CASS (Resnet-50) 0.4367±0.0002 0.7132±0.0003
Supervised (Resnet-50) 0.33±0.0001 0.6341±0.0077
DINO (ViT B/16) 0.332± 0.0002 0.4810±0.0012
CASS (ViT B/16) 0.3896±0.0013 0.6667±0.0002
Supervised (ViT B/16) 0.299±0.002 0.456±0.0077

Table 4: Results for the dermofit dataset. Parenthesis next to the techniques represent the architecture
used, for example DINO(ViT B/16) represents ViT B/16 trianed with DINO. In this table we compare
the F1 score on test set. We observed that CASS outperformed the existing state-of-art self-supervised
method using for all label fractions and for both the architectures.

A.5 ISIC 2019 Dataset

The ISIC-2019 dataset is an incredibly challenging dataset, not only because of the class imbalance
issue but because it is made of partially processed and inconsistent images with hard-to-classify
classes. From Table 6 it is clear that CASS outperforms DINO for all label fractions for both CNN
and Transformer by a margin.

B Ablation Study

B.1 Batch size

As mentioned, with CASS, we aim to overcome the shortcomings of existing self-supervised methods
where they drop much performance with a reduction in batch size. To study this effect, we ran CASS
with three different batch sizes on the autoimmune dataset - 8, 16, and 32 and reported the results in
7. We observed that the performance of CASS-trained CNN improved with a reduction in batch size
while that of the Transformer remained almost constant. We followed the standard set of protocols
mentioned in Appendix E for training. As standard, we used 16 as our batch size. We also conducted
this experiment on the brain MRI classification dataset and reported the results in Table 15.

B.2 Change in training epochs

As standard, we trained CASS for 100 epochs in all cases. However, existing self-supervised
techniques are plagued with a loss in performance with a decrease in the number of training epochs.
To test this effect for CASS, we ran it for 50, 100, 200, and 300 epochs on the autoimmune dataset
and reported the results in Table 8. We observed a slight gain in performance when we increased the
epochs from 100 to 200 but minimal gain beyond that. We also ran the same experiment on the brain
MRI dataset and reported the results in Table 16.

Techniques Backbone Testing F1 score
1% 10% 100%

DINO Resnet-50 0.63405±0.09 0.92325±0.02819 0.9900±0.0058
CASS Resnet-50 0.40816±0.13 0.8925±0.0254 0.9909± 0.0032
Supervised Resnet-50 0.52±0.018 0.9022±0.011 0.9899± 0.003
DINO ViT B/16 0.3211±0.071 0.7529±0.044 0.8841± 0.0052
CASS ViT B/16 0.3345±0.11 0.7833±0.0259 0.9279± 0.0213
Supervised ViT B/16 0.3017 ± 0.077 0.747±0.0245 0.8719± 0.017

Table 5: While DINO outperformed CASS for 1% and 10% labeled training for CNN, CASS main-
tained its superiority for 100% labeled training, albeit by just 0.09%. Similarly, CASS outperformed
DINO for all data regimes for Transformers, incrementally 1.34% in for 1%, 3.04% for 10%, and
4.38% for 100% labeled training. We observe that this margin is more significant than for biopsy
images. Such results could be ascribed to the increase in dataset size and increasing learnable
information.
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Techniques Backbone Testing Balanced multi-class accuracy
1% 10% 100%

DINO Resnet-50 0.328±0.0016 0.3797±0.0027 0.493±3.9e-05
CASS Resnet-50 0.3617±0.0047 0.41±0.0019 0.543±2.85e-05
Supervised Resnet-50 0.2640±0.031 0.3070±0.0121 0.35±0.006
DINO ViT B/16 0.3676± 0.012 0.3998±0.056 0.5408±0.001
CASS ViT B/16 0.3973± 0.0465 0.4395±0.0179 0.5819±0.0015
Supervised ViT B/16 0.3074±0.0005 0.3586±0.0314 0.42±0.007

Table 6: Results for the ISIC-2019 dataset. Comparable to the official metrics used in the challenge
https://challenge.isic-archive.com/landing/2019/. We use balanced multi-class accu-
racy as our metric, which is semantically equal to recall value. We observed that CASS consistently
outperforms DINO by approximately 4% for all label fractions with CNN and Transformer.

