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Abstract

Although scaling self-supervised approaches has gained widespread success in
Vision-Language pre-training, a number of works providing structural knowledge of
visually-grounded semantics have recently shown incremental performance gains.
Past work hypothesizes that providing structural knowledge to models in the form
of scene graphs, syntax parses, etc. will result in better Structure Alignment and
thus maintain representational compositionality, a core feature of human cognition.
We compare one such Structural Training model to a Structural Attention model
which has only implicitly learned inter-modal structure alignment through a self-
supervised attention regularizer. We report that the latter model results in a 52%
improvement over its baseline on the Winoground evaluation dataset, establishing
a new vision-language compositionality state-of-the-art (Group=16.00). We begin
exploring why this self-supervised approach succeeds where a more strongly
supervised approach fails, specifically analyzing what the auxiliary loss implicitly
conveys about structural knowledge.

1 Introduction

Much of the expressive power of human language derives from the principle of compositionality—the
ability to combine meanings of constituents according to structured rules. Compositionality applies
not only to language but to vision as well, with the ideal representation of an image capturing the
relations of its subcomponents. However, recent work shows that Vision-Language Models (VLMs)
fail to construct compositional representations and generally ignore syntactic & structural information
[14, 12, 10].

Winoground [14] is a simple vision-language compositionality task that tests a VLM’s ability to
match syntactic permutations of a caption to their corresponding images; Thrush et al. [14] find that
all recent state-of-the-art VLMs perform below chance levels on the Winoground evaluation dataset.
Contemporaneously, Milewski et al. [12] probe for structural knowledge in VLMs, finding that they
encode significantly less linguistic syntax than LMs and virtually no visual structure, treating images
as a ‘bag of objects’.

While there has been much work focusing on vision-language alignment of objects and words
[8, 6, 4, 11], there has been less highly influential work on aligning structures and relations across
vision & language. We tentatively group these Structure Alignment approaches into three main
categories: Structural Training (providing a model with multimodal structural input or pre-training
to predict structures) [23, 3, 15, 7, 18, 9, 24], Structural Architecture (e.g. graph neural nets that
are dynamically constructed based on a multimodal structure) [4, 1, 16, 17, 26, 5], and Structural
Attention (indirectly using structure to guide the attention mechanism) [13, 20, 21, 19].
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We focused on comparing Structural Training and Structural Attention approaches since we were
unable to locate publicly available Structural Architecture models for image-text matching. As
a representative for Structural Training, we choose ROSITA [3] and for Structural Attention, we
choose IAIS [13]. After discovering that IAIS not only outperforms ROSITA, but achieves a new
state-of-the-art on Winoground, we explore how IAIS works with structurally complex data.

Why does an attention regularizer (IAIS loss) calculated from attention values with no explicit
knowledge of multimodal structure result in more structural understanding than a model trained
on scene graphs & textual relations (ROSITA)? This phenomenon is broadly reminiscent of the
emergence of semantic analogies in word embedding spaces solely through co-occurrence training.

Our main contributions are twofold:

1. IAIS improves on its baseline (UNITER [2]) by 52% to beat the current Winoground
state-of-the-art (VinVL [25]) across all 3 score types.

2. Correlation between IAIS loss and Winoground performance of a model may serve as a
measure of whether a model represents intra-modal relations well.

2 Methods

We replicated two Structural Alignment models: ROSITA [3] and IAIS [13] based on their publicly
available Flickr30k [22] fine-tuned checkpoints and tested both of them on the Winoground evaluation
dataset. ROSITA takes a structured knowledge pre-training approach, where scene graphs and text
relations are jointly masked & predicted. IAIS builds on UNITER by introducing IAIS loss to
implicitly encourage inter-modal alignment between attention relations. In simple terms, it works by
identifying the linguistic tokens that correspond to visual objects, and pulling together the attention
values between token pairs and their corresponding object pairs.

To better understand the performance of these models, we calculate their IAIS loss on Winoground
examples. Since IAIS loss approximates ISDa [13], it should inversely correlate with the model’s
ability to inter-modally align the intra-modal relations of an example. Winoground examples require
high inter-modal alignment between these relations, and therefore we expect:

1. Models should exhibit higher IAIS loss on Winoground than on Flickr30k or COCO, since
the former is more relationally complex.

2. A ‘good’ model should exhibit greater difference in IAIS loss between Winoground pairs
and anti-pairs, since the model only ‘understands’ the correct alignment.

Intuitively, this latter proposition derives from the fact that IAIS loss should be higher for image-text
pairs that have unmatched relations, and that a good model should be better at recognizing that a
Winoground anti-pair is unmatched. While a good model should hopefully generalize this ability
across Winoground, IAIS loss measures attention alignment for individual examples, meaning that we
can expect this correlation to hold even if a model is only ‘good’ at an individual example. Formally,

ScoreWG(M, Xi) ∼ LIAIS(M, Xi,ap)− LIAIS(M, Xi,p) (1)
where Xi = {I0, I1, C0, C1} ∈ DWinoground contains 2 images and 2 captions. Xi,p =
{(I0, C0), (I1, C1)} denotes the true paired samples in Xi, and Xi,ap = {(I0, C1), (I1, C0)} de-
notes the anti-pairs in Xi. Eq. 1 states that the difference between pair and anti-pair IAIS loss on
Winoground examples which a model M successfully matches should be higher than on those which
the model unsuccessfully matches.

