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Abstract

Self-supervised contrastive learning has attracted great attention for its promising
empirical performances. However, the identifiability theory of contrastive learn-
ing is still under-exploited. In this paper, we propose the Aggregated InfoNCE
(AggNCE) loss function to deal with this problem. The latent variable learned by
AggNCE is proved to be asymptotically identifiable to the ground truth latent under
the original data distribution. In experiments, we verify the theoretical findings and
show the empirical advantage of AggNCE over InfoNCE.

1 Introduction

With great data efficiency and generalization ability, self-supervised contrastive learning has attracted
great attention for its promising empirical performances without relying on human annotations. The
common approach of self-supervised contrastive learning in computer vision tasks is to treat each
image as a separate class, and to learn the embedding through aligning different views of an image.
The aligned views are called positive samples, which are usually constructed through hand-crafted
data augmentations and are semantically similar to the original image. However, the embeddings
learned through this approach are not guaranteed to reveal the underlying latents from which the
images are generated.

In this paper, we investigate the identifiability theory of contrastive learning, an important property
that guarantees the learned representation to reveal the underlying data generating process. By
formulating the data generating process as a latent generative model, we prove that the mean latent of
the multiple views learned by the InfoNCE loss is identifiable up to an invertible matrix, inspired by
which, we propose the Aggregated InfoNCE (AggNCE) loss function. In experiments, we verify the
performance of AggNCE and show that AggNCE empirically outperforms InfoNCE.

2 Preliminaries

Notations. Throughout this paper, we denote x ∈ Rd as an instance sample, i.e. images or views,
and denote z ∈ Rn as the latent variable of x, where d ∈ N+ and n ∈ N+ are dimensions of the input
data and latent respectively. The generating function of x from z is denoted as g : Rn → Rd. We
let s : Rn → R be a similarity measure. For the sake of simplicity, we let s be the cosine similarity,
i.e. s(z, z′) = z>z′ for z, z′ ∈ Rn, where z> stands for the transpose of z. Moreover, we denote
f : Rd → Rn as the encoding function.
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Unsupervised contrastive representation learning. We consider a prevailing form of contrastive
loss called InfoNCE loss function [10], with the form

Lcon = Ex,x′∼Ppos, x
−
i ∼Pdata

− log
ef(x)>f(x′)/τ

ef(x)>f(x′)/τ +
∑M
i=1 e

f(x)>f(x−i )/τ
, (1)

where τ > 0 is a temperature parameter, x and x′ stands for positive samples and {x−i }Mi=1 are
negative samples. This loss has been empirically shown to be effective by numerous works [2, 6].
[15] proved that the InfoNCE loss function optimizes the alignment of features from positive pairs
and uniformity of the induced distribution of the (normalized) features on the hypersphere. In this
paper, we focus on the uniformity of InfoNCE, and consider the asymptotic form proved in [15], i.e.

lim
M→∞

Lcon = logM − 1

τ
Ex,x′∼Pposf(x)>f(x′) + Ex∼Pdata logEx−∼Pdatae

f(x)>f(x−i )/τ . (2)

Identifiability theory. Suppose that a random variable X is distributed according to the probability
Pθ, where θ ∈ Θ is the parameter of the generating probability. Then we say that θ is identifiable on
the basis of x if Pθ is an injective function of θ, i.e. Pθ = Pθ′ implies θ = θ′ [9]. In other words,
identifiability guarantees that the generating process is unique based on observations X . Following
[7], we define the identifiability up to an equivalence relation on Θ as follows.
Definition 2.1 (Identifiability). Let ∼ be an equivalence relation on Θ. We say that a deep latent
variable model pθ(x, z) is identifiable up to ∼ if for all θ, θ̃ ∈ Θ, we have

pθ(x) = pθ̃(x)⇒ θ̃ ∼ θ. (3)

[1] shows that InfoNCE loss is an upper bound of the negative marginal probability of x and x′, i.e.

− log P(x, x′) ≤ Lcon(x, x′) = −EQ(z,z′)

[
log s(z, z′)

]
+ EQ(z)

[
logEQ(z′)[s(z, z

′)]
]

That is, the optimal latents (z∗, z′∗) = arg minz,z′∈Rn Lcon(x, x′) guarantee the marginal probability
P(x∗, x′∗) to be large and thus nearly maximized. Therefore, to study the identifiability of (z∗, z′∗)
learned by contrastive learning, we only need to study the identifiability of optimal latents that
minimizes the joint marginal probability of the views, i.e. P(x∗, x′∗).

