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Abstract

In visual navigation, one powerful paradigm is to predict actions from observations
directly. Training such an end-to-end system allows representations that are useful
for downstream tasks to emerge automatically. However, the lack of inductive
bias makes this system data-hungry. We hypothesize a sufficient representation
of the current view and the goal view for a navigation policy can be learned by
predicting the location and size of a crop of the current view that corresponds
to the goal. We further show that training such random crop prediction in a
self-supervised fashion purely on synthetic noise images transfers well to natural
home images. The learned representation can then be bootstrapped to learn a
navigation policy efficiently with little interaction data. Video page: https:
//sites.google.com/view/pretrain-noise

1 Introduction
Consider a visual navigation task, where an agent needs to navigate to a target described by
a goal image. Whether the agent should move forward or turn around to explore depends
on if the goal image can be found in the current view. In other words, visual navigation
requires learning a spatial representation of where the goal is relative to the current pose.

Figure 1: A rollout of our navigation policy pre-trained with random
crop prediction on synthetic noise images. Given a goal image and the
current view, the agent first explore the environment by panning its
camera. Once the goal view is detected, shown by the green bounding
box, the agent moves towards the goal to complete the task.

While such a spatial representation
can naturally emerge from end-to-
end training of action predictions
given current views and goal im-
ages, this approach can require a
non-trivial amount of interaction
data as self-supervision, which is
costly to acquire. In order to learn a
navigation policy from minimal nav-
igation data, we ask if we can learn
purely from synthetic noise data a
spatial representation that can both
transfer well to photo-realistic envi-
ronments and be sufficient for downstream self-supervised policy training.

One useful spatial representation can be the relative 2D transformation between two views. Specif-
ically, if we can locate a goal image as a crop in the center of the current view, an agent should
move forward to get closer. If the crop is on the left/right side of the current view, the agent should
turn left/right to center the heading. The relative 2D transformation can thus be parametrized by
the location and the scale of one crop inside the current view that corresponds to the goal image,
which together we refer to as PTZ factors (analogous to cameras’ pan, tilt, and zoom.) Given a fixed
pre-trained PTZ encoder that extracts spatial representation from pixel inputs into a low-dimensional
PTZ vector, the downstream navigation policy can learn to predict actions from PTZ vectors with far

NeurIPS 2022 Workshop on Self-Supervised Learning - Theory and Practice.

https://sites.google.com/view/pretrain-noise
https://sites.google.com/view/pretrain-noise


fewer interaction data than learning directly from pixel inputs. Additionally, an embedding space
learned directly from pixels is likely to suffer from the distribution shift as we move from training
images to testing images. On the contrary, a policy that inputs the PTZ parametrization, which only
captures relative transformation, will be insulated from domain shifts. The goal of this paper is
to verify that bootstrapping a pre-trained PTZ predictor allows learning a navigation policy with
only a little interaction data in new environments. Our major contribution shows self-supervising
the PTZ encoder to predict random crops of synthetic noise images produces a sufficiently
performing spatial representation for navigation that also transfers well to photo-realistic
environments.

2 Method

Figure 2: Top (a): An end-to-end system, where a generic encoder is jointly
learned with a LSTM navigation policy. Bottom: (b) Replacing the generic
encoder with a fixed PTZ encoder pre-trained from synthetic noise images
reduces the amount of interaction data needed to train the navigation policy.

Given a robot interaction
dataset D, we want an agent
to navigate to a goal loca-
tion upon receiving a goal im-
age xg. The dataset D con-
sists of image action pairs
(xt, at, xt+1), where xt is the
pixel observation at time t,
at the action taken at time t,
and xt+1 the pixel observa-
tion after the action. One self-
supervised approach (more re-
lated works can be found in
the Appendix) to learn a nav-
igation policy is to train an in-
verse model on D, which predicts an action given a current view and a goal view [1]. We divide
the inverse model into an encoder Eϕ that encode image pairs into states and an LSTM policy πθ

that predicts actions given states as ŝt = Eϕ(xt, xt+1), ât = πθ(ŝt). We can train Eϕ and πθ jointly
end-to-end by minimizing cross entropy loss between at and ât for all image-action sequences in D
as shown in the top part of Fig 2 (a). We use a simple LSTM architecture to learn a policy as memory
of past states and actions benefits navigation with only partial observations [5], and we discuss in the
experiments section that the LSTM is sufficiently expressive to solve our navigation task.

