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Abstract

What role do augmentations play in contrastive learning? Recent work suggests
that good augmentations are label-preserving with respect to a specific downstream
task. We complicate this picture by showing that label-destroying augmentations
are often crucial in the foundation model setting, where the goal is to learn diverse,
general-purpose representations for multiple downstream tasks. We perform con-
trastive learning experiments on a range of image and audio datasets with multiple
downstream tasks (e.g. for digits superimposed on photographs, predicting the
class of one vs. the other). We find that Viewmaker Networks, a recently proposed
model for learning augmentations for contrastive learning, produce label-destroying
augmentations that stochastically destroy features needed for different downstream
tasks. These augmentations are interpretable (e.g. altering shapes, digits, or letters
added to images) and surprisingly often result in better performance compared
to expert-designed augmentations, despite not preserving label information. To
support our empirical results, we theoretically analyze a simple contrastive learning
setting with a linear model. In this setting, label-destroying augmentations are
crucial for preventing one set of features from suppressing the learning of features
useful for another downstream task.

1 Introduction

Foundation models (Bommasani et al., 2021) have exhibited remarkable progress on a range of AI
tasks (Devlin et al., 2019; Liu et al., 2019; Ramesh et al., 2021; Radford et al., 2021; Brown et al.,
2020; Chowdhery et al., 2022; Hoffmann et al., 2022; Alayrac et al., 2022; Reed et al., 2022; Goh
et al., 2021), and crucially, can be adapted for a range of downstream tasks. For example, a foundation
model trained well on ImageNet should perform well not only at object classification, but should also
have learned features useful for localization, segmentation, or other tasks.

One popular strategy for training foundation models involves training models to match transformed
versions (known as views or augmentations) of the same input. For example, common image views
include data augmentations such as cropping or color jitter, while common views for speech include
pitch modulation or spectrogram masking (Kharitonov et al., 2021; Park et al., 2019).

Much work has focused on the question of what views lead to high-quality representations. The
prevailing consensus, exemplified by (Tian et al., 2020), holds that views should be label-preserving
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with respect to a downstream task. Here, we question whether this assumption—in particular, with
its focus on a single task—is enough to explain why contrastive foundation models succeed on a
range of downstream tasks. Indeed, the actual choice and application of views in practice does not
align with this prevailing consensus. For example, complete class invariance to several common data
augmentations (e.g. shifts in brightness or cropping) is impossible, since augmentations of inputs
from different classes can collide via cropping or repeated brightness changes.

Instead, we suspect that augmentations serve as a form of feature dropout—preventing any one
feature from becoming a shortcut feature and suppressing the learning of other features. We study
this empirically in Viewmaker Networks, a recently proposed generative model for views that appears
to drop out some features in the input. We apply viewmaker and expert views to datasets with
two associated downstream tasks, one involving classifying the main input (e.g., an image or audio
recording) and one involving a simple overlaid element (e.g., a shape or speech snippet). We
observe that the viewmaker augmentations selectively obscure the overlaid features. Despite this, the
viewmaker representations learn both downstream tasks better than the expert view representations.

Finally, we formalize the intuition that feature dropout can aid learning with a theoretical analysis
of a simple linear contrastive setting. In this setting, we characterize how the noisiness of each
feature directly determines how quickly features are learned, and uncover an interaction between
features governing how fast they are learned. In particular, we show how learning one feature quickly
can suppress the learning of other features, and show that adding noise to the “easiest” feature can
increase the rate at which other features are learned. This further indicates that label-destroying may
help contrastive models learn a broad range of features for downstream tasks.

2 Viewmaker Networks Succeed Despite Destroying Label Information

To provide evidence that good views need not be label-preserving, we consider the behavior of
viewmaker networks (Tamkin et al., 2021), a generative model which produces augmentations for
contrastive learning. Intuitively, viewmakers learn a stochastic augmentation policy that makes the
contrastive task as hard as possible for the encoder. The stochastic augmentations are parameterized as
additive perturbations bounded by an L1 norm, meaning the viewmaker can alter but not completely
destroy the original image. Formally, given an input x ∈ N, a viewmaker network Vψ is trained
jointly with an encoder Eθ to optimize the minimax expression:

max
ψ

min
θ

L
(
Eθ

(
x+ ϵ

Vψ(x, δ1)

||Vψ(x, δ1)||1

)
, Eθ

(
x+ ϵ

Vψ(x, δ2)

||Vψ(x, δ2)||1

))
Here L is a multiview loss function (e.g. (Chen et al., 2020; He et al., 2020)), x is a minibatch of
inputs, ϵ is the distortion budget controlling the strength of the views, and δ1, δ2 ∼ N(0, 1) are
random inputs that enable the viewmaker to learn a stochastic augmentation policy.

Viewmaker networks learn to stochastically alter different parts of the input, including task-relevant
features, meaning that these augmentations are not label-preserving. Nevertheless, as we will see
shortly, viewmaker networks enable strong performance on multiple downstream tasks, including
often better performance than expert-designed augmentations. This feature dropout capability of
viewmaker networks may help them learn many features well rather than focusing on the easiest ones.

Datasets. We consider the behavior of viewmaker networks on four datasets, including three image
and one audio dataset. Each dataset is constructed in such a way as to support two distinct downstream
classification tasks, enabling us to examine how well each downstream task is learned.
▶ Image datasets The three image datasets are based on the canonical CIFAR-10 image-recognition
dataset (Krizhevsky, 2009). One task is always to predict the CIFAR-10 object label (e.g. airplane
or bird). The other task is dependent on an additional feature overlaid on the image: C+Shapes:
The CIFAR-10 image is overlaid with one of three randomly-colored shapes: a square, a triangle,
or a circle. The second task is to predict what shape was overlaid (N=3 classes). For the other two
datasets C+Digits: and C+Letters:, the images are overlayed with digits and letters respectively.

▶ Audio dataset The audio dataset is created by overlaying the audio of a spoken digit (from
the AudioMNIST dataset (Becker et al., 2018), MIT License) with a random background noise
(collected from one of three possible classes: cafe, machinery, and traffic) (Saki et al., 2016; Saki and
Kehtarnavaz, 2016). The tasks are to predict the digit class (N=10 classes) and to predict the noise
class (N=3 classes). Inputs are presented to the network as log mel spectrograms.
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Figure 1: Comparison of viewmaker and expert augmentations on datasets with multiple
features. The viewmaker augmentations adapt to the particular semantics of the input data, and
make targeted perturbations which remove the class-relevant information of the synthetic features
(e.g. occluding the digit, shape, letter, or speech). Rows (from top): Shapes, Audio. Columns (from
left): Expert augmentations, viewmaker augmentations, difference between original and viewmaker
augmentation. Center image in each grid is the original. Audio Expert views shown are Spectral
views. Additional figures for Digits and Letter augmentations displayed in Apx D (Fig. 3).