3 AggNCE: Asymptotically Identifiable Contrastive Learning

In this section, we assume that there are multiple augmented views x′1, . . . , x
′
B , and the corresponding

latents are z′1, . . . , z
′
B .

3.1 Generating Process of Multiple Views

We assume the joint probability of x, x′1, . . . , x
′
B , z, and z′1, . . . , z

′
B satisfies

P(x, x′1, . . . , x
′
B , z, z

′
1, . . . , z

′
B) = P(x|z)

b∏
i=1

P(x′i|z′i)P(z, z′1, . . . , z
′
B). (4)

Eq. (4) indicates that the instance x depends only on its own latent z, and is independent of the
augmented x′ and its corresponding latent z′. Then inspired by [7], we formulate the joint distribution
of x and z (and x′i and z′i) as

pθ(x, z|u) = pg(x|z)pT,λ(z|u), and pθ(x′i, z
′
i|u) = pg(x

′
i|z′i)pT,λ(z′i|u), i = 1, . . . , B (5)

Figure 1: Latent variable model of
multi-views.

where g : Rn → Rd is a generative function such that
x = g(z) + ε, x′i = g(z′i) + ε, i = 1, . . . , b, and ε is a mean-
zero noise variable independent of z, and pT,λ denotes the
exponential family distribution, z′i ∼ exp(T, λ(u)), with suffi-
cient statistics T .
Assumption 3.1. Assume that for i ∈ {1, . . . , B},

(i) p(z′i|z) = 1
Cz

Q(z′i)s(z, z
′
i).

(ii) For all i 6= j, z′i ⊥ z′j | z.

The latent variable model is shown in Figure 1.
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3.2 Identifiability of Contrastive Learning with Multiple Views

To show the identifiability results, we make the same assumptions as in Theorem 1 of [7]. Then we
have our main theorem.
Theorem 3.2. Let Assumption 3.1 hold. Then if

Pf,T,λ(x′1, . . . , x
′
B |u) = Pf̃ ,T̃ ,λ̃(x′1, . . . , x

′
B |u), (6)

we have

1

B

B∑
i=1

T (f−1(x′i)) = A
1

B

B∑
i=1

T̃ (f̃−1(x′i)) + c, (7)

where A is an invertible matrix and c is a constant vector.

Theorem 3.2 shows that the mean latent of the B augmented views is identifiable up to an invertible
matrix. Eq. (7) could be simply understood that the “mean” latent of views z′i are identifiable up to
an invertible matrix, i.e.

1

B

B∑
i=1

z′i = A
1

B

B∑
i=1

z̃′i + c. (8)

In Lemma A.1, we show that E(z′|z) = z. Note that the mean z̄′B := 1
B

∑B
i=1 z

′
i is an unbiased

estimator of E(z′|z). As B →∞, z is asymptotically identifiable. Intuitively, it could be understood
as z′i = z0 + εi, where z0 is the content factor sharing over z′i, i ∈ [B], and εi is the view-specific
style or noise. By averaging over z′i, we maintain the content only while removing the style or noise.
By contrast, we also demonstrate the unidentifiability of contrastive learning with two augmented
views in Appendix A.

Then we briefly discuss how many views B are enough for the mean latent z̄′B to have a good
approximation to z. According to a simple analysis by Chebyshev’s inequality, we have for ε > 0

P

(∥∥∥∥ 1

B

B∑
i=1

z′i − z
∥∥∥∥

2

≥ ε

)
≤ nσ2

z

Bε2
, (9)

where σ2
z denotes the variance of z′i. In practice, the variance σ2

z can be easily bounded by some
constant through normalization. Therefore, if we want to achieve an ε-robust estimation of z with a
constant probability, we require the number of views B to be O(1/ε2).

3.3 Aggregated InfoNCE (AggNCE) Loss Function

Motivated by Theorem 3.2 , we propose the Aggregated InfoNCE (AggNCE) loss function, where
we replace the representation of one view with the aggregated representation of multiple augmented
positive samples. The mathematical form is shown as follows.