Batch Size CNN F1 Score Transformer F1 Score
8 0.88285±0011 0.8844±0.0009
16 0.8650±0.0001 0.8894±0.005
32 0.8648±0.0005 0.889±0.0064

Table 7: F1 metric comparison between the two arms of CASS trained over 100 epochs, following the
protocols and procedure listed in Appendix E. We only change the batch size during self-supervised
training. Based on these we observed that while CASS trained Transformer gains 1% with reduction
in batch size from 16 to 8, CASS trained CNN gains almost 2% for the same change. Although there
is a diminishing gain in performance as we increase the batch size.

Epochs CNN F1 Score Transformer F1 Score
50 0.8521±0.0007 0.8765± 0.0021
100 0.8650±0.0001 0.8894±0.005
200 0.8766±0.001 0.9053±0.008
300 0.8777±0.004 0.9091±8.2e-5

Table 8: Performance comparison over varied number of epochs, from 50 to 300 epochs, the
downstream training procedure and the CNN-Transformer combination is kept constant across all the
four experiments, only the number of self-supervised epochs have been changed.

B.3 Augmentations

Contrastive learning techniques are known to be highly dependent on augmentations. Recently, most
self-supervised techniques have adopted BYOL Grill et al. [2020]-like a set of augmentations. DINO
Caron et al. [2021] uses the same set of augmentations as BYOL, along with adding local-global
cropping. We use a reduced set of BYOL augmentations for CASS, along with a few changes. For
instance, we do not use solarize and Gaussian blur. Instead, we use affine transformations and random
perspectives. In this section, we study the effect of adding BYOL-like augmentations to CASS. We
report these results in Table 9. We observed CASS trained CNN is robust to changes in augmentations.
On the other hand, the Transformer drops performance with change in augmentations. A possible
solution to regain this loss in performance for Transformer with change in augmentation is by using
Gaussian blur, which has a converging effect on the results of CNN and Transformer.

Augmentation Set CNN F1 Score Transformer F1 Score
CASS only 0.8650±0.0001 0.8894±0.005

CASS + Solarize 0.8551±0.0004 0.81455±0.002
CASS + Gaussian blur 0.864±4.2e-05 0.8604±0.0029

CASS + Gaussian blur + Solarize 0.8573±2.59e-05 0.8513±0.0066

Table 9: We report the F1 metric of CASS trained with a different set of augmentations for 100
epochs. While CASS-trained CNN fluctuates within a percent of its peak performance, CASS-trained
Transformer drops performance with the addition of solarization and Gaussian blur. Interestingly, the
two arms converged with the use of Gaussian blur.
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B.4 Optimization

In CASS we use Adam optimizer for both CNN and Transformer. This is a shift from the traditional
use of SGD or stochastic gradient descent for CNNs. In this Table 10 we report the performance of
CASS trained CNN and Transformer with the CNN using SGD and Adam optimizer. We observed
that while the performance of CNN remained almost constant, the performance of Transformer
dropped by almost 6% with CNN using SGD.

Optimiser for CNN CNN F1 Score Transformer F1 Score
Adam 0.8650±0.0001 0.8894±0.005
SGD 0.8648±0.0005 0.82355±0.0064

Table 10: We report the F1 metric of CASS trained with a different set of optimizers for the CNN
arm for 100 epochs. While there is no change in CNN’s performance, the Transformer’s performance
drops around 6% with SGD.

B.5 Change in architecture

B.5.1 Changing Transformer and keeping the CNN same

From Table 11 and 12, we observed that CASS trained ViT Transformer with the same CNN
consistently gained approximately 4.7% over its supervised counterpart. Furthermore, from Table 12
we observed that although ViT L/16 performs better than ViT B/16 on ImageNet ( Wightman [2019]’s
results), we observed that the trend is opposite on the autoimmune dataset. Hence, the supervised
performance of architecture must be considered before pairing it with CASS on the specific datatset.