Experiments We pretrain with the SimCLR algorithm, on a ResNet-18 model with standard modifi-
cations for smaller inputs. For the expert augmentations, we use the standard SimCLR augmentations
for the image datasets (Chen et al., 2020), and the SpecAug (Park et al., 2019) and WaveAug
(Kharitonov et al., 2021) augmentations for the audio datasets. We evaluate the quality of the learned
representations by training a linear softmax classifier on top of the prepool representations. Full
training details are given in Appendix C.

Results
▶ Evidence of feature dropout. Visually, the viewmaker augmentations seem to stochastically alter
different aspects of the input. In addition to modifying the background of each input, the viewmaker
also selectively modifies the additional synthetic features added to each domain. For instance, in
C+Shapes, the viewmaker augmentations sometimes draw squares around the shape in the center,
making it difficult to determine the shape class. In Audio, the viewmaker identifies the narrow band
corresponding to the speech and applies perturbations to it. As seen in Figure 1, these label-destroying
augmentations are common, occuring in a sizeable fraction of the sampled views. We measure the
selectivity of feature dropout quantitatively in Appendix D and Figure 2.

▶ Viewmaker succeeds despite destroying label information. As shown in Table 1, viewmaker
networks are able to achieve good accuracy on both tasks, while expert augmentations frequently
achieve lower performance on one or both tasks. For example, on the image tasks, while expert views
achieve slightly higher performance on the image only, they experience a large drop in accuracy when
the synthetic feature is added. For the audio experiments the picture is similar—the viewmaker is
able to avoid catastrophic drops in performance learning both features together, achieving the highest
accuracy on both, while the expert views experience larger drops and worse overall performance.

These results provide evidence that label-preserving views are not necessary for learning good
representations—the ability to perform feature dropout may even benefit learning multiple tasks.
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Viewmaker (CIFAR-10) Expert (CIFAR-10) Viewmaker (Object) Expert (Object)

CIFAR-10 Only 84.5 86.2 - -

C+Shape 79.8 76.0 100.0 100.0
C+Digit 69.3 58.8 94.3 86.7
C+Letter 71.9 74.8 96.9 94.1

Speech Accuracy Background Noise Accuracy

Viewmaker Spectral Waveform Viewmaker Spectral Waveform

Speech Only 92.4 97.0 76.7 - - -
Bkgd. Noise Only - - - 100.0 32.64 100.0

Speech + Noise 60.8 10.1 53.6 97.0 47.2 43.3
Table 1: Transfer accuracy on different features. Viewmaker networks achieve good performance
across multiple downstream tasks, while expert views sometimes falter. Networks are pretrained on
the datasets on the left, and transfer accuracy is reported for the conditions on the columns.

3 Theoretical Analysis of Feature Interactions in Simple Contrastive Setting

We theoretically analyze a simple linear model that captures the essence of how label-destroying
augmentations can improve downstream accuracy. We study a setting where the data contains many
underlying features that are relevant to downstream classification tasks, and where these features are
preserved to varying degrees across augmentations. We will show adding noise to one feature can
speed the learning of other features during gradient descent (GD) on a contrastive objective.

Data Model and Setting. We study a model which consists of data with K distinct features, each
corresponding to some ground truth unit-vector directions µ1, . . . , µK ∈ Rd. We sample each data
point u ∈ RK×d and its augmentation (a.k.a. its positive pair or view) v ∈ RK×d as follows.
For k ∈ 1, . . . ,K, the kth row of u, which we denote uk, is drawn from the Gaussian distribution
N (0, Id). The kth row of the view, vk, is drawn from the same distribution, but is correlated with uk in
the µk-direction (and is otherwise independent in the other directions). The strength of the correlation
is governed by parameter αk ∈ [0, 1] in the following sense: vTk µk = αku

T
k µk +

√
1− α2

kξ, where
ξ ∼ N (0, 1). Thus the larger αk, the stronger the correlation in that feature across the two views.

We learn a model Θ ∈ RK×d representing a collection of K feature extractors. The model Θ, with
rows {θk}k∈[K], maps a data point w ∈ RK×d to a representation fΘ(w) ∈ RK by computing a score
wTk θk for each element in the representation. That is, (fΘ(w))k = wTk θk. Our goal is that the model
Θ will be useful for a downstream classification task which depends on the ground truth features. A
good representation will capture ground truth features that are correlated across augmentations, such
that θk is aligned with ±µk: Lemma E.1, given in Appendix E, proves that the angle arccos

(
|θTk µk|
∥θk∥

)
directly determines the test accuracy on a natural downstream classification task.

Training. We will study the evolution of Θ as we optimize a standard contrastive learning objective
using GD (Dosovitskiy et al., 2014; Chen et al., 2020). At each round of GD, we sample a fresh
batch of m data points and their augmentations, (U, V ) := {(u(i), v(i)}i∈[m]. We compute the
similarity scores zij := ⟨fΘ(u(i)), fΘ(v

(j))⟩ =
∑
k(θ

T
k u

(i)
k )(θTk v

(j)
k ) using the dot product of the

K-dimensional representations, and then use the cross entropy loss L(Θ;U, V ) := −
∑
i log

zii∑
j zij

.

Main Result. We consider how adding noise to one feature during training affects the learning of
the other features. Formally, we say we add noise to some feature k′ of a data point v, if for some
β ∈ [0, 1), we let ṽk′ = βvk′ +

√
1− β2ξ, where ξ ∼ N (0, Id), and ṽk = vk for k ̸= k′. Thus if

(u, v) were a pair generated with the correlation coefficients {αk}k∈[K], then the distribution of (u, ṽ)
comes from the modified correlation coefficients {α̃}k∈[K] with the single modification α̃k′ = βαk.
The following thoerem shows that if we add noise to the k′th feature, the next step of gradient descent
learns all other features better than if we didn’t add noise.