LB(f) = − log
exp[f(x)>f̄(x+)]

exp f(x)>f̄(x+) +
∑M
i=1 exp[f(x)>f(x−i )/τ ]

, (10)

where f̄(x+) := 1
B

∑B
i=1 f(x+

i )/τ .

In the AggNCE loss function, we use the mean representation to learn the mean latent z̄′, which is
proved to be asymptotically identifiable to the ground true latent z of the original input data. That is,
the distribution gap between z′ and z can be alleviated by using AggNCE as the number of views
B →∞. Note that when B = 1, our AggNCE loss function degenerates to the standard InfoNCE.

4 Comparisons with Related Works

Comparisons with multi-view contrastive learning methods. The most similar form of AggNCE
is to use blocks of similar samples [12]. However, the essence of the block loss is different, since
the way it aggregates the negative samples cannot be understood as an optimization over uniformity
as is discussed in [15], even if we transfer the idea of “block” to the InfoNCE loss function. Some
other methods of using multiple views are to aggregate the loss function induced by different views
instead of aggregating the representations, e.g. [14, 11]. Thus, the learned representations through
these methods fail to be identifiable to the latent of the original input data.
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Comparisons with identifiability results. [16] first shows the link between contrastive learning
and nonlinear ICA, and proves that the learned representation of contrastive learning recovers the
source latent up to an orthogonal linear transformation. However, [16] assumes that the ground-truth
marginal distribution of the latents is uniform, which is only true when perfect uniformity is achieved.
[8] assumes a partition of the latent space into an invariant content block and a view-specific style
block, and proves the block identifiability of contrastive learning. The intuition behind this result is
that the learned representations capture the content shared across all augmented views, which turns
out to be similar to ours in Theorem 3.2. However, it analyzes a contrastive loss function that aligns
the exact content block (with the dimension unknown in real applications), whereas our proposed
AggNCE loss function can be easily implemented for practical use by using multiple augmented
views. [5] studies a semiparametric model for learning from pairwise measurements, and proves
convergence of the estimated parameters. The modeling of data generating process is inherently
different from ours.

5 Experiments

Setup. We follow the setting of SimCLR [2]. We use the SGD optimizer and use ResNet-50 as the
encoder and a 2-layer MLP as the projection head. We run experiments on 4 NVIDIA Tesla v100
32GB GPUs. The data augmentations we use are random crop and resize (with random flip), color
distortion, and color dropping. The models are trained using both InfoNCE and AggNCE loss with
batch size 128 and 500 epochs for each model. We evaluate the self-supervised learned representation
by linear evaluation protocol, where a linear classifier is trained on the top of the encoder, and regard
its test accuracy as the performance of the encoder.

5.1 Performance Comparison

We first show the advantage of AggNCE over InfoNCE through linear evaluations, where we fix the
batch size of both methods to be 128. In AggNCE, we vary the number of views B from 2 to 20 to
study the effect of the number of views for AggNCE. Note that InfoNCE can be viewed as a special
case of AggNCE with B = 1. From Table 1 on CIFAR-10 and CIFAR-100 datasets, we observe that
the performance gets better with more augmented views, and gets saturated when B ≥ 10. In Table
2, AggNCE outperforms InfoNCE by 2.11% when B = 3 on the ImageNet-100 dataset.

Table 1: Performance comparison of InfoNCE and AggNCE with various numbers of views.

Method B
CIFAR-10 CIFAR-100

acc advantage acc advantage

InfoNCE 1 91.47 / 82.50 /

AggNCE

2 92.37 +0.90% 84.77 +2.27%
3 92.78 +1.31% 84.90 +2.40%
5 93.10 +1.63% 85.37 +2.87%
10 93.39 +1.92% 85.70 +3.20%
20 93.32 +1.85% 85.89 +3.39%

* The best results are marked in bold.

Table 2: Performance comparisons on ImageNet-100.
Method B batch size acc(%) advantage

InfoNCE 1 256 69.40(0.17) /
AggNCE 3 256 71.51(0.12) +2.11%

* The best results are marked in bold.

For further fair comparisons, we adjust the batch size of InfoNCE so that the same number of views
are used in InfoNCE and AggNCE. The results are shown in Appendix B.

