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Abstract

Visual question answering (VQA) that leverages multi-modality data has attracted
intensive interest in real-life applications, such as home robots and clinic diagnoses.
Nevertheless, one of the challenges is to design robust learning for different client
tasks. This work aims to bridge the gap between the prerequisite of large-scale
training data and the constraint of client data sharing mainly due to confidentiality.
We propose the Unidirectional Split Learning with Contrastive Loss (UniCon) to
tackle VQA tasks training on distributed data silos. In particular, UniCon trains a
global model over the entire data distribution of different clients learning refined
cross-modal representations via contrastive learning. The learned representations
of the global model aggregate knowledge from different local tasks. The com-
prehensive experiments with five state-of-the-art VQA models on the VQA-v2
dataset demonstrated the efficacy of UniCon, achieving an accuracy of 49.89%
in the validation set of VQA-v2. This work is the first study of VQA under the
constraint of data confidentiality using self-supervised learning.

1 Introduction

The real-world deployment of multi-modal machine learning (MMML) in safety-critical applications
such as healthcare needs to address a variety of model vulnerabilities for robust architecture design.
Nevertheless, in practice, previous studies do not touch on the privacy of VQA model training
using multi-modality data. Intuitively, methods like federated learning (FL) can retain some data
confidentiality via locally trained model parameter sharing instead of raw data sharing [McMahan
et al., 2017], however, FL is vulnerable to model poisoning attacks [Hitaj et al., 2017]. Moreover,
for the Visual Question Answering (VQA) tasks, one challenge is that most models are supervised
where the one-hot vectors of answer classes are employed to perform a multi-class classification
[Anderson et al., 2018, Kim et al., 2018]. Therefore, the semantic notions of answers are usually not
well correlated with the inputs.

We tackle VQA as a self-supervised learning task instead of a multi-class classification task. The
proposed method learns refined cross-modal representations from different question-image-answer
triplets without the supervision of labels, such that the representations from relevant triplets stay
close while the representations from irrelevant triplets are far apart (Fig. 1). This is different from
contrastive learning using augmentations but learning the positive pairs between the different modality
inputs instead. We termed the proposed framework Unidirectional Split Learning with Contrastive
Loss (UniCon). The main contributions of this work are the following: 1) This work studies VQA
under the constraint of data confidentiality using Split Learning. 2) This paper demonstrates the
contrastive learning of model components for aligning different modality representations and training
a global VQA model.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Cross-Modal 
Representation Learning

Image Question

“Where is 
the bag?”

Answer

“on table”

Answer Projection Network

Linear Tail 
Adapter

Nonlinear 
Head 

Adapter Shared Projection Space

Anchor

Positive

Negative

InfoNCE Loss
Server-Side 
Model Components

Client-Side 
Model Components

Forward propagation
Backpropagation

Figure 1: The overall architecture of UniCon.
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Figure 2: The architectures of the Nonlinear Head
Adapter (NHA), Linear Tail Adapter (LTA), and
Answer Projection Network (APN).

2 Related Work

Visual Question Answering (VQA) is the task to answer a natural language question according
to the contents of a presented image. VQA is actively studied [Anderson et al., 2018, Kim et al.,
2018, Yu et al., 2020] with recent years’ progress in the attention mechanism [Vaswani et al., 2017].
Nevertheless, the vast majority of VQA studies so far are based on the modality network fusion
methods [Yang et al., 2016, Kim et al., 2017] where the VQA task is considered a multi-class
classification. Such an assumption hinders the understanding of the semantic notions embedded in
the natural language answers. Moreover, in practice, these studies do not touch on the privacy of
large-scale multi-modal model training in VQA.

Recent research in multi-modal machine learning has emerged in self-supervised learning
(SSL)[Chopra et al., 2005, Chen et al., 2020, Zbontar et al., 2021]. In particular, contrastive learning
is commonly used to learn a shared embedding space from unlabelled data, in which similar sample
pairs stay close to each other while dissimilar ones from different pairs are far apart. The most recent
work has also explored the implementation of SSL to VQA such as Question-Image Correlation
Estimation [Zhu et al., 2020] and Video Question Answering using SSL [Kim et al., 2021]. These
methods above adopt a two-step training strategy, i.e., the cross-modality pretraining with SSL and
the fusion network fine-tuning. In contrast, we train a VQA model end-to-end based on the contrastive
learning of different model components and determine a prediction with the similarity measurement
between modalities.