Theorem 3.1 (Noise improves feature learning). There exists a universal constant C, such that the fol-
lowing holds. Let Θ(t+1) = Θ(t)−η(∇L(U, V ; Θ)+λΘ(t)), and Θ̃(t+1) = Θ(t)−η(∇L(U, Ṽ ; Θ)+
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λΘ(t)), where Ṽ is V with any amount of added noise in the k′ feature. Then for any k ̸= k′, if

|θTk µk| ≤
1−α2

k′
C ∥θk∥, ∥θk′∥3 ≤ |θTk′µk|, and ∥θk∥2 ≤ αk(1−α2

k′ )

C , then for η small enough,

EU,V

[
arccos

(
|µTk θ

(t+1)
k |

∥θ(t+1)
k ∥2

)]
> EU,Ṽ

[
arccos

(
|µTk θ̃

(t+1)
k |

∥θ̃(t+1)
k ∥2

)]
. (1)
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A Code release

We are preparing our code and will release it on a public GitHub repo.

B Related Work

Understanding contrastive and multiview learning Many prior works have laid the foundations
for current contrastive and multiview learning algorithms (Becker and Hinton, 1992; Hadsell et al.,
2006; Dosovitskiy et al., 2014; Wu et al., 2018; Bachman et al., 2019; Misra and van der Maaten, 2020;
He et al., 2020; Chen et al., 2020). Several works perform analysis studies of contrastive learning to
identify important factors (Cole et al., 2021; Zhao et al., 2021) or how contrastive models differ from
supervised learning (Yang et al., 2020; Ericsson et al., 2021; Karthik et al., 2021). HaoChen et al.
(2021) study contrastive learning using the concept of an augmentation graph. This model assumes
the fraction of non-label preserving augmentations is “extremely small;” interestingly, we show in
practice it can quite large and still yield good performance. Wang et al. (2022) theoretically study
contrastive learning under an assumption of label-preserving augmentations, though they show that
such an assumption alone does not suffice to learn. Most relevant to our work, Tian et al. (2020)
study how the information shared between different views impacts learning of downstream tasks. We
complicate this picture by analyzing the foundation model setting of learning features relevant for
multiple tasks. In this setting, we find that label-destroying perturbations, thought to be harmful by
Tian et al. (2020), are useful for preventing one feature from suppressing others.

Feature suppression Our work is closely connected to the notion of feature suppression (Hermann
and Lampinen, 2020), where the presence of one feature can crowd out or suppress the learning of
other features. Several works have explored the relevance of this concept in contrastive learnings.
For example, the original SimCLR paper (Chen et al., 2020) noted that color jitter augmentation was
necessary to prevent the network for using only the color profile of the input to solve the contrastive
task. Followup work (Chen et al., 2021) explores this phenomenon in more detail, characterizing how
different hyperparameters and dataset features affect feature suppression. Other works have attempted
to address feature suppression in contrastive learning, either via auxiliary losses (Li et al., 2020) or by
modifying representations in the latent space (Robinson et al., 2021). Our work relates to these in two
ways. First, we empirically and theoretically investigate feature suppression as an alternate rationale
for the role of augmentations, as opposed to invariance. Second, we show that an existing method,
viewmaker networks (Tamkin et al., 2021), can identify and potentially neutralize suppressing features
in an interpretable way, resulting in better performance than expert augmentations.
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Spurious correlations and shortcut features Outside the framing of feature suppression, several
other works explore how classifiers can learn or make use of unwanted features. Shortcut features
(Geirhos et al., 2020) describe often-simple features (e.g. the average color of an input) which are
learned by networks at the expense of more salient features (e.g. the object class). This notion
is connected to spurious correlations (Simon, 1954) in deep learning which have been explored
extensively (Sagawa et al., 2019, 2020; Srivastava et al., 2020; Tu et al., 2020; Xiao et al., 2021),
including in the context of self-supervised learning (Minderer et al., 2020). Other works have also
performed theoretical analysis of how related dynamics affect learning in the supervised setting (Li
et al., 2019; Shah et al., 2020). Our work suggests that viewmaker networks may be a useful tool as
well here—both as an interpretability tool to visualize the different features a network relies on, and
as a way to reduce reliance on particular features without completely destroying the information.

C Training Details

Pretraining We pretrain with the SimCLR algorithm for 200 epochs with a batch size of 256 and
a temperature of 0.1. We use a ResNet-18 model with standard modifications for smaller inputs
(including a smaller stride and no initial maxpool) as used in Tamkin et al. (2021). For the expert
augmentations, we use the standard SimCLR augmentations for the image datasets (Chen et al.,
2020), and the SpecAug (Park et al., 2019) augmentations for the audio datasets, which randomly
mask out different frequency and time bands, as well as the WaveAug (Kharitonov et al., 2021)
augmentations, which alter various properties of the waveform such as the pitch and speed. For the
viewmaker augmentations, we use a budget of ϵ = 0.05P for the image datasets, and ϵ = 0.125P for
the audio datasets, where P is the number of pixels in the input.

Linear Evaluation We evaluate the quality of the learned representations by training a linear
softmax classifier on top of the prepool representations. We train for 100 epochs, using the same
parameters as Viewmaker (Tamkin et al., 2021), training separate linear classifiers using the same
pretrained network for each downstream task (Chen et al., 2020). Augmentations are applied during
training but not evaluation.

D Quantifying feature dropout

We perform an exploratory analysis to testing how well different views drop out the features in
an input. We augment a single example (CIFAR-10 image plus an overlaid object) 1,200 times
using a given augmentation policy (either the expert or viewmaker augmentations). We then encode
the model with a classifier trained off of the other augmentation policy (i.e. expert for viewmaker
augmentations or the reverse) in order to test how well the augmentations drop out the features. We
use a different encoder to see the effects of the augmentations prior to the encoder having a chance to
adapt to them.

We observe a bimodal behavior for the viewmaker views, suggesting that the model is adapting to the
semantics of the input and has learned to stochastically drop out the simple feature some fraction of
the time. By contrast, the expert views display no such structure.

E Full proofs of propositions and theorems

Our theoretical set-up is pictured in Figure 4.

We begin by stating and proving Lemma E.1 on the downstream classification accuracy.

Lemma E.1 (Downstream classification accuracy). Suppose we draw labeled data points (u, y) ∈
RK×d×{+1, 1}, where as before, uk ∼ N (0, Id) for k ∈ [K], and the label is given by sign(uTk µk).
Then the best linear classifier a ∈ RK on the representations fΘ(u) ∈ RK achieves an test error of
1
π arccos

(
|µT

k θk|
∥θk∥2

)
. That is

min
a∈RK

Pr
u
[sign(aT fΘ(u)) ̸= sign(µTk uk)] =

arccos
(

|µT
k θk|

∥θk∥2

)
π

. (2)
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(a) Viewmaker / Shapes (b) Viewmaker / Letters (c) Viewmaker / Digits

(d) Expert / Shapes (e) Expert / Letters (f) Expert / Digits

Figure 2: Viewmaker augmentations stochastically drop out simple features added to the input.
Probability of the correct answer for different augmentations (Viewmaker or Expert) and different
examples from different datasets (Shapes, Letters, Digits). Each histogram shows a single example
from each dataset randomly augmented 1200 times, and the corresponding probabilities of the correct
answer. The viewmaker augmentations display a bimodal structure, indicating that the simple feature
is selectively either destroyed or preserved. The expert augmentations by contrast lack such structure,
reflecting their lack of adaptation to the structure of each input.