6 Conclusion

In this paper, we proposed the AggNCE loss function, which aligns the representation of one
view with the mean representation of multiple views. Through theoretical discussions, we show
that the representations learned by AggNCE can be asymptotically identifiable. Furthermore, we
also demonstrate the advantage of AggNCE over InfoNCE in linear evaluation through numerical
comparisons.
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A Unidentifiability of InfoNCE

In this appendix, we first formulate the generating process of the input data and its augmentations
as a latent generative model. Then we conduct an identifiability analysis of latents (representations)
learned by contrastive learning. Finally, we discuss that the identifiable mean latent does not coincide
with the ground truth latent of the original input data, that is, the representations learned by ordinary
contrastive learning fail to be identifiable.

A.1 Data Generating Process: Latent Variable Model

Let x′ ∈ Rd be the augmented version of x ∈ Rd. Assume that z ∈ Rn and z′ ∈ Rn is the latent
variables of x and x′ respectively (usually n < d), and that u is an observable prior (instance index).
The latent variable model is illustrated in Figure 2.

Figure 2: Latent variable model of two views.

We assume the joint probability of x, x′, z, and z′ satisfies

P(x, x′, z, z′) = P(x|z)P(x′|z′)P(z, z′). (11)

This assumption is natural and straightforward. (11) shows that the instance x depends only on its
own latent z, and is independent of the augmented x′ and its corresponding latent z′.

Then inspired by [7], we formulate the joint distribution of x and z (and x′ and z′) as

pθ(x, z|u) = pg(x|z)pT,λ(z|u),

pθ(x
′, z′|u) = pg(x

′|z′)pT,λ(z′|u), (12)

where the definition of pg and pT,λ will be delayed to (13) and (18).

Generative function: We naturally assume that x and x′ are generated by different latent variables
following the same ground-truth generative function. To be specific, we assume that there exists an
underlying generative function g : Rn → Rd such that

x = g(z) + ε and x′ = g(x′) + ε, (13)

where ε is a mean-zero noise variable independent of z.

Latent variables: We assume that the latent variable of the augmented view x′ lies around that of the
instance x. Intuitively, we would like x and x′ to have similar semantic representations. Therefore,
we reasonably assume that the conditional distribution of z′ on z is

p(z′|z) =
1

Cz
Q(z′)s(z, z′), (14)

where s : Rn × Rn → R is a similarity measure of z and z′, and

Cz : =

∫
Q(z′)s(z, z′) dz′ (15)

is the normalizing constant. By (14), given z, z′ has larger conditional probability if z′ is more
similar to z (larger s(z, z′)). We could without loss of generality assume that the components of z′

have the same expectation, i.e. Ez′ = (1, . . . , 1)>, and that the sum of all components of z is 1, i.e.
(1, . . . , 1)z = 1. Note that these assumptions are quite mild since they can be easily achieved by
normalizing z and z′. We propose them only for the simplicity of the proofs.
Lemma A.1. If z is an isotropic random vector, (14) yields that

E(z′|z) = z. (16)
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Lemma A.1 shows that the conditional expectation of the augmented latent z′ lies exactly at z.
Intuitively, if there are multiple augmented samples {zi}Bi=1, we could understand that the augmented
latents z′i are centered at z.

Following [7], we assume that z and z′ are drawn from the exponential family distribution, i.e.

z, z′ ∼ exp(T, λ(u)), (17)

where T denotes the sufficient statistics and u is an observable prior. Since exponential families have
universal approximation capabilities, so this assumption is not very restrictive [13]. To be specific,
we assume that the exponents of z (and z′) are independent, i.e. under mathematical formulations

pT,λ(z |u) =

n∏
i=1

Qi(zi)

Zi(u)
exp

[
k∑
j=1

Ti,j(zi)λi,j(u)

]
, (18)

where Qi is the base measure, Zi(u) is the normalizing constant, Ti = (Ti,j)
k
j=1 are sufficient

statistics, and λi(u) = (λi,j(u)) are the corresponding parameters.