Transformer CNN F1 Score Transformer F1 Score
ViT Base/16 0.8650±0.001 0.8894± 0.005
ViT Large/16 0.8481±0.001 0.853±0.004

Table 11: In this table we show performance of CASS for ViT large/16 with ResNet-50 and ViT
base/16 with ResNet-50. We observed that CASS trained Transformers on average performed 4.7%
better than their supervised counterparts.

Architecture Testing F1 Score
ResnNet-50 0.831±0.0216
ViT Base/16 0.8420±0.009
ViT large/16 0.80495±0.0077

Table 12: Supervised performance of ViT family on the autoimmune dataset. We observed that as
opposed to ImageNet performance, ViT large/16 performs worse than ViT Base/16 on the autoimmune
dataset.

B.5.2 Changing CNN and keeping the Transformer same

Table 13 and 14 we observed that similar to changing Transformer while keeping CNN same, CASS
trained CNNs gained an average of 3% over their supervised counterparts. For ResNet-200 Wightman
[2019] doesn’t have ImageNet initialization hence used random initialization.

CNN Transformer 100% Label Fraction
CNN F1 score Transformer F1 score

ResNet-18 (11.69M)
ViT Base/16 (86.86M)

0.8674±4.8e-5 0.8773±5.29e-5
ResNet-50 (25.56M) 0.8680±0.001 0.8894± 0.0005
ResNet-200 (64.69M) 0.8517±0.0009 0.874±0.0006

Table 13: F1 metric comparison between the two arms of CASS trained over 100 epochs, following
the protocols and procedure listed in Appendix E. The numbers in parentheses show the parameters
learned by the network. We use Wightman [2019] implementation of CNN and transformers, with
ImageNet initialisation except for ResNet-200.
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Architecture Testing F1 Score
ResnNet-18 0.8299±0.0004
ResnNet-50 0.831±0.0216
ResnNet-200 0.823±0.0005

Table 14: Supervised performance of the ResNet CNN family on the autoimmune dataset.

C Additional Results

We conducted some further experimentation to check for collapse and ablation studies. The model
did not report collapse in any case. The following results are calculated following the protocols in
Appendix E on the brain MRI classification dataset.

C.1 Changing Batch Size

This section presents the results of varying the batch size in the brain MRI classification dataset.
In the standard implementation of CASS, we used a batch size of 16; here, we show results for
batch sizes 8 and 32. The largest batch size we could run was 34 on a single GPU of 48 GB video
memory. Hence 32 was the biggest batch size we showed in our results. We present these results in
Table 15. However, the performance of CNN remained nearly constant, with a change of less than a
percentage. The performance of the Transformer drops as we increase the batch size. Since CASS
was developed with the requirements of running on small datasets, with an overall size smaller than
the batch size of the current state of the art techniques, its peak performance for small batch size
justifies its development. Furthermore, from Table 7 and Section A.2.1, we observed that Transformer
is the better performing architecture out of the two and that with batch size change, it was unaffected.
Similarly, from Table 15 and Section A.4, we observed that CNN is the better performing architecture,
and with batch size change, its performance is unaffected. Hence, we conclude that batch size change
does not affect the leading architecture of a given dataset.

Batch Size CNN F1 Score Transformer F1 Score
8 0.9895±0.0025 0.93158±0.0109
16 0.9909± 0.0032 0.9279± 0.0213
32 0.9848±0.011 0.9176±0.006

Table 15: This table represents the results for different batch sizes on the brain MRI classification
dataset. We maintain the downstream batch size constant for all the three self-supervised batch sizes,
following the standard experimental setup as mentioned in Appendix E. These results are for 100%
label fraction.

C.2 Effect of the Number of Training Epochs

We saw that there was an incremental gain in performance as we increased the number of self-
supervised training epochs. For the opposite scenario, there wasn’t a steep drop in performance like
the existing self-supervised techniques when we reduce the number of self-supervised epochs. Table
16 displays results for this experimentation.