Figure 3: Comparison of viewmaker and expert augmentations on datasets with multiple
features. The viewmaker augmentations adapt to the particular semantics of the input data, and make
targeted perturbations which remove the class-relevant information of the synthetic features (e.g.
occluding the digit, shape, letter, or speech). Despite this, the encoder network is still able to learn
strong representations. Rows (from top): Digits, Shapes. Columns (from left): Expert augmentations,
viewmaker augmentations, difference between original and viewmaker augmentation, rescaled to
[0,1]. Center image in each grid is the original. Audio Expert views shown are Spectral views.
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Figure 4: (a) The correlation of the kth feature of an augmentation pair, shown for d = 2. Each
pair u(i)

k and v
(i)
k have correlated projections onto the ground truth µk direction, representing the

feature conserved across augmentations. (b) Feedforward linear network which computes the
representation fΘ(w). As each feature µk is learned (θk → µk) the representations of the two views
fΘ(u

(i)), fΘ(v
(i)) become more similar, decreasing the contrastive loss.

Thus if θk and µk are orthogonal, then the test error is 50%. If the angle between θk and the ±µk is
zero, then we achieve perfect classification accuracy.

Proof. It is easy to see that the best linear classifier a will (up to scaling) be equal to the
vector sign(µTk θk)ek. Such a classifier predicts the correct sign whenever sign(aT fΘ(u)) =

sign(µTk θk) sign(θ
T
k uk) equals sign(µTk uk), which occurs exactly a 1 −

arccos

(
|µT

k θk|
∥θk∥2

)
π fraction

of the time.

In the rest of this section, we prove our main theoretical result, Theorem 3.1, which shows that
arccos

(
|µT

k θk|
∥θk∥2

)
decreases faster in expectation during gradient descent if we add noise to the k′

feature.

E.1 Notation.

We let δij denote the δ-function which equals 1 if i = j and 0 otherwise. For a parameter Θ =

{θk}k∈[K], we let θ∥k := µkµ
T
k θk be the projection of θk in the µk direction. We let θ⊥k = θk − θ

∥
k be

the projection of θk orthogonal to the feature µk.

Throughout this section, we consider the ground truth directions to be fixed, and we fix some initial
correlation vector α. We let Pα denote the distribution from which the pair (u, v) is drawn from
the Gaussian distribution described in Section 3 with correlation coefficients α. When unspecified,
the variables U, V are drawn from the distribution Pmα . Since we study what happens when we vary
αk′ , for x ∈ [0, 1], we use the shorthand Px to denote the distribution Pmα(x), where α(x)k′ = x, and
α(x)k = αk for all other k.

We denote Li(Θ;U, V ) = CE({pij}j∈[m], ei) = − log(pii), which we abbreviate by Li. When it is
clear that we are considering Li for some fixed i, we omit the superscripts on the ith data point or its
pair. That is, we denote uk := u

(i)
k and vk := v

(i)
k .

E.2 Preliminaries

The following facts about of the derivative of the cross entropy loss are easy derived.

Lemma E.2.
∂Li
∂Θ

=
∑
j

(pij − δij)
∂zij
∂Θ

=
∑
i

∑
j ̸=i

pij

(
∂zij
∂Θ

− ∂zii
∂Θ

)
, (3)
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where
∂zij
∂θk

= (u
(i)
k v

(j)
k

T
+ v

(j)
k u

(i)
k

T
)θk. (4)

We will also need the following facts on Gaussian random variables. The first, Stein’s Lemma, is
well known.
Lemma E.3 (Stein’s Lemma).

EX∼N (0,σ2)[Xf(X)] = σ2EX∼N (0,σ2)[f
′(X)]. (5)

The next two lemmas are proved in Section E.4.
Lemma E.4. There exists some constant C such that following holds. If σ ≤ 1

C , and 0 ≤ t ≤ 1
σ ,

then for any c ∈ {0, 1, 2, 3}, and X ∼ N (0, σ2) we have

EX
[
|X|c exp(t|X|) exp(tX2)

]
≤ Cσc. (6)

If additionally d ∈ {0, 1, 2, 3}, ρ ≤ 1
C and Y ∼ N (0, ρ2), then

EX
[
|X|c|Y |d exp(t|X|) exp(|XY |)

]
≤ Cσcρd. (7)

Lemma E.5. For some universal constant C, for any σ ∈ [0, 1], t ≥ 0, c ∈ {0, 1, 2, 3, 4}, we have
EX∼N (0,σ2) [(exp(t|X|)− 1) |X|c] ≤ Ctσc.

E.3 Approach and Lemmas

We outline our proof of Theorem 3.1 in this section. We prove all the lemmas below in Section E.4.

To understand EU,V
[
arccos

(
|µT

k θ
(t+1)
k |

∥θ(t+1)
k ∥2

)]
for a small enough step size, we first claim that it suffices

to understand the expected projection of the gradient with respect to θk in the µk direction and in the
θk direction. We use the notation ∇k = ∂L(Θ;U,V )

∂θk
.

Lemma E.6. Let θ+k = θk − η(∇k + λθk). Then

lim
η→0

1

η

(
EU,V

[
arccos

(
|µTk θ

+
k |

∥θ+k ∥2

)]
− arccos

(
|µTk θk|
∥θk∥2

))
= NEU,V

[
−(µTk θk)(µ

T
k∇k) +

θTk∇k(µ
T
k θk)

2

∥θk∥22

]
,

(8)
where N is some negative value that depends only on θk.