A.2 Identifiability Analysis

In this part, based on the theoretical link between InfoNCE loss and the latent generative model
(Proposition A.2), we show the identifiability analysis of representations learned with InfoNCE.
Proposition A.2 ([1]). Under the latent generative model (11) and (14), there holds

− log P(x, x′) ≤ Lcon(x, x′) = −EQ(z,z′)

[
log s(z, z′)

]
+ EQ(z)

[
logEQ(z′)[s(z, z

′)]
]

Proposition A.2 shows that the InfoNCE loss is an upper bound of the negative marginal probability
of x and x′. In contrastive representation learning, we are optimizing the InfoNCE loss function over
latents z and z′. Then according to Proposition A.2, the optimal latents

(z∗, z′∗) = arg min
z,z′∈Rn

Lcon(x, x′) (19)

also guarantee the marginal probability P(x∗, x′∗) to be large and thus nearly maximized, where
(x∗, x′∗) :=

(
g(z∗) + ε, g(z′∗) + ε

)
. Therefore, to study the identifiability of (z∗, z′∗) learned

by optimizing the InfoNCE loss, we only need to study the identifiability of optimal latents that
minimizes the joint marginal probability of the views, i.e. P(x∗, x′∗). To be specific, by the definition
of identifiability, we need to prove the following claim:

Let ∼ be an equivalence relation on Θ. If for all θ, θ̃ ∈ Θ, then there holds

Pθ(x, x
′) = Pθ̃(x, x

′)⇒ θ̃ ∼ θ. (20)

If (20) holds, the optimal latents (z∗, z′∗) learned by contrastive representation learning are uniquely
identified with respect to Θ.

We consider the case where two augmented views are used as positive samples, which is commonly
adopted in real-world applications [6, 2, 3, 4].

To show the identifiability results, we make the same assumptions as in Theorem 1 of [7].
Assumption A.3. Assume the following holds

(i) The set {x ∈ Rd |φε(x) = 0} has measure zero, where φε is the characteristic function of
the density pε(x− g(z)) := pg(x|z).

(ii) The generative function g is injective.

(iii) The sufficient statistics Ti,j are differentiable almost everywhere, and (Ti,j)1≤j≤k are
linearly independent on any subset of Rd of measure greater than zero.

(iv) There exist nk + 1 distinct points u0, . . . , unk such that the matrix

L = (λ(u1)− λ(u0), . . . , λ(unk)− λ(u0)) (21)

of size nk × nk is invertible.
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The generating process is shown in Assumption A.4.
Assumption A.4. Assume that for i ∈ {1, 2},

(i) The latent variables z′i follows the exponential distribution, i.e.

z′i ∼ exp(T, λ(u)). (22)

(ii)

p(z′i|z) =
1

Cz
Q(z′i)s(z, z

′
i). (23)

(iii) For all i 6= j,

z′i ⊥ z′j | z. (24)

We see that (i) and (ii) directly extend the generating process in (14) and (17) to the case of using two
augmented vies. (iii) is also an intuitive assumption, since the augmented views are independently
generated based on the original input data. By the following lemma, we show that the generating
process of x′1 and x′2 is essentially the same as that of x and x′.

The latent variable model is illustrated in Figure 1.
Lemma A.5. Let Assumption 3.1 (ii) and (iii) hold. Assume that z is an isotropic random vector.
Then for all i 6= j, there holds

p(z′i, z
′
j) = Q(z′i)Q(z′j)s(z

′
i, z
′
j). (25)

Note that the mathematical form of (25) is similar to (14) by replacing z with z′i. In other words, the
probabilistic relation between two augmented latents z′i and z′j is the same as that between the latent
z of the input data and the augmented latent z′.

Next, we consider the case where B = 2, and prove the identifiability result of InfoNCE in the
following theorem.
Theorem A.6. Let Assumptions A.3 and 3.1 hold. Then if

Pf,T,λ(x′i, x
′
j |u) = Pf̃ ,T̃ ,λ̃(x′i, x

′
j |u), (26)

we have

T (f−1(x′i)) + T (f−1(x′j)) = A
(
T̃ (f̃−1(x′i)) + T̃ (f̃−1(x′j))

)
+ c, (27)

where A is an invertible matrix and c is a constant vector.

Theorem A.6 shows that the mean latent of two augmented views (z′i + z′j)/2 is identifiable up to
an invertible matrix. Note that in many examples of the exponential distribution family, there holds
T (z) = z, e.g. Gaussian distribution, Bernoulli distribution, Poisson distribution, etc. In these cases,
(27) could be understood as

z′i + z′j = A(z̃′i + z̃′j) + c, (28)

where z̃′i and z̃′j are generated following the latent variable model introduced in Section A.1 under
parameter θ̃ ∈ Θ.