To improve data efficiency, we observe interaction data (i.e. action labels) is only necessary for
training policy πθ. To find alternative cheap data sources for training Eϕ, we observe in Fig 2 (c) that
a goal view can be seen as a crop from the current view. The relative location and size of the crop
indicate the relative heading and distance of the agent from the goal location. Thus the spatial relation
between the two views can be parametrized by the panning angle p, tilting angle t, and zooming
factor z of a camera. We hypothesize such a 3 DOF parametrization is sufficient for local navigation
where a goal is close to the agent. The low dimensionality of this state representation ŝt is desirable
as the mapping between states and actions can now be learned with a little interaction data. We will
now discuss our implementation of the PTZ encoder that predicts (p, t, z) given two images.

Self-Supervised Training of PTZ Encoder We approximate learning a PTZ encoder with learning
a random crop predictor. Given a 256× 256 image, we randomly crop a 128× 128 pixel patch to
form the current view. For the goal view, we randomly sample a scale factor z from 0.5 − 1 and
(p, t) from 0 − 1 relative to the top left corner of the first crop to generate the second crop at the
location (128x, 128y). We resized the second crop to a 128×128 pixel patch afterward. Additionally,
we generate pairs of crops without any overlap to supervise scenarios where the goal image is not
observable in the current view. We assign PTZ label (0, 0, 0) to indicate zero overlap. We train a
ResNet18 network to regress the PTZ factors (p, t, z) on concatenated crop pairs from static natural
home images (without action labels) or synthetic images as shown in Fig 3.

Self-Supervised Training of PTZ-enabled Navigation Policy Given an interaction dataset D col-
lected from random exploration, we encode the current and goal views into states using the PTZ mod-
ule as a fixed feature extractor and train an LSTM policy πθ to predict actions from the states. To train
πθ, we sample sub-trajectories up to a maximum trajectory length from every image-action sequence
in D. We use a single-layer LSTM network with 512 hidden units with ReLU activation to regress
the navigation action with L1 loss. During inference, the LSTM predicts an action autoregressively
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Figure 3: Sampling random crops of (a) static kitchen scenes and (b)
synthetic noise images (From left to right: Perlin noise, fractal noise, and
random geometric shapes.) Red boxes denote the current view, while the
green boxes denote the goal view.

until the agent reaches the goal
or the episode terminates. No-
tice if sub-trajectories of the max-
imum sequence 1 are sampled,
the LSTM policy is effectively
trained as a feed-forward net-
work that does not use memory
from previous time steps.

3 Experiments

PTZ Encoder Evaluation To verify the PTZ encoder’s utility in visual navigation, we test the
pre-trained encoder on 2300 natural home images. Specifically, we evaluate the model by calcu-
lating the IOU between the ground truth bounding box and the predicted bounding box when the
goal can be at least partially seen in the current view. If the two images are not overlapping, we
calculate the success rate at which the model predicts a pan and tilt pixel center that is within 10
pixels away from the ground truth label (0, 0). This corresponds to no detection of the goal in
the current view. To test if the PTZ encoder trained on synthetic noise images can perform well
when evaluated on natural home images, we generate random crops from five different data sources:
Dhabitat (Gibson environments loaded in Habitat simulator [6]), Dall_noise (all three synthetic noise
combined), Dperlin (Perlin noise only), Dfractal (fractal noise only) and Dshape (random shapes
only). While the concurrent training of a PTZ encoder to predict non-overlapping and overlapping
crops of Dhabitat gives near-perfect evaluation results, the simultaneous training of the two pre-
diction tasks on noise images proves slow to convergence. We hypothesize that noise images lack
salient structures for the PTZ encoder to easily establish spatial relationships between two overlap-
ping crops, and consequently training with non-overlapping crops concurrently could complicate
the training. Therefore, we first train the encoder to only predict PTZ for overlapping crops until
convergence before mixing in non-overlapping crops, which results in high prediction accuracy for
both non-overlapping and overlapping crops. We call this staggered training a curriculum for PTZ
training with synthetic noise. Once we have the pre-trained PTZ encoder Eϕ, we fix its weights and
optimize only the LSTM weights in πθ as we train the navigation policy with interaction data D.
We refer the readers to the Appendix for interaction data and PTZ training data collection details.