Now, since we care about the quantity EU,V
[
arccos

(
|µT

k θ
(t+1)
k |

∥θ(t+1)
k ∥2

)]
− EU,Ṽ

[
arccos

(
|µT

k θ̃
(t+1)
k |

∥θ̃(t+1)
k ∥2

)]
being positive, it suffices to show that derivative

d

dx
EU,V∼Px

[
−(µTk θk)(µ

T
k∇k) +

θTk∇k(µ
T
k θk)

2

∥θk∥22

]
,

is negative for all x ∈ [α̃k′ , αk′ ]. Indeed, from Lemma E.6, we have that

lim
η→0

1

η

(
EU,V∼Pα

k′

[
arccos

(
|µTk θ

+
k |

∥θ+k ∥2

)]
− EU,V∼Pα̃

k′

[
arccos

(
|µTk θk|
∥θk∥2

)])
(9)

= N

∫ αk′

α̃k′

d

dx
EU,V∼Px

[
−(µTk θk)(µ

T
k∇k) +

θTk∇k(µ
T
k θk)

2

∥θk∥22

]
dx, (10)

so if the derivative is negative for the full range, then the difference in arccosines is positive.

In the following lemma we compute the derivative of E[∇k] with respect to x.
Lemma E.7.
d

dx
EU,V∼Px [∇k] = m

d

dx
EU,V∼Px

[
∂Li
∂θk

]
=

−m

1− x2
θTk′µk′

∑
j ̸=i

EU,V∼Px

[
pijpii

(
θTk′uk′

) (
µTk′u

(i)
k′ − xµTk′v

(i)
k′

)(∂(zij − zii)

∂θk

)]
.
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We will analyze this quantity by explicitly taking the expectation with respect to some set of random
variables. Let S = {Uk, Vk, Uk′ , Vk′} consist of the random variables u

(i)
k′ , u(i)

k , and v
(i)
k′ , v(i)k

for all i ∈ [m]. Define qij to be the logits when all variables in S are set to 0 (Thus explicitly,

qij =
exp

(∑
k̃ ̸=k,k′ θ

T
k̃
u
(i)

k̃
θT
k̃
v
(j)

k̃

)
∑

j′ exp
(∑

k̃ ̸=k,k′ θT
k̃
u
(i)

k̃
θT
k̃
v
(j′)
k̃

) ). We will use the notation j ∼ q to denote the distribution on

[m] with mass qij on j.

Let

h(S) :=
(
θTk′uk′

) (
µTk′u

(i)
k′ − xµTk′v

(i)
k′

)(∂(zij − zii)

∂θk

)
, (11)

and
h1(S) =

(
θTk′uk′

) (
(1− x2)µTk′u

(i)
k′

)
2αk

(
(µTk uk)(θ

∥
kuk)µ

T
k

)
, (12)

which are the terms that appear in the right hand side of Lemma E.7 after piipij . Observe that
ES [h(S)− h1(S)] = 0.

The following four lemmas serve to bound d
dxES

[
µTk∇k

]
and d

dxES
[
θTk∇k

]
. We call the terms of

the form Epiipij(h(S) − h1(S)) “junk” terms, and our goal will be to show that these terms are
small. We will control more closely the terms of the form Epiipij(h1(S)).
Lemma E.8 (Junk Terms for µk term.). If ∥θk∥ ≤ 1 and ∥θk′∥ ≤ 1, then for some universal constant
C∣∣ES [piipijµTk (h(S)− h1(S))

]∣∣ ≤ Cqiiqij

(
∥θk′∥3∥θk∥3 + ∥θ∥k′∥∥θk∥

3 + αk

(
∥θk′∥3∥θ∥k∥

))
.

Lemma E.9 (Good Term for µk term.). If ∥θk∥ ≤ 1 and ∥θk′∥ ≤ 1, then for some universal constant
C ∣∣ES [piipijµTk h1(S)

]∣∣ ≥ 2αk(1− x2)qiiqij

(
∥θ∥k′∥∥θ

∥
k∥
) (

1− C(∥θk′∥2 + ∥θk∥2)
)
.

Plugging these two lemmas into Lemma E.7 yields the following corollary.

Corollary E.9.1 (Total µk term.). If for a sufficiently large constant C, |θTk µk| ≤ 1−α2
k′

C ∥θk∥,

∥θk′∥3 ≤ |θTk′µk|, and ∥θk∥2 ≤ αk(1−α2
k′ )

C , then

(µTk θk)
d

dx
EPx

[
µTk∇k

]
≥ m

2
EU,V \S

∑
i,j

qiiqij2αk∥θ∥k′∥
2∥θ∥k∥

2

 .

Lemma E.10 (Junk Terms for θk term.). If ∥θk∥ ≤ 1 and ∥θk′∥ ≤ 1, then for some universal
constant C∣∣ES [piipijθTk (h(S)− h1(S))

]∣∣ ≤ Cqiiqij

(
∥θk′∥3∥θk∥4 + ∥θ∥k′∥∥θk∥

4 + αk

(
∥θk′∥3∥θk∥∥θ∥k∥+ ∥θ∥k′∥∥θk∥

3∥θ∥k∥
))

.

Lemma E.11 (Good Term for θk term.). If ∥θk∥ ≤ 1 and ∥θk′∥ ≤ 1, then for some universal
constant C∣∣ES [piipijθTk h1(S)

]∣∣ ≤ (1− x2)2αkqiiqij

(
∥θ∥k′∥∥θ

∥
k∥

2
) (

1 + C(∥θk′∥2 + ∥θk∥2)
)
.

Plugging these two lemmas into Lemma E.7 yields the following corollary.

Corollary E.11.1 (Total θk term.). If for a sufficiently large constant C, ∥θ∥k∥ ≤ 1−x2

C ∥θk∥, ∥θk′∥3 ≤
∥θ∥k′∥, ∥θk∥2 ≤ αk(1−x2)

C , then

(µTk θk)
2

∥θk∥2

∣∣∣∣ ddxEPx

[
θTk∇k

]∣∣∣∣ ≤ m

2
EU,V \S

∑
i,j

qiiqijαk∥θ∥k′∥
2∥θ∥k∥

2

 .

Combining Corollaries E.9.1 and E.11.1, we obtain the following lemma.

Lemma E.12. If for a sufficiently large constant C, ∥θ∥k∥ ≤ 1−x2

C ∥θk∥, ∥θk′∥3 ≤ ∥θ∥k′∥, ∥θk∥2 ≤
αk(1−x2)

C , then

EU,V∼Px

[
−(µTk θk)(µ

T
k∇k) +

θTk∇k(µ
T
k θk)

2

∥θk∥22

]
< 0. (13)

Theorem 3.1 now follows.

13



E.4 Proofs of Lemmas

To prove the Lemmas E.4 and E.5, we will use the following well-known formula for the moment
generating function (MGF) of the half-normal distribution.
Lemma E.13 (MGF of half-normal distribution). The MGF of the half-normal distribution is

EX∼N (0,1)|X>0[e
t|X|] = 2et

2/2Φ(t),

where Φ(t) is the cumulative distribution of a normal random variable.