A.3 Discussions

From Theorem A.6, we show that the ientifiability of the mean latent z̄′ = (z′1 + z′2)/2 learned by
optimizing the InfoNCE loss that aligns two augmented views. However, notice that the distribution
of the augmented latents z′1 and z′2 is similar to but does not coincide with that of the latent z of the
original input data. Although Lemma A.1 indicates that E(z̄′|z) = z, there still remains a significant
distribution gap between z̄′ and z.

On the other hand, recall that the latent of an augmented sample z′ is assumed to be distributed around
the underlying latent of the original input data z. Thus, an intuitive way to narrow the distribution gap
is to increase the number of views, so that the mean latent of multiple views can be a more accurate
estimate of the ground truth latent z of the original input data x. Therefore, in the next section, we
extend the identifiability result of contrastive learning to a multi-view scenario.
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B Additional Experiments

B.1 Performance Comparison with Adjusted Batch Size

The comparisons in Table 1 may seem unfair to InfoNCE, since for a batch of training data, InfoNCE
accesses 2× bsz augmented views, whereas AggNCE can access (B + 1)× bsz augmented views.
Thus, to make the comparison more fair, we fix the batch size of 128 for AggNCE, and set the batch
size of 128× (B + 1)/2 for InfoNCE to allow them to access the same number of augmented views.
The results are shown in Table 3.

Table 3: Performance comparisons with fixed batch size 128 for AggNCE.

Dataset InfoNCE AggNCE Advantagebsz acc B acc

CIFAR-10

192 92.50 2 92.58 +0.08%
256 92.48 3 92.78 +0.30%
384 92.45 5 93.10 +0.65%
1024 92.23 15 93.23 +1.00%
1344 92.01 20 93.32 +1.31%

CIFAR-100

192 84.57 2 84.77 +0.20%
256 84.74 3 84.90 +0.16%
384 84.96 5 85.37 +0.41%
704 83.26 10 85.70 +2.44%
1024 83.30 15 85.93 +2.63%

* The best results are marked in bold.

In Table 3, we realize a fair comparison between AggNCE and InfoNCE by using the same amount
of information in each batch. We show that the AggNCE loss consistently outperforms InfoNCE in
the linear evaluation with B varying from 2 to 20. Moreover, we observe an increasing advantage in
the performance of AggNCE over InfoNCE as the number of views B increases. Therefore, we could
reasonably speculate that by using AggNCE, we asymptotically recover the true underlying latents
as B →∞, which results in the advantage of AggNCE over the ordinary InfoNCE loss function in
empirical performance.

We run additional experiments on the ImageNet-100 dataset [14], a random 100-class subset of Ima-
geNet. We follow the details in [2]: crop size from 0.08 to 1.0, stronger jittering (0.8, 0.8, 0.8, 0.2),
grayscaling probability 0.2, and Gaussian blurring with 0.5 probability. We train with the backbone
of ResNet-50 for 240 epochs with learning rate 2 × 10−3. We report the mean top-1 accuracy of
the last five epochs of each method. The corresponding standard deviation is also reported in the
parenthesis.

Table 4: Performance comparisons on ImageNet-100.
Method B batch size acc(%)

InfoNCE 1 256 69.40(0.17)
1 768 70.28(0.08)

AggNCE 3 256 71.51(0.12)

* The best results are marked in bold.

We show that in Table 4, under the same batch size, AggNCE outperforms InfoNCE by 2.11% when
B = 3 on the ImageNet-100 dataset. We further realize a fair comparison between AggNCE and
InfoNCE by using the same amount of information in each batch, where we show that AggNCE
still outperforms InfoNCE by 1.23%. This promising performance of AggNCE results from the
asymptotic identifiability of its underlying data generation process.