Data Overlap-IOU Non-Overlap
Shape 72.1 ± 0.4% 48.2 ± 1.1%
Perlin 61.6 ± 0.4% 65.3 ± 0.6%
Fractal 87.3 ± 0.5% 80.1 ± 0.6%
All noise combined 92.2 ± 0.1% 93.2 ± 0.5%
Habitat 97.1 ± 0.1% 98.8 ± 0.1%
Habitat w/o non-overlap 96.4 ± 0.1% 1.5 ± 0.1%
Fractal w/o curriculum 78.0 ± 0.4% 2.7 ± 0.3%

Table 1: Performance comparison of PTZ encoders on
the 2300 natural home image test set. In the case when
the given goal view (partially) overlaps with the current
view, we use the IOU between the ground truth box and
the predicted bounding box of the goal image in the
current view as the evaluation metric. In the case when
the given goal view does not overlap with the current
view, we set the ground truth PTZ label to (0,0,0). The
corresponding success is defined by whether the encoder
predicts a (p, t) that is close enough to (0,0). We report
the success rates in such non-overlap cases.

In Tab 1, we show the mean and standard devi-
ation of inference performance on both overlap-
ping and non-overlapping image pairs of PTZ
trained on different data sources. Training on
natural home images Dhabitat naturally pro-
duces the highest accuracy. However, we ob-
serve that training on all three noises combined
Dall_noise produces competitive results with-
out seeing a single natural home image. This
suggests that PTZ of two views is indepen-
dent of the underlying visual statistics and
can transfer well from one domain to another.
This property allows for stable training of down-
stream LSTM policy as PTZ representation will
be consistent across different visual domains.
This also suggests we do not need to collect
new data to fine-tune our navigation policy if we
move from one environment to another. We show qualitative inference results of the PTZ encoder
in Fig 1 where the green bounding boxes indicate where the PTZ encoder predicts the goal crop in
the current view. To understand which noise is the most helpful for pre-training, we train the PTZ
encoder on individual noise Dperlin, Dfractal and Dshape. We see in Tab 1 training on fractal noise
to convergence outperforms Perlin noise and random shapes and approaches the performance of all
noise combined. This result is in line with the finding in [3] and indicates that the natural home
images may share more similar visual statistics with fractal noise than others.

3



Figure 4: (a) PTZ-enabled (all noise) navigation policy (blue) trained with 2k data outperforms the best
end-to-end policy (red) trained with 60k data. Prefix 2k, 30k, 60k denote the size of interaction data, while
suffix 1, 5, 15 denote the maximum length of trajectories used for training. (b) An ablation study showing a PTZ
encoder trained on fractal noise alone (orange) is almost as good as one trained on all noise combined (blue).

Navigation Policy Evaluation To test our hypothesis that a pre-trained PTZ encoder can improve
data efficiency, we consider a local navigation task, where the goal is in the same room as the
agent. We choose five Gibson environments [9]—‘Beach,’ ‘Eastville,’ ‘Hambleton,’ ‘Hometown,’
and ‘Pettigrew.’ and evaluate our PTZ-enabled navigation policy on a multi-step navigation task.
Specifically, we sample 30 starting and goal locations in each of the testing environments such that the
start and the goal are five forward steps apart. We then randomize the heading such that the goal can
be in any direction including behind the agent. To infer a trajectory, the agent will auto-regressively
predict the next action given the current view and goal view until it uses up to 50 steps or reaches the
goal. To determine if an agent arrives at an observation that is close enough to the goal image, we use
perceptual loss [13] to measure the similarity between those two observations in the eye of a human.
If the similarity score exceeds a threshold of 0.6 while the agent is within a 0.5m radius of the goal
location, we consider that agent has successfully reached the target.