3 Results

In table 1 we report new scores for IAIS (built on UNITERlarge) and ROSITA. Observe that IAIS
fine-tuned on Flickr30k results in a new state-of-the-art Group score–a 10% improvement on the
prior VinVL and an 52% improvement on UNITERlarge, and comparable improvements for Text and
Image scores. Although ROSITA underperforms VinVL, it would still achieve third place in Group
score among the 19 models originally tested by Milewski et al. [12].
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Model Text Image Group
MTurk Human 89.50 88.50 85.50
Random Chance 25.00 25.00 16.67
IAISFlickr30k 42.50 19.75 16.00
IAISCOCO 41.75 19.75 15.50
VinVL (OSCAR+) 37.75 17.75 14.50
ROSITAFlickr30k 35.25 15.25 12.25
UNITERlarge 38.00 14.00 10.50
CLIP (ViT-B/32) 30.75 10.50 8.00

Table 1: Winoground scores for IAIS and ROSITA compared with the previous state-of-the-art
(VinVL) and IAIS’ baseline (UNITER)

We should acknowledge that these scores do indeed continue to remain below the computed ‘Random
Chance’ levels. However, improvements even below this threshold are meaningful because the models
that we’re testing also have near state-of-the-art performance on standard image-text matching tasks;
the same may not be said of a random selector. Thus, even though IAIS remains below ‘chance’
levels, its considerable improvement on prior models across all 3 score types means that it acquires
these improvements by genuinely learning better structural alignment, not simply by luck.

Next, let us address the two analysis hypotheses in Sec. 2 about IAIS loss applied to models
on Winoground. We do indeed find that the average IAIS loss of UNITER models is higher on
Winoground than what is reported for Flickr30k + COCO. Specifically, UNITER-base has a mean
IAIS loss of 1.31 on Winoground, compared to 0.59 on the original dataset. This suggests that
UNITER’s attention fails to capture the complex relations of Winoground as easily as it does on
traditional vision-language datasets. Intuitively, this serves as confirmation that IAIS loss correlates
with a human notion of compositional complexity.

Since all 3 traditional Winoground scores are boolean for individual examples, we define a ‘soft’
notion of ScoreWG, which is computed as a continuous analog of Group score. Concretely,

ScoreWG = s(C0, I0) + s(C1, I1)− (s(C0, I1) + s(C1, I0)) (2)

As shown in Fig. 1, the difference of IAIS loss between pairs and anti-pairs has a linear correlation
with ScoreWG. The correlation for UNITERlarge is strong and positive (r = .82), while the
correlation is negative and weaker for UNITERbase (r = −.61, though still certainly significant,
p = .00). The fact that these correlations have different directions is curious. Intuitively, the positive
correlation of UNITERlarge says that for Winoground examples which IAIS clearly distinguishes
correct alignment, the model will successfully match them.

Figure 1: UNITER’s difference in IAIS loss against its soft Winoground score

On the other hand, the negative correlation of UNITERbase says that if IAIS fails to correctly identify
attention alignment on a Winoground example, the model has a higher chance of matching them.
Our working hypothesis to explain this strange relation is that as a model gets better, even if it isn’t
explicitly trained on IAIS loss, its behavior will become more predictable by IAIS since its attentions
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are better aligned due to performance increase. In a bad vision-language model, the abstractions
necessary to encourage relation alignment in final layer attention aren’t even present yet, preventing
IAIS from predicting results.

Ren et al. [13] notice that annealing IAIS loss such that it increases in weight towards the end of
training improves performance of the resulting model. Further work may use the correlation metric we
demonstrate to determine an optimal loss annealing schedule. In addition, it remains to be confirmed
whether this correlation develops smoothly with model performance, scale, or something else.

At a high level, IAIS loss can only inter-modally compute relation alignment if relations are intra-
modally represented already. The fact that UNITERbase has a negative correlation suggests that it
doesn’t represent those intra-modal relations adequately yet, and thus isn’t ‘ready’ for training on
IAIS. Even though UNITERbase achieves comparable performance to UNITERlarge on Flickr30k
when fine-tuned on IAIS loss, we hypothesize for future work that the base model wouldn’t generalize
as well to Winoground as the large model, since IAIS doesn’t have high enough quality relation
representations to act upon.

4 Conclusion

In this work, we reported a new state-of-the-art on the Winoground task as achieved by a self-
supervised Structural Attention approach, IAIS. We explored how IAIS loss acts upon the attention
mechanism of a few models and how this may encourage structural alignment in the Winoground
task. We briefly discussed why a more strongly supervised Structural Training model, ROSITA,
doesn’t achieve similar levels of performance despite training on data that intuitively seems relevant
to Winoground.

More broadly, recent work in Vision-Language Modeling seems to have come to a fork, with those
with access to computational resources focusing on performance gains through scaling self-supervised
approaches, and those without focusing on models that leverage explicit inductive biases such as
multimodal structure. This work confirms that much remains to be done in the middle with approaches
like IAIS that are inspired by a structural inductive bias but highly scalable due to their self-supervised
nature and lack of need for complex, structural data.

The longer term goal of this line of work is to explore how compositional vision-language representa-
tions may be learned, in which the structure of the world may be aligned with the structure of words
as effectively as in the human mind. In this context, Winoground serves as an excellent benchmark
for human notions of vision-language compositional ability while metrics like IAIS loss, ISDa, and
Milewski score [12] serve as tools to probe model-internal structure representations. We seek to
leverage representation probes like these to better understand what enables strong performance on
compositionality benchmarks, contributing to the development of models of grounded meaning that
better approximate human ability.
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