C Proofs

Proof of Lemma A.1. By definition, we have

E(z′|z) =

∫
z′
z′p(z′|z) dz′

9



=

∫
z′
z′

1

Cz
Q(z′)s(z, z′)dz′

=
1

Cz

∫
z′
z′Q(z′)z>z′dz′

=
1

Cz

∫
z′
z′Q(z′)z′>dz′ · z

=
1

Cz

∫
z′

Q(z′)z′z′>dz′ · z

=
1

Cz
Ez′z′> · z

=
1

Cz
Ez′z′> · z

=
1

Cz
Inz

=
1

Cz
z, (29)

where

Cz =

∫
Q(z′)s(z, z′) dz′

=

∫
Q(z′)z′>z dz′

=

∫
Q(z′)z′> dz′ · z

= (Ez′)>z. (30)

By assumption, Ez′ = (1, . . . , 1) and
∑d
i=1 zi = 1. Therefore, we have Cz = (Ez′)>z = 1, and

thus E(z′|z) = z.

Proof of Lemma A.5. By Assumption 3.1 (ii) and (iii), we have

p(z′i, z
′
j |z) = p(z′i|z)p(z′j |z)

= Q(z′i)Q(z′j)f(z, z′i)f(z, z′j). (31)

Then there holds

p(z′i, z
′
j) =

∫
z

p(z′i, z
′
j |z)Q(z) dz

=

∫
z

Q(z′i)Q(z′j)f(z, z′i)f(z, z′j)Q(z) dz

= Q(z′i)Q(z′j)

∫
z

Q(z)f(z, z′i)f(z, z′j) dz.

= Q(z′i)Q(z′j)

∫
z

Q(z)z′>i zz>z′j dz

= Q(z′i)Q(z′j)z
′>
i

(∫
z

Q(z)zz> dz

)
z′j

= Q(z′i)Q(z′j)z
′>
i Ezz>z′j (32)

Since z is isotropic, then we have

p(z′i, z
′
j) = Q(z′i)Q(z′j)z

′>
i Inz

′
j

= Q(z′i)Q(z′j)z
′>
i z′j

= Q(z′i)Q(z′j)f(zi, zj). (33)

10



Proof of Theorem A.6.

Pθ(x
′
i, x
′
j |u) =

∫∫
Pθ(x

′
i, x
′
j , z
′
i, z
′
j |u) dz′i dz

′
j

=

∫∫
pg(x

′
i|z′i)pg(x′j |z′j)

1

Cz
pT,λ(z′i|u)pT,λ(z′j |u)s(z′i, z

′
j) dz

′
i dz
′
j

=

∫
pg(x

′
i|z′i)pT,λ(z′i|u)

(∫
pg(x

′
j |z′j)

1

Cz
pT,λ(z′j |u)s(z′i, z

′
j) dz

′
j

)
dz′i. (34)

Let qT,λ,z′i(z
′
j |u) = 1

Cz
pT,λ(z′j |u)s(z′i, z

′
j). Obviously, qT,λ,z′i is a probability density function. Then

Pθ(x
′
i, x
′
j |u) =

∫
pε(x

′
i − f(z′i))pT,λ(z′i|u)

(∫
pε(x

′
j − f(z′j))qT,λ,z′i(z

′
j |u) dz′j

)
dz′i

=

∫
pε(x

′
i − x̄′i)pT,λ(f−1(x̄′i)|u)volJf−1(x̄′i)

·
(∫

pε(x
′
j − x̄′j)qT,λ,z′i(f

−1(x̄′j)|u)volJf−1(x̄′j) dx̄
′
j

)
dx̄′i

=

∫
pε(x

′
i − x̄′i)p̃T,λ,f,u(x̄′i)

(∫
pε(x

′
j − x̄′j)p̃T,λ,f,u(x̄′j)f(g−1(x′i), g

−1(x′j)) dx̄
′
j

)
dx̄′i

=

∫
pε(x

′
i − x̄′i)p̃T,λ,f,u(x̄′i)

(
(q̃T,λ,f,u,x̄′i

∗ pε)(x̄′j)
)
dx̄′i

=

∫∫
pε(x− x̄′i)pε(x

′
j − x̄′j)p̃T,λ,g,u(x̄′i)p̃T,λ,g,u(x̄′j)f(g−1(x̄′i), g

−1(x̄′j)) dx̄
′
j dx̄

′
i.

(35)

Since (35) holds for arbitrary x′i and x′j . we have

p̃T,λ,f,u(x′i) · p̃T,λ,f,u(x′j) = p̃T̃ ,λ̃,f̃ ,u(x′i) · p̃T̃ ,λ̃,f̃ ,u(x′j) (36)

By definition and the assumption of exponential family,

p̃T,λ,f,u(x′i) · p̃T,λ,f,u(x′j)

= pT,λ(f−1(x′i)|u)volJf−1(x′i) · pT,λ(f−1(x′j)|u)volJf−1(x′j)

= volJf−1(x′i) ·
n∏
ι=1

Qι(f
−1
ι (x′i))

Zι(u)
exp

{ k∑
ν=1

Tι,ν(f−1
ι (x′i))λι,ν(u)

}

· volJf−1(x′j) ·
n∏
ι=1

Qι(f
−1
ι (x′j))

Zι(u)
exp

{ k∑
ν=1

Tι,ν(f−1
ι (x′j))λι,ν(u)

}
. (37)

Take logarithm,

log p̃T,λ,f,u(x′i) · p̃T,λ,f,u(x′j)

= log volJf−1(x′i) +

n∑
ι=1

logQι(f
−1
ι (x′i))− logZι(u) +

k∑
ν=1

Tι,ν(f−1
ι (x′i))λι,ν(u)

+ log volJf−1(x′j) +

n∑
ι=1

logQι(f
−1
ι (x′j))− logZι(u) +

k∑
ν=1

Tι,ν(f−1
ι (x′j))λι,ν(u) (38)

Then (36) yields

log volJf−1(x′i) + log volJf−1(x′j) +

n∑
ι=1

logQι(f
−1
ι (x′i)) + logQι(f

−1
ι (x′j))

− 2 logZι(u)+ < Tι(f
−1
ι (x′i)), λι(u) > + < Tι(f

−1
ι (x′j)), λι(u) >
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= log volJf̃−1(x′i) + log volJf̃−1(x′j) +

n∑
ι=1

logQι(f̃
−1
ι (x′i)) + logQι(f̃

−1
ι (x′j))

− 2 log Z̃ι(u)+ < T̃ι(f̃
−1
ι (x′i)), λ̃ι(u) > + < T̃ι(f̃

−1
ι (x′j)), λ̃ι(u) > (39)

Define λ̄(u) = λu− λu0. We have for l = 1, . . . , nk,

< T (f−1
ι (x′i)), λ(u) > + < T (f−1

ι (x′j)), λ(u) > +

n∑
ι=1

log
Zι(u0)

Zι(ul)

= < T̃ (f̃−1
ι (x′i)), λ̃(u) > + < T̃ (f̃−1

ι (x′j)), λ̃(u) > +

n∑
ι=1

log
Z̃ι(u0)

Z̃ι(ul)
(40)

Then we have

L>
(
T (f−1

ι (x′i)) + T (f−1
ι (x′i))

)
= L̃>

(
T̃ (f̃−1

ι (x′i)) + T̃ (f̃−1
ι (x′j))

)
+ b, (41)

where bl =
∑n
ι=1 2 log Z̃ι(u0)Zι(ul)

Zι(u0)Z̃ι(ul)
. Since L is invertible, we have

T (f−1(x′i)) + T (f−1(x′j)) = A
(
T̃ (f̃−1(x′i)) + T̃ (f̃−1(x′j))

)
+ c, (42)

where A = L−>L̃>, c = L−>b.

Then by the proof of Step III in the proof of Theorem 1 in [7], A is invertible.

Proof of Theorem 3.2. By the data generative model,

Pf,T,λ(x′1, . . . , x
′
B |u) =

∫
· · ·
∫

Pθ(x
′
1, . . . , x

′
B , z

′
1, . . . , z

′
B |u) dz′1 · · · dz′B . (43)

According to

Pf,T,λ(x′1, . . . , x
′
B |u) = Pf̃ ,T̃ ,λ̃(x′1, . . . , x

′
B |u), (44)

and following the same proof of Theorem A.6, we have

p̃T,λ,f,u(x′1) · · · p̃T,λ,f,u(x′B) = p̃T̃ ,λ̃,f̃ ,u(x′1) · · · p̃T̃ ,λ̃,f̃ ,u(x′B), (45)

and finally that

1

B

B∑
i=1

T (f−1(x′i)) = A
1

B

B∑
i=1

T̃ (f̃−1(x′i)) + c, (46)

where A is invertible.
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