Epochs CNN F1 Score Transformer F1 Score
50 0.9795±0.0109 0.9262±0.0181
100 0.9909± 0.0032 0.9279± 0.0213
200 0.9864±0.008 0.9476±0.0012
300 0.9920±0.001 0.9484±0.017

Table 16: Performance comparison over varied number of epochs, from 50 to 300 epochs, the
downstream training procedure and the CNN-transformer combination is kept constant across all the
four experiments, only the number of self-supervised epochs has been changed.
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C.3 Effect of Changing the ViT/CNN branch

C.3.1 Changing CNN while keeping Transformer same

For this experiment we use ResNet family of CNNs along with ViT base/16 as our Transformer. We
use ImageNet initialization for ResNet 18 and 50, while random initialization for ResNet-200. We
present these results in Table 17. We observed that increase in performance of ResNet correlates to
increase in performance of Transformer, hence implying that there is information transfer between
the two.

CNN Transformer 100% Label Fraction
CNN F1 score Transformer F1 score

ResNet-18 (11.69M)
ViT Base/16 (86.86M)

0.9913±0.002 0.9801±0.007
ResNet-50 (25.56M) 0.9909±0.0032 0.9279± 0.0213
ResNet-200 (64.69M) 0.9898±0.005 0.9276±0.017

Table 17: F1 metric comparison between the two arms of CASS trained over 100 epochs, following
the protocols and procedure listed in Appendix E. The numbers in parentheses show the parameters
learned by the network. We use Wightman [2019] implementation of CNN and transformers, with
ImageNet initialisation except for ResNet-200.

C.3.2 Changing Transformer while keeping CNN same

For this experiment we keep the CNN as constant and study the effect of changing the Transformer.
For this experiment we use ResNet as our choice of CNN and ViT base and large Transformers with
16 patches. Additionally we also report performance for DeiT-B with ResNet-50. We report these
results in Table 18. Similar to Table 11 we observe that changing Transformer from ViT Base to Large
while keeping the number of tokens same at 16, performance drops. Additionally, for approximately
the same size, out of DEiT base and ViT base Trasnformers, DEiT performs much better than ViT
base.

C.3.3 Using CNN in both arms

Until now we have experimented by using a CNN and a Transformer in CASS. In this section we
present results for using two CNNs in CASS. We pair ResNet-50 with DenseNet-161. We observe that
both the CNNs fail to reach the benchmark set by ResNet-50 and ViT-B/16 combination. Although
training the ResNet-50-DenseNet-161 pair takes 5 hour 24 minutes which is less than the 7 hours 11
minutes taken by the ResNet-50-ViT-B/16 combination to be trained with CASS. We compare these
results in Table 19.

C.3.4 Using Transformer in both arms

Similar, to the above section, for this section, we use a Transformer-Transformer combination
instead of a CNN-Transformer combination. For this we use Swin-Transformer patch-4/window-12
Liu et al. [2021] alongside ViT-B/16 Transformer. We observe that the performance for ViT/B-16
improves by around 1.3% when we use Swin Transformer. However, this comes at a computational
cost. Swin-ViT combination took 10 hours to train as opposed to 7 hours 11 minutes taken by the
ResNet-50-ViT-B/16 combination to be trained with CASS. Even with the increased time to train the
Swin-ViT combination, it is still almost 50% less than DINO. We present these results in Table 20.

C.4 Effect of Initialization

ImageNet initialization is preferred for transfer learning in medical image analysis, not because
of feature reuse but because ImageNet weights allow for faster convergence through better weight
scaling Raghu et al. [2019]. We use ImageNet initialized CNN and Transformers for CASS, DINO,
and supervised training. We use Timm’s library for this initialization Wightman [2019]. However,
sometimes pretrained weights might be hard to find, so we study CASS’ performance with random
and ImageNet initialization in this section. We observed that performance almost remained the same
with minor gains when the initialization was altered for the two networks. Table 21 presents the
results for this experimentation.
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CNN Transformer CNN F1 Score Transformer F1 Score

ResNet-50
(25.56M)