We see in Fig 4 that without PTZ encoding, the success rate of navigating to the goal location
increases as we train the whole pipeline with more data and longer trajectory sequences, presumably
because the system has to learn the appropriate state representation from scratch. However, with
PTZ encoding (trained with all noise) such dependency on interaction data becomes less acute.
Specifically, training a PTZ-enabled policy with only 2k interaction data and one-action sequences
already outperforms training an end-to-end system from scratch with 60k data. As we increase the
action sequence length to train the PTZ-enabled system in the low data regime (2k), the performance
actually drops. Note training an LSTM with a single action step is essentially treating the LSTM as a
feed-forward network. The fact that a PTZ-enabled feed-forward policy outperforms PTZ-enabled
LSTM policies, which in this case likely overfit to the small interaction dataset, suggests we do not
need to consider more expressive architectures such as Transformer [7] to learn a PTZ-enabled policy.

To further investigate which noise type helps train the PTZ module the most, we show in Fig 4 that
the PTZ encoder trained with fractal noise outperforms Perlin noise and random shapes. Although the
evaluation metrics in Tab 1 shows a PTZ encoder trained with fractal noise alone is less accurate than
one trained with all noise combined, the navigation results show that it is still sufficient to achieve a
high success rate for the downstream navigation task using a PTZ encoder trained with fractal noise
alone. Lastly, we show in Fig 4 that a PTZ encoder trained on natural home images yet only with
overlapping crops (‘2k_ptz_lstm_1_habitat’) leads to poorer navigation results than a PTZ encoder
trained on synthetic noise but with both overlapping and non-overlapping crops (‘2k_ptz_lstm_1’).
Consequently, it is essential to train a PTZ encoder to recognize when two views are overlapping
through a curriculum of training first on overlapping crops followed by adding non-overlapping crops.

4 Conclusion

In this paper, we focus on visual pre-training for navigation. As training in an end-to-end fashion
requires a significant amount of data (60k as shown in Figure 4), we break the system into two
modules: a feature encoder module (PTZ module) and an LSTM policy module, where the first part
can be effectively pre-trained without the use of expensive interaction data. Three synthetic noise are
included in pre-training the PTZ module and their effectiveness are extensively evaluated. Promising
experimental results verify the usefulness of a PTZ encoder in reducing the need for interaction data.

4



References
[1] Pulkit Agrawal, Ashvin Nair, Pieter Abbeel, Jitendra Malik, and Sergey Levine. Learning to poke by

poking: experiential learning of intuitive physics. In Proceedings of the 30th International Conference on
Neural Information Processing Systems, pages 5092–5100, 2016.

[2] Manel Baradad Jurjo, Jonas Wulff, Tongzhou Wang, Phillip Isola, and Antonio Torralba. Learning to see
by looking at noise. Advances in Neural Information Processing Systems, 34:2556–2569, 2021.

[3] Hirokatsu Kataoka, Kazushige Okayasu, Asato Matsumoto, Eisuke Yamagata, Ryosuke Yamada, Nakamasa
Inoue, Akio Nakamura, and Yutaka Satoh. Pre-training without natural images. In Proceedings of the
Asian Conference on Computer Vision, 2020.

[4] Kodai Nakashima, Hirokatsu Kataoka, Asato Matsumoto, Kenji Iwata, and Nakamasa Inoue. Can vision
transformers learn without natural images? arXiv preprint arXiv:2103.13023, 2021.

[5] Deepak Pathak, Parsa Mahmoudieh, Guanghao Luo, Pulkit Agrawal, Dian Chen, Yide Shentu, Evan
Shelhamer, Jitendra Malik, Alexei A Efros, and Trevor Darrell. Zero-shot visual imitation. In Proceedings
of the IEEE conference on computer vision and pattern recognition workshops, pages 2050–2053, 2018.

[6] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain, Julian
Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A platform for embodied ai research. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 9339–9347, 2019.

[7] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

[8] Pierre Vigier. perlin-numpy. https://github.com/pvigier/perlin-numpy, 2018.
[9] Fei Xia, Amir R Zamir, Zhiyang He, Alexander Sax, Jitendra Malik, and Silvio Savarese. Gibson env:

Real-world perception for embodied agents. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 9068–9079, 2018.

[10] Lin Yen-Chen, Andy Zeng, Shuran Song, Phillip Isola, and Tsung-Yi Lin. Learning to see before learning
to act: Visual pre-training for manipulation. In 2020 IEEE International Conference on Robotics and
Automation (ICRA), pages 7286–7293. IEEE, 2020.

[11] Asano YM., Rupprecht C., and Vedaldi A. A critical analysis of self-supervision, or what we can learn
from a single image. In International Conference on Learning Representations, 2020.