Proof of Lemma E.4.

EX
[
|X|c exp(t|X|) exp(tX2)

]
=

1

σ
√
2π

∫ ∞

−∞
|x|c exp(t|x|) exp(tx2) exp

(
− x2

2σ2

)
dx

=

√
1− 2σ2t(
σ√

1−2σ2t

)√
2π

∫ ∞

−∞
|x|c exp(t|x|) exp

− x2

2
(

σ√
1−2σ2t

)2
 dx

=
√
1− 2σ2tEZ∼N (0,r)|Z≥0[Z

c exp(tZ)],

where r = σ√
1−2σ2t

. To evaluate this, we use the MGF of the half-normal distribution in Lemma E.13.
Thus for some constant C, for all c ∈ {1, 2, 3, 4},

EX∼N (0,1)|X>0

[
c!|X|cet|X|

]
≤ EX∼N (0,1)|X>0

[
dc

dtc
et|X|

]
≤ C (1 + tc) et

2/2.

So for some constant C (whose value changes throughout this equation), so long as σ ≤ 1
C ,√

1− 2σ2tEZ∼N (0,r)|Z≥0[Z
c exp(tZ)] =

√
1− 2σ2tEX∼N (0,1)|Z≥0[r

cZc exp(rtZ)]

≤
√
1− 2σ2tCrc (1 + (tr)c) e(tr)

2/2

≤ Cσc.

This proves the first statement in the lemma. To prove the second, we first take the expectation over
X , and using the half-Gaussian MGF as before, we obtain

EXEY
[
|X|c|Y |d exp(t|X|) exp(|XY |)

]
≤ CEY

[
|Y |dσc(1 + (t+ |Y |)c)e(t+|Y |)2/2

]
Now applying the first statement to take the expectation over Y , we obtain

EY
[
|Y |d(1 + (t+ |Y |)c)e(t+|Y |)2/2

]
≤ Cσcρd.

Proof of Lemma E.5. We prove the lemma by induction on c. Suppose c = 0. Then by plugging in
the MGF for the half-normal distribution from Lemma E.13, for some constant C, we have

EX∼N (0,1)|X>0[(e
t|X| − 1)] = 2et

2/2Φ(t)− 1 (14)

≤ 2et
2/2

(
1 + t

2

)
− 1 (15)

≤
(
et

2/2 − 1
)
+ tet

2/2 (16)

≤ Ct, (17)

thus

EX∼N (0,σ2)[(e
t|X| − 1)] = EX∼N (0,σ2)|X>0[(e

σt|X| − 1)] ≤ Ctσ.
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Now for c ≥ 1, by Stein’s Lemma, we have (for a new constant C),

EX∼N (0,σ2)[|X|c(et|X| − 1)] = EX∼N (0,σ2)[X|X|c−1 sign(X)(et|X| − 1)] (18)

= σ2EX∼N (0,σ2)

[
d

dX

(
|X|c−1 sign(X)(et|X| − 1)

)]
(19)

= σ2EX∼N (0,σ2)

[
(c− 2)

(
|X|c−2(et|X| − 1)

)
+
(
|X|c−1(tet|X|)

)]
(20)

≤ Ctσc+1. (21)

where in the last step we used the inductive hypothesis and Lemma E.4.

Proof of Lemma E.6. First observe that

lim
η→0

1

η

(
EU,V

[
arccos

(
|µTk θ

+
k |

∥θ+k ∥2

)]
− arccos

(
|µTk θk|
∥θk∥2

))
= lim
η→0

1

η

(
EU,V

[
arccos

(
|µTk (θk(1− ηλ)− η∇k)|
∥θk(1− ηλ)− η∇k∥2

)]
− arccos

(
|µTk θk|
∥θk∥2

))
= lim
η→0

1

η

(
EU,V

[
arccos

(
|µTk (θk −

η
1−ηλ∇k)|

∥θk − η
1−ηλ∇k∥2

)]
− arccos

(
|µTk θk|
∥θk∥2

))

= EU,V
[
d

dη
arccos

(
|µTk (θk − η∇k)|
∥θk − η∇k∥2

)
(0)

]
,

since limη→0
η

1−ηλ = 0. Now

d

dη
arccos

(
|µTk (θk − η∇k)|
∥θk − η∇k∥2

)
(0) = arccos′

(
|µTk θk|
∥θk∥2

)
d

dη

(
|µTk (θk − η∇k)|
∥θk − η∇k∥2

)
(0)

= arccos′
(
|µTk θk|
∥θk∥2

)− sign(µTk θk)µ
T
k∇k∥θk∥+ |µTk θk|

θTk ∇k

∥θk∥

∥θk∥22


= N

(
−µTk θkµ

T
k∇k + (µTk θk)

2 θ
T
k∇k

∥θk∥2

)
,

where N = arccos′
(

|µT
k θk|

∥θk∥2

)
1

∥θk∥|µT
k θk|

. The lemma follows by taking the expectation over U, V ,
and observing derivative of arccos(x) is negative whenever x is positive.

Proof of Lemma E.7. First observe that by symmetry, we have

d

dx
EU,V∼Px

[∇k] = m
d

dx
EU,V∼Px

[
∂Li
∂θk

]
.

To make this expectation easier to analyze, we express the random variable (U(x), V (x)) ∼ Px as
an interpolation of Gaussians in the coordinate µTk′v

(i)
k′ . Let ξ ∼ N (0, 1), and define (U, V ) ∼ P1,

such that µTk′v
(i)
k′ = µTk′u

(i)
k′ . For x ∈ [0, 1), define (U(x), V (x)) to have

µTk′v
(i)
k′ (x) = xµTk′u

(i)
k′ +

√
1− x2ξ, (22)

and otherwise be the same as (U, V ). It is easy to check that (U(x), V (x)) ∼ Px.

Now
d

dx
EU,V∼Px

[
∂Li(Θ;U, V )

∂θk

]
= EU,V∼P1,ξ

[
d

dx

∂Li(Θ;U(x), V (x))

∂θk

]
.
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Taking the derivative of the cross-entropy loss, we have

d

dx

∂Li(Θ;U(x), V (x))

∂θk
=

d

dx

∑
j ̸=i

pij

(
∂(zij − zii)

∂θk

)
=
∑
j ̸=i

dpij

dµTk′v
(i)
k′ (x)

dµTk′v
(i)
k′ (x)

dx

∂(zij − zii)

∂θk

=
∑
j ̸=i

−pijpii
dzii

dµTk′v
(i)
k′ (x)

(
µTk′u

(i)
k′ − x√

1− x2
ξ

)(
∂(zij − zii)

∂θk

)
where the variables zij and pij are the similarity scores and the softmaxes from the data (U(x), V (x)).
Here the first line is by Lemma E.2, and the second line holds by chain rule since ∂zij

∂θk
− ∂zii

∂θk
does

not depend on v
(i)
k′ . The third line uses the proof of Claim E.14 to take the derivative of pij , and

Equation 22 to take the derivative of µTk′v
(i)
k′ (x).