DEiT Base/16 (86.86M) 0.9902±0.0025 0.9844±0.0048
ViT Base/16 (86.86M) 0.9909±0.0032 0.9279± 0.0213
ViT Large/16 (304.72M) 0.98945±2.45e-5 0.8896±0.0009

Table 18: For the same number of Transformer parameters, DEiT-base with ResNet-50 performed
much better than ResNet-50 with ViT-base. The difference in their CNN arm is 0.10%. On ImageNet
DEiT-base has a top1% accuracy of 83.106 while ViT-base has an accuracy of 86.006. We use both
the Transformers with 16 patches. [ResNet-50 has an accuracy of 80.374]

CNN Architecture in
arm 2 F1 Score of ResNet-50 arm F1 Score of arm 2

ResNet-50 ViT Base/16 0.9909±0.0032 0.9279± 0.0213
DenseNet-161 0.9743±8.8e-5 0.98365±9.63e-5

Table 19: We observed that for the ResNet-50-DenseNet-161 pair, we train 2 CNNs instead of 1
in our standard setup of CASS. Furthermore, none of these CNNs could match the performance of
ResNet-50 trained with the ResNet-50-ViT base/16 combination. Hence, by adding a Transformer-
CNN combination, we transfer information between the two architectures that would have been
missed otherwise.

Architecture in
arm 1 Transfomer F1 Score of arm 1 F1 Score of ViT-B/16 arm

ResNet-50 ViT Base/16 0.9909±0.0032 0.9279± 0.0213
Swin Tranformer 0.9883±1.26e-5 0.94±8.12e-5

Table 20: We present the results for using Transformers in both the arms and compare the results
with CNN-Transformer combination.

Initialisation CNN F1 Score Transformer F1 Score
Random 0.9907±0.009 0.9316±0.027
Imagenet 0.9909±0.0032 0.9279± 0.0213

Table 21: We observe that the Transformer gains some performance with random initialization,
although performance has more variance when used with random initialization.

D Qualitative Results

We reported expanded quantitative results and ablation studies in Appendix A, B and C respectively.
In this section, we study the qualitative gains of the cross architectural self-supervised training using
a CNN and Transformer simultaneously. We start by studying the feature maps of the first few layers
of CASS and supervised ResNet-50 on the autoimmune dataset. We also studied the class attention
maps of CASS and supervised ViT base/16 Transformers over the four datasets.

D.1 Feature maps

In this section, we study the feature maps from the first five layers of the ResNet-50 model trained
with CASS and supervision. We extracted feature maps after the Conv2d layer of ResNet-50. We
present the extracted features in Figure 5. We observed that CASS-trained CNN could retain much
more detail about the input image than supervised CNN.

D.2 Class attention maps

We have already studied the class attention maps over a single image in Section 3. This section will
study the average class attention maps for all four datasets. We studied the attention maps averaged
over 30 random samples for autoimmune, dermofit, and brain MRI datasets. Since the ISIC 2019
dataset is highly unbalanced, we averaged the attention maps over 100 samples so that each class
may have an example in our sample. We maintained the same distribution as the test set, which has
the same class distribution as the overall training set. We observed that CASS-trained Trasformers
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Figure 4: Sample image used from the test set of the autoimmune dataset.

Figure 5: At the top we have features extracted from top 5 layers of supervised ResNet-50 while at
the bottom we have features extracted from top 5 layers of CASS trained ResNet-50. We supplied
both the networks with the same input ( shown in Figure 4).

were better able to map global and local attention maps due to Transformers ability to map global
dependencies and by learning features sensitive to translation equivariance and locality from CNN.

D.2.1 Autoimmune dataset

We study the class attention maps averaged over 30 test samples for the autoimmune dataset in Figure
6. We observed that the CASS-trained Transformer has much more attention in the center as compared
to the supervised Transformer. This extra attention could be attributed that a Transformer on its own
couldn’t map out is due to the information transfer from CNN. Another, feature to observe is that
the attention map of CASS-trained Transformer is much more connected than that of supervised
Transformer.