3 Methods

3.1 Split Learning for Visual Question Answering

Visual Question Answering (VQA) is the task to answer questions according to given image contents.
The VQA problem is usually considered a supervised learning task with a fixed list of C possible
answer options. In particular, let fVQA be the VQA model that takes as the input the pair of an image
xi ∈ RV and a question xq ∈ RQ and outputs an answer ŷ ∈ {y1, y2, ..., yC} where yc ∈ RA. The
goal of the VQA model is to predict the correct answer y given the input pair (xi, xq) ∈ D where D
is the dataset. ŷ = arg max

y
p(y|xi, xq; fVQA) where p(·|·) is the conditional probability.

Split Learning (SL) splits a complete model into different parts and trains a global model via
interactive representation and gradient sharing. This architecture could guarantee the confidentiality
of a client since both data and the model are not shared for training. Notably, a complete model is split
into three different components, i.e., a global component fg and two client components {fc,1, fc,2}.
We assume there are K clients. The kth client has its own dataset D(k) := {(xi,j , xq,j , yj)}N

(k)

j=1

where N (k) is the sample size of dataset D(k). Here, ∪K
k=1D

(k) = D, D(i) ∩D(j) = ∅ ∀i ̸= j, and∑K
k=1 N

(k) = N where N is the sample size. We suppose the model components of clients share
the same architecture and clients cannot share data due to confidentiality.
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3.2 Unidirectional Split Learning with Contrastive Loss

3.2.1 Semantic Notion Understanding with Answer Projection Network

We propose the use of contrastive loss in Split Learning to correlate vision contents and language
semantic notions such that each model component learns better-refined representations for the VQA
tasks. We devise an Answer Projection Network (APN) fAPN to embed the answer language contexts
y into a feature vector vAPN ∈ RP . APN comprises three different building blocks including a text
preprocessing module, the Word2Vec using GloVe [Pennington et al., 2014], and a linear projection
layer.

3.2.2 Adapter Networks and the Shared Projection Space

We propose the use of two adapter networks to project the outputs from different model components
into a shared projection space. A nonlinear projection head on more complex representations can
improve the performance while for simpler modality representations it is not beneficial to use the
nonlinear projection [Chen et al., 2020, Alayrac et al., 2020]. In particular, we replace a VQA
model fVQA’s output layer with the Nonlinear Head Adapter (NHA) network fNHA that projects
the high-level cross-modal representations into the shared projection space vNHA ∈ RS . Similarly,
we devise the Linear Tail Adapter (LTA) to project the low-level representations vAPN of APN
vLTA ∈ RS . Note that vLTA and vNHA have the same dimension of S.

3.2.3 Learning with Information Noise Contrastive Estimation loss

The Information Noise Contrastive Estimation (InfoNCE) loss is commonly used for contrastive
learning [Oord et al., 2018] to identify the positive sample from a set of unrelated negative samples.
Notably, UniCon employs the relevant NHA and LTA outputs in the shared projection space of the
same input triplets within one training batch as positive pairs. {(vNHA,j , vLTA,j)}Bj=1 where B is
the sample size of the training batch. In contrast, given a NHA output vNHA,i, any irrelevant LTA
outputs {vLTA,j |j ̸= i}Bj=1 are employed as the negative keys of the NHA output. Then, we train the
model by aligning the knowledge between the component outputs in positive pairs while discouraging
the similarity between the outputs in negative pairs (Fig. 1). We formulate the loss L as follows

L = −
B∑
i=1

log
exp(vNHA,i · vLTA,i/τ)∑B

j=1 1[j ̸=i] exp(vNHA,i · vLTA,j/τ)
,

where τ is the temperature parameter and 1[j ̸=i] is an indicator function: 1 if j ̸= i, 0 otherwise.

For the K clients training on their local dataset D(k), the model aggregation of different components
trained on each local dataset is aimed to improve the generality of the models. Each client k updates
the local components and the server updates the global components with the aggregated update
gradients. We formulate the aggregation as follows

δθt =
1

K

∑
k∈{1,2,...,K}

(θ
(k)
t+1 − θ

(k)
t ),

where θ is the component parameters from {θAPN, θVQA, θNHA, θLTA}, where θVQA is the param-
eters of the VQA model fVQA with the output layer removed.