Now we reparameterize µTk′u
(i)
k′ − x√

1−x2
ξ as follows:

µTk′u
(i)
k′ − x√

1− x2
ξ =

(
1

1− x2

)
µTk′u

(i)
k′ − x

1− x2
µTk′v

(i)
k′ (x).

Plugging in this reparameterization and dzii
dµT

k′v
(i)

k′ (x)
= θTk′µk′θ

T
k′uk′ , we obtain

d

dx
EU,V∼Px

[
∂Li(Θ;U, V )

∂θk

]
=

−1

1− x2

∑
j ̸=i

EU,V∼Px

[
pijpii

(
θTk′µk′θ

T
k′uk′

) (
µTk′u

(i)
k′ − xµTk′v

(i)
k′

)(∂(zij − zii)

∂θk

)]
.

We now prove Lemmas E.8, E.9, E.10, and E.11.

Notation. Since i is fixed throughout, we drop the (i) superscripts and let uk = u
(i)
k and vk =

v
(i)
k . We will introduce the following random variables, which are all independent, to simplify the

exposition:

• ξj := θTk v
(j)
k for j ̸= i. Thus ξj ∼ N (0, ∥θk∥2).

• ξ′j := θTk′v
(j)
k′ for j ̸= i. Thus ξ′j ∼ N (0, ∥θk′∥2).

• ξi := (θ⊥k )
T vk + (θ

∥
k)
T (vk − αkuk). Thus ξi ∼ N (0, ∥θ⊥k ∥2 + (1− α2

k)∥θ
∥
k∥2).

• ξ′i := (θ⊥k′)
T vk′ . Thus ξ′i ∼ N (0, ∥θ⊥k′∥2∥θ

∥
k′∥2).

• ζ ′i := (θ
∥
k′)

T (vk′ − αk′uk′). Thus ζ ′i ∼ N (0, (1− α2
k′)∥θ

∥
k′∥2).

• y = (θ
∥
k)
Tuk. Thus y ∼ N (0, ∥θ∥k∥2).

• y′ = (θ
∥
k′)

Tuk′ . Thus y′ ∼ N (0, ∥θ∥k′∥2).
• ηi := (θ⊥k )

Tuk. Thus ηi ∼ N (0, ∥θ⊥k ∥2).
• η′i := (θ⊥k′)

Tuk′ . Thus η′i ∼ N (0, ∥θ⊥k′∥2).

For any such random variable X , we use σ2
X to denote its variance. Observe that

piipij
qiiqij

=
exp

(
θTk ukθ

T
k vk

)
exp

(
θTk′uk′θ

T
k′vk′

)
Ej′∼q exp

(
θTk ukθ

T
k v

(j′)
k

)
exp

(
θTk′uk′θ

T
k′v

(j′)
k′

) exp
(
θTk ukθ

T
k v

(j)
k

)
exp

(
θTk′uk′θ

T
k′v

(j)
k′

)
Ej′∼q exp

(
θTk ukθ

T
k v

(j′)
k

)
exp

(
θTk′uk′θ

T
k′v

(j′)
k′

) .

We will use the following two claims in the proofs of all four lemmas.
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Claim E.14. For β ∈ {ξj , ξ′j , ξi, ξ′i, ζ ′i, ηi, η′i, x, x′}, let β̄j′ := ∂
∂β

(
θTk ukθ

T
k v

(j′)
k + θTk′uk′θ

T
k′v

(j′)
k′

)
.

Then ∣∣∣∣∂piipij∂β

∣∣∣∣ ≤ piipij
(
|β̄j |+ |β̄i|+ 2Ej′∼q|β̄j′ |

)
.

If additionally γ ∈ {ξj , ξ′j , ξi, ξ′i, ζ ′i, ηi, η′i} and γ ⊥ {β̄j′}j′∈[m], then∣∣∣∣ ∂∂γ ∂piipij
∂β

∣∣∣∣ ≤ piipij
((
|β̄j |+ |β̄i|+ 2Ej′∼q|β̄j′ |

)
(|γ̄j |+ |γ̄i|+ 2Ej′∼q|γ̄j′ |) + 2Ej′∼q|β̄j′ γ̄j′ |+ 2(Ej′∼q|β̄j′ |)(Ej′∼q|γ̄j′ |)

)
.

Proof. By a straightforward quotient-rule computation of the derivative of pijqij , recalling that qij is
independent of S, we obtain

∂pij
∂β

= pij
(
β̄j − Ej′∼qβ̄j′pij′

)
.

By applying product to the expression above, we obtain
∂piipij
∂β

= piipij
(
β̄j + β̄i − 2Ej′∼qβ̄j′pij′

)
.

Taking absolute values and using the fact that pij′ ≤ 1, we obtain the first result.

Next we take the derivative of pij with respect to both β and γ. Using the expression above for ∂pij∂β ,
we obtain
∂

∂γ

∂pij
∂β

= pij
((
β̄j − Ej′∼qβ̄j′pij′

)
(γ̄j − Ej′∼qγ̄j′pij′)− Ej′∼qβ̄j′ γ̄j′pij′ + (Ej′∼qβ̄j′pij′)(Ej′∼qγ̄j′pij′)

)
,

and
∂

∂γ

∂piipij
∂β

= piipij
((
β̄j + β̄i − 2Ej′∼qβ̄j′pij′

)
(γ̄j + γ̄i − 2Ej′∼qγ̄j′pij′)− 2Ej′∼qβ̄j′ γ̄j′pij′ + 2(Ej′∼qβ̄j′pij′)(Ej′∼qγ̄j′pij′)

)
.

The second result follows by taking absolute values and the fact that pij′ ≤ 1.

Claim E.15.
pij
qij

≤ exp
(
|θTk ukθTk v

(j)
k |
)
exp

(
|θTk′uk′θTk′v

(j)
k′ |
)
Ej′∼q

[
exp

(
|θTk ukθTk v

(j′)
k |

)
exp

(
|θTk′uk′θTk′v

(j′)
k′ |

)]
.