D.2.2 Dermofit dataset

We present the average attention maps for the dermofit dataset in Figure 7. We observed that
the CASS-trained Transformer is able to pay a lot more attention to the center part of the image.
Furthermore, the attention map of CASS-trained Transformer is much more connected as compared
to the supervised Transformer. So, overall with CASS, the Transformer is not only able to map
long-range dependencies which are innate to Transformers but is also able to make more local
connections with the help of features sensitive to translation equivariance and locality from CNN.
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D.2.3 Brain tumor MRI classification dataset

We present the results for the average class attention maps in Figure 8. We observed that a CASS-
trained Transformer could better capture long and short-range dependencies than a supervised
Transformer. Furthermore, we observed that a CASS-trained Transformer’s attention map is much
more centered than a supervised Transformer’s. From Figure 12 we can observe that most MRI
images are center localized, so having a more centered attention map is advantageous in this case.

D.2.4 ISIC 2019 dataset

The ISIC-2019 dataset is one of the most challenging datasets out of the four datasets. ISIC 2019
consists of images from the HAM10000 and BCN_20000 datasets Cassidy et al. [2022], Gessert
et al. [2020]. For the HAM1000 dataset, it is difficult to classify between 4 classes (melanoma and
melanocytic nevus), (actinic keratosis and benign keratosis). HAM10000 dataset contains images
of size 600×450, centered and cropped around the lesion. Histogram corrections have been applied
to only a few images. The BCN_20000 dataset contains images of size 1024×1024. This dataset is
particularly challenging as many images are uncropped, and lesions are in difficult and uncommon
locations. Hence, in this case, having more spread-out attention maps would be advantageous instead
of a more centered one. From Figure 9, we observed that CASS-trained Transformer has a lot more
spread attention map than a supervised Transformer. Furthermore, CASS-trained Transformer is also
able to attend the corners far better than supervised Transformer.

Figure 6: To ensure the consistency of our study, we studied average attention maps over 30 sample
images from the autoimmune dataset. The top image is the overall attention map averaged over 30
samples for supervised Transformer, while the one at the bottom is for CASS trained Transformer.

E Expansion on experimentation details

E.1 Datasets

E.1.1 Choice of Datasets

We chose four medical imaging datasets with diverse sample sizes ranging from 198 to 25,336
and diverse modalities to study the performance of existing self-supervised techniques and CASS.
Most of the existing self-supervised techniques have been studied on million image datasets, but
medical imaging datasets, on average, are much smaller than a million images. We expand this
to include datasets of emerging and underrepresented diseases with only a few hundred samples,
like the autoimmune dataset in our case (198 samples). To the best of our knowledge, no existing
literature studies the effect of self-supervised learning on such a small dataset. Furthermore, we chose
the dermofit dataset because all the images are taken using an SLR camera, and no two images are
the same size. Image size in dermofit varies from 205×205 to 1020×1020. MRI images constitute
a large part of medical imaging; hence we included this dataset in our study. So, to incorporate
them in our study, we included the Brain tumor MRI classification dataset. Furthermore, it is our
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Figure 7: Class attention maps averaged over 30 samples of the dermofit dataset for supervised
Transformer (on the left), and CASS trained Transformer (on the right).

Figure 8: Class attention maps averaged over 30 samples of the brain tumor MRI classification dataset
for supervised Transformer (on the left) and CASS trained Transformer (on the right).

Figure 9: Class attention maps avergaed over 100 samples form the ISIC-2019 dataset for supervised
Transformer (on the left) and CASS trained Transformer (on the right).
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study’s only black and white dataset; the other three datasets are RGB. The ISIC 2019 is a unique
dataset as it contains multiple pairs of hard-to-classify classes (Melanoma - melanocytic nevus and
actinic keratosis - benign keratosis) and different image sizes - out of which only a few have been
prepossessed. It is a highly imbalanced dataset containing samples with lesions in difficult and
uncommon locations. We further expand on the datasets in the following section.