[12] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In European conference on
computer vision, pages 649–666. Springer, 2016.

[13] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 586–595, 2018.

5

https://github.com/pvigier/perlin-numpy


A Related Works

Self-supervision has recently emerged as one of the most promising approaches to ease the need for
supervision and yet maintain high performance. Self-supervision builds on the fact pretext tasks can
be very useful for pre-training networks without the need for expensive manual annotations. With
such pre-trained networks, only a modest amount of labelled data will be needed to fine-tune for
a target task. Specifically, [12] shows that colorization can be a powerful pretext task as it serves
as a cross-channel encoder. Deep features (e.g. ImageNet-trained VGG/ResNet features) are also
demonstrated to be remarkably useful as a training loss for tasks including image synthesis and
outperform all previous metrics by large margins in [13]. In [10], it is found out that pre-training
on vision tasks (e.g. object detection) significantly improves generalization and sample efficiency
for learning to manipulate objects. Therefore, directly transferring model parameters from vision
networks to affordance prediction networks can result in successful zero-shot adaptation, where
a robot can pick up certain objects with zero robotic experience. A comprehensive study [11] is
proposed recently giving analysis of self-supervision. Specially, authors conclude that the weights of
the early layers in a deep network contain low-level statistics of natural images, which can be learned
decently through solely self-supervision or captured via synthetic transformations instead of using a
large image dataset. Slightly more related are works that exploit the possibility of pre-training without
natural images [3, 4]. Recently, authors of [3] generate image patterns and their category labels to
construct FractalDB, a database without natural images, automatically by assigning fractals based
on a natural law existing in the background knowledge of the real world. [4] further demonstrates
the usefulness of FractalDB in pre-training Vision Transformers (ViTs). Beyond fractal noise, [2]
provides a comprehensive study on how different noise types affect representation learning.

B Data Collection

B.1 Interaction Data Collection

For training, we choose ten Gibson environments—‘Crandon,’ ‘Delton,’ ‘Goffs,’ ‘Oyens,’ ‘Placida,’
‘Roane,’ ‘Springhill,’ ‘Sumas,’ ‘Superior,’ and ‘Woonsocket.’ We create a 20k/10k training/validation
set and a 50k/10k training/validation set by sampling 40/20 and 100/20 starting locations in each of
the ten environments. We also create a small 1k/1k training/validation set by sampling 20 starting
locations from ‘Superior’ and 20 starting locations from ‘Crandon’ respectively. Collectively, we
have created three interaction dataset D2k, D30k and D60k. For our random exploration strategy, we
refer the readers to [5].

B.2 PTZ training Data Collection

First, we generate a training set from similar domains to the navigation experiments. Specifically,
we sample 6500 photo-realistic home images sourced from 65 Gibson environments rendered by
the Habitat-Sim simulator to form the training set and 2300 home images from 23 other Gibson
environments to form the test set. Notice these images are generated i.i.d. without any action labels.
We refer to this dataset as Dhabitat

Second, we generate Perlin noise and fractal noise using [8]. Perlin noise is generated from 2, 4, 8
periods and fractal noise is generated from 2, 4, 8 periods and 1-5 octaves. We generate 10k Perlin
noise, 10k fractal noise, and 20k random shapes to form a 40k noise dataset Dall_noise. However,
this particular composition of noise is rather wishful as we do not know yet which one is the best
for PTZ encoder training. To uncover which noise is the best surrogate data source for natural home
images, we also create a 40k Dperlin, Dfractal and Dshape, each containing only one kind of noise.

B.3 Noise Choice for PTZ Pre-training

We first tried training our PTZ encoder on Gaussian noise. The resulting poor performance suggests
the particular choice of noise is critical. We hypothesize that patterned noise rather than high-
frequency noise should be more useful as the encoder probably needs some visual cues to find relative
transformations. To this end, we include Perlin noise, which can be used to simulate cloud formations
in the sky, and fractal noise, which can be found in nature [3], in the dataset to train the encoder. We
further include random geometric shapes as they are found in man-made environments and can help
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the encoder learn edges and orientations. A sample of these three different kinds of random noise
is shown in Fig 3. We follow the same procedure as before to sample random crops on these noise
images. Using noise for pre-training completely removes the need to access a testing environment for
data.
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