Proof. This follows directly from using Jenson’s inequality on the distribution j′ ∼ q to show that
1

Ej′∼q
[
exp

(
θTk ukθ

T
k v

(j′)
k

)
exp

(
θTk′uk′θ

T
k′v

(j′)
k′

)] ≤ Ej′∼q
[
exp

(
−θTk ukθ

T
k v

(j′)
k

)
exp

(
−θTk′uk′θ

T
k′v

(j′)
k′

)]
≤ Ej′∼q

[
exp

(
|θTk ukθTk v

(j′)
k |

)
exp

(
|θTk′uk′θTk′v

(j′)
k′ |

)]
.

Claim E.16. ∣∣∣∣1− pij
qij

∣∣∣∣ ≤ Zj − 1,

where Zj := exp
(
|θTk ukθTk v

(j)
k |
)
exp

(
|θTk′uk′θTk′v

(j)
k′ |
)
Ej′∼q

[
exp

(
|θTk ukθTk v

(j′)
k |

)
exp

(
|θTk′uk′θTk′v

(j′)
k′ |

)]
.

Proof. Note that for any x ≥ 0, we have |1− x| ≤ max
(
x− 1, 1

x − 1
)
. By Claim E.15, pijqij − 1 is

at most the desired value given in this claim.

Now

qij
pij

=
Ej′∼q

[
exp

(
θTk ukθ

T
k v

(j′)
k

)
exp

(
θTk′uk′θ

T
k′v

(j′)
k′

)]
exp

(
θTk ukθ

T
k v

(j)
k

)
exp

(
θTk′uk′θ

T
k′v

(j)
k′

)
≤ exp

(
|θTk ukθTk v

(j)
k |
)
exp

(
|θTk′uk′θTk′v

(j)
k′ |
)
Ej′∼q

[
exp

(
|θTk ukθTk v

(j′)
k |

)
exp

(
|θTk′uk′θTk′v

(j′)
k′ |

)]
.

This yields the claim.
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Proof of Lemma E.8. Expanding h(S)− h1(S), we see that we need to control the following terms:

1. (a)
∣∣ES [piipij (η′i (µTk′uk′ − xµTk′vk′

)) (
µTk ukξj

)]∣∣, (b)∣∣ES [piipij (y′ (µTk′uk′ − xµTk′vk′
)) (

µTk ukξj
)]∣∣

2. (a)
∣∣ES [piipij (η′i (µTk′uk′ − xµTk′vk′

)) (
µTk ukξi

)]∣∣, (b)∣∣ES [piipij ((y′ (µTk′uk′ − xµTk′vk′
)) (

µTk ukξi
)]∣∣

3. (a)
∣∣αkES [piipij (η′i (µTk′uk′ − xµTk′vk′

)) (
µTk uky

)]∣∣, (b)∣∣αkES [piipij (y′(−xξ′i))
(
µTk uky

)]∣∣
4. (a)

∣∣∣ES [piipij (η′i (µTk′uk′ − xµTk′vk′
)) (

ξi(vk − v
(j)
k )Tµk

)]∣∣∣
(b)
∣∣∣ES [piipij (y′ (µTk′uk′ − xµTk′vk′

)) (
ξi(vk − v

(j)
k )Tµk

)]∣∣∣
5. (a)

∣∣∣αkES [piipij (η′i (µTk′uk′ − xµTk′vk′
)) (

y(vk − v
(j)
k )Tµk

)]∣∣∣
(b)
∣∣∣ES [piipij (y′ (µTk′uk′ − xµTk′vk′

)) (
y(vk − αkuk − v

(j)
k )Tµk

)]∣∣∣
We begin by bounding the terms where the expression after piipij has two independent mean-0 terms,
mainly (1a), (2a), (4a). The first step is to apply Stein’s Lemma (Lemma E.3) twice to these two
terms, which we will call β and γ. Let βγg(S \ {β, γ}) be the terms after piipij . Then we have

|ES [piipijβγg(S \ {β, γ})]| ≤ σ2
βσ

2
γ

∣∣∣∣ES [∣∣∣∣ ∂∂γ ∂piipij
∂β

∣∣∣∣ |g(S \ {β, γ})|
]∣∣∣∣ .

Next we apply the final result in Claim E.14 to bound the absolute value of
∣∣∣ ∂∂γ ∂piipij∂β

∣∣∣. Once we do
this, we achieve

|ES [piipijβγg(S \ {β, γ})]| ≤ σ2
βσ

2
γqiiqijES

Z|g(S \ {β, γ})|
∑

j′,ℓ∈[m]

cj′,ℓ|β̄j′ ||γ̄ℓ|

 ,

where
∑
j′,ℓ∈[m] cj′,ℓ ≤ C for some constant C, and Z :=

piipij
qiiqij

. Finally, we use the bound on Z

from Claim E.15, and then Lemma E.4 to take the expectation over S, iteratively applying Lemma E.4
to each variable in S. Thus we have, for some (different) constant C,

1.
∣∣ES [piipij (η′i (µTk′uk′ − xµTk′vk′

)) (
µTk ukξj

)]∣∣ ≤ Cqiiqijσ
2
η′i
σ2
ξj
∥θk′∥∥θk∥ =

Cqiiqij∥θ⊥k′∥2∥θk′∥∥θk∥3 ≤ Cqiiqij∥θk′∥3∥θk∥3.

2.
∣∣ES [piipij (η′i (µTk′uk′ − xµTk′vk′

)) (
µTk ukξi

)]∣∣ ≤ Cqiiqijσ
2
η′i
σ2
ξi
∥θk′∥∥θk∥ ≤

Cqiiqij∥θ⊥k′∥2∥θk′∥∥θk∥3 ≤ Cqiiqij∥θk′∥3∥θk∥3.

3.
∣∣∣ES [piipij (η′i (µTk′uk′ − xµTk′vk′

)) (
ξi(vk − v

(j)
k )Tµk

)]∣∣∣ ≤ Cqiiqijσ
2
η′i
σ2
ξi
∥θk′∥∥θk∥ ≤

Cqiiqij∥θ⊥k′∥2∥θk′∥∥θk∥3 ≤ Cqiiqij∥θk′∥3∥θk∥3.

Now we consider the remaining 7 terms. Here we decompose the expression inside the expectation
as piipijβg(S \ β), where β ∈ S. We proceed as before, but we only apply Stein’s Lemma once, to
β. Applying Steins, the expression for ∂piipij∂β given in the first result of Claim E.14, we obtain

|