• Autoimmune diseases biopsy slides (Van Buren et al. [2022]) consists of slides cut from
muscle biopsies of dermatomyositis patients stained with different proteins and imaged to
generate a dataset of 198 TIFF image set from 7 patients. The presence or absence of these
cells helps to diagnose dermatomyositis. Multiple cell classes can be present per image;
therefore this is a multi-label classification problem. Our task here was to classify cells
based on their protein staining into TFH-1, TFH-217, TFH-Like, B cells, and others. We
used F1 score as our metric for evaluation, as employed in the original work by Van Buren
et al. [2022]. These RGB images have a consistent size of 352 by 469.

Figure 10: Sample of autofluorescence slide images from the muscle biopsy of patients with dermato-
myositis - a type of autoimmune disease.

• Dermofit dataset Fisher and Rees [2017] contains normal RGB images captured through
SLR camera indoors with ring lightning. There are 1300 image samples, classified into
10 classes: Actinic Keratosis (AK), Basal Cell Carcinoma (BCC), Melanocytic Nevus /
Mole (ML), Squamous Cell Carcinoma (SCC), Seborrhoeic Keratosis (SK), Intraepithelial
carcinoma (IEC), Pyogenic Granuloma (PYO), Haemangioma (VASC), Dermatofibroma
(DF) and Melanoma (MEL). This dataset comprises of images of different sizes and no two
images are of same size. They range from 205×205 to 1020×1020 in size. We pretext task is
multi-class classification and we use F1 score as our evaluation metric on this dataset.

Figure 11: Sample images from the Dermofit dataset.

• Brain tumor MRI dataset Cheng [2017], Amin et al. [2022] 7022 images of human brain
MRI that are classified into four classes: glioma, meningioma, no tumor, and pituitary.
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We used the dataset from https://www.kaggle.com/datasets/masoudnickparvar/
brain-tumor-mri-dataset that combines Br35H: Brain tumor Detection 2020 dataset
used in "Retrieval of Brain tumors by Adaptive Spatial Pooling and Fisher Vector Represen-
tation" and Brain tumor classification curated by Navoneel Chakrabarty and Swati Kanchan.
Out of these, the dataset curator created the training and testing splits. We followed their
splits, 5,712 images for training and 1,310 for testing. Since this was a combination of
multiple datasets, size of images vary throughout the dataset from 512×512 to 219×234.
The pretext of the task is multi-class classification, and we used the F1 score as the metric.

Figure 12: Sample images of brain tumor MRI dataset, Each image corresponds to a prediction class
in the data set glioma (Left), meningioma (Center) and No tumor (Right)

• ISIC 2019 (Tschandl et al. [2018], Gutman et al. [2018], Combalia et al. [2019]) consists
of 25,331 images across eight different categories - melanoma (MEL), melanocytic nevus
(NV), Basal cell carcinoma (BCC), actinic keratosis(AK), benign keratosis(BKL) , der-
matofibroma(DF), vascular lesion (VASC) and Squamous cell carcinoma(SCC). This dataset
contains images of size 600 × 450 and 1024 × 1024. The distribution of these labels is
unbalanced across different classes. For evaluation, we followed the metric followed in the
official competition i.e balanced multi-class accuracy value, which is semantically equal to
recall.

Figure 13: Sample images from the ISIC-2019 challenge dataset.

E.2 Self-supervised training

E.2.1 Protocols

• Self-supervised learning was only done on the training data and not on the validation
data. We used https://github.com/PyTorchLightning/pytorch-lightning to set
the pseudo-random number generators in PyTorch, NumPy and (python.random).

• We run training over five different seed values, and report mean results with variance in each
table. We don’t perform a seed value sweep to extract anymore performance Picard [2021].

• For DINO implementation we use Phil Wang’s implementation: https://github.com/
lucidrains/vit-pytorch.

• For implementation of CNNs and Transformers we use timm’s library Wightman [2019].

• For all experiments, ImageNet Deng et al. [2009] initialised CNN and Transformers were
used.
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E.2.2 Augmentations

• Resizing: Resize input images to 384×384 with bilinear interpolation.

• Color jittering: change the brightness, contrast, saturation and hue of an image or apply
random perspective with a given probability. We set the degree of distortion to 0.2 (between
0 and 1) and use bilinear interpolation, with an application probability of 0.3.

• Color jittering or apply random affine transformation of the image keeping center invariant
with degree 10, with an application probability of 0.3.

• Horizontal and Vertical flip. Each with an application probability of 0.3.

• Channel normalisation with mean (0.485, 0.456, 0.406) and standard deviation (0.229, 0.224,
0.225).

E.2.3 Hyper-parameters

• Optimization: We use stochastic weighted averaging over Adam optimiser with learning
rate (LR) set to 1e-3 for both CNN and vision transformer (ViT). This is a shift from SGD
which is usally used for CNNs.

• Learning Rate: Cosine annealing learning rate is used with 16 iterations and a minimum
learning rate of 1e-6. Unless mentioned otherwise, this setup was trained over 100 epochs.
These were then used as initialisation for the downstream supervised learning. The standard
batch size is 16.

E.3 Supervised training

E.3.1 Augmentations

We use the same set of augmentations used in self-supervised training.

E.3.2 Hyper-parameters

• We use Adam optimiser with lr set to 3e-4 and a cosine annealing learning schedule.

• Since, all medical datasets have class imbalance we address it by using focal loss Lin et al.
[2017] as our choice of loss function with the alpha value set to 1 and the gamma value to 2.
In our case it uses minimum-maximum normalised class distribution as class weights for
focal loss.

• We train for 50 epochs. We also use a five epoch patience on validation loss to check for
early stopping. This downstream supervised learning setup is kept the same for CNN and
Transformers.

We repeated all the experiments five time with different seed values and then present the average
results in all the tables (except Table 1).

E.4 Self-supervised Training

We studied and compared results between DINO and CASS trained self-supervised CNNs and
Transformers. For the same, we trained from ImageNet initialization for 100 epochs with a batch
size of 16. All experiments were conducted on an internal cluster with single GPU unit (NVIDIA
RTX8000) with 48 GB video RAM, 2 CPU cores and 64 GB system RAM.

For DINO, we used the hyper parameters and augmentations mentioned in the original implementation.
For CASS, we describe the experimentation details in Appendix E.2.

After self-supervised training perform end-to-end fine tuning on each dataset, we expand on this in
the next section.

E.5 End-to-end fine-tuning

In order to evaluate the utility of the learned representations, we use the self-supervised pre-trained
weights for downstream classification task. While performing the downstream fine tuning we perform
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entire model (E2E fine-tuning). The test set metrics were used as proxies for representation quality.
We trained the entire model for a maximum of 50 epochs with an early stopping patience of 5 epochs.
For supervised fine tuning we used Adam optimizer with a cosine annealing learning rate starting at
3e-04. Since almost all medical datasets have some class imbalance we applied class distribution
normalized Focal Loss Lin et al. [2017] to navigate class imbalance. We fine tune the models with
different label fractions during training i.e 1%, 10% and 100% label fractions after self-supervised
pre-training. For example, if a model is trained with 10% label fraction then that model will have
access only to 10% of the training dataset labels fine tuning, which was done after self-supervised
training.

F Self-supervised Algorithm

The core self-supervised algorithm, used to train CASS with a CNN (R) and a Transformer (T), is
described in Algorithm 1. Here, num_epochs represents the number of self-supervised epochs to run.
CNN and Transformer represents the respective architecture we use, for example CNN could be a
ResNet50 and Transformer can be ViT Base/16. Finally, after training using the algorithm described
in Algorithm 1, we save the CNN and Transformer for downstream E2E finetuning.

Algorithm 1: CASS self-supervised training algorithm
Input: Unlabeled same augmented images from the training set x′

Output: Logits from each network.
Data: Images from a given dataset

1 for epochs in range(num_epochs) do
2 for x in train loader: do
3 R = cnn(x′) // taking logits output from CNN
4 T = vit(x′) // taking logits output from ViT
5 Calculate loss using Equation 1// taking cosine similarity between the

logits outputs from CNN and ViT
6 Calculate the mean value of all elements of the loss tensor. Compute gradients.
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