3.3 Proposed Metric with Representation Similarity Measurement

We evaluate the product similarity scores between the representations vNHA of an image and question
input pair (xi, xq) from the hold-out validation dataset Dval of VQA and the representations vLTA,c

of C answer options yc ∈ {y1, y2, . . . , yC}, where vLTA,c denotes the representation of answer
option yc. Then, we select the answer with the highest similarity with the input as the predicted
answerŷ. We formulate the accuracy by the following

ŷ = arg max
c

vNHA · vLTA,c, ValAcc =

∑
(xi,xq,y)∈Dval

1{ŷ = y}

|Dval|
.
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VQA Models Contrastive learning-based VQA UniCon (without data and model sharing) (%)
Overall Yes/No Number Other Overall Yes/No Number Other

BAN 36.23 66.90 12.71 19.11 35.11 63.84 11.06 19.61
BUTD 45.08 75.82 29.27 25.86 40.96 66.98 13.34 28.74
MFB 46.98 73.95 32.81 30.20 42.43 68.65 23.33 27.52
MCAN-s 53.18 81.06 41.95 34.93 48.42 74.93 30.88 32.89
MCAN-l 53.32 81.21 42.66 34.90 48.44 77.44 30.72 32.01
MMNas-s 51.54 78.06 39.76 34.46 45.14 70.55 28.04 30.33
MMNas-l 53.82 80.06 42.86 36.75 49.89 74.85 36.88 34.33

Table 1: Performance evaluation of the contrastive learning-based VQA and UniCon when applying
different VQA models.

4 Experiments

4.1 Implementation Details

Our method is evaluated on the benchmark dataset VQA-v2 [Agrawal et al., 2017] and we report
the results on its validation split. We studied our approach with the following state-of-the-art Visual
Question Answering models: (1) Multi-modal Factorized Bilinear (MFB) [Yu et al., 2017]; (2) Bottom-
Up and Top-Down attention mechanism (BUTD) [Anderson et al., 2018]; (3) Bilinear Attention
Networks (BAN) [Kim et al., 2018]; (4) Multimodal neural architecture search (MMNas) [Yu et al.,
2020]; (5) Modular Co-Attention Network (MCAN) [Yu et al., 2019b]. We used PyTorch and the
OpenVQA platform [Yu et al., 2019a] to implement the VQA models. We set the hyperparameters of
different VQA models to their author-recommended values. We employed the following architectures
for the NHA, LTA, and APN, respectively (Fig. 2). We employed a batch size of 128, a total epoch of
20 (693400 steps), the Adam optimizer, and an initial learning rate of 0.0001 with a linear warmup
of 10K steps and a decay rate of 0.2 at the epochs 10 and 15. For the InfoNCE loss, we adopted a
temperature of 0.07 as in [Patrick et al., 2020].

4.2 Empirical Results

We performed extensive experiments based on the five state-of-the-art VQA models above. In
particular, for MMNas and MCAN, we further considered the different model complexities. The
results of the contrastive learning-based VQA are shown in Table 1. The empirical results demonstrate
that the contrastive learning-based approach can be effectively applied to various VQA models. BAN
showed the worst performance, particularly in counting the number. MMNas-l showed the best
overall performance of 53.82% outperforming the other models in counting the number (Number) and
answering the contents (Other). Nevertheless, MCAN-l performed the best in the Yes/No questions.

In reality, it is difficult to train a model with large-scale training data in VQA. In this regard, we
evaluated the efficacy of UniCon for knowledge transfer in a two-client setting. We divided the
training set into two subsets as the local datasets of the two clients. We show the numerical results
in Table 1. There exists a trade-off between the model performance and using split learning for
confidentiality. Compared to the overall accuracy of 53.82% of MMNas-l in the standalone training
over the entire training set, UniCon obtained a slightly decreased accuracy of 49.89%. Nevertheless,
when data sharing becomes an obstacle, the proposed approach can benefit the model training by
leveraging other clients’ tasks. UniCon allows clients to train over the entire data distribution without
data and model sharing.

5 Conclusion

We proposed the Unidirectional Split Learning with Contrastive loss (UniCon) for Visual Question
Answering, which learns refined cross-modal representations by aligning different component outputs
and leveraging the knowledge of client tasks. We evaluated the efficacy on five different VQA models
based on the VQA-v2 dataset. Extensive experiments showed the effectiveness and universality of
our approach that can be applied to different VQA models. This work can be extended by considering
a broader list of answer options using prompt engineering [Gao et al., 2021]. We hope that this work
will motivate future research in robust learning of personal multimodal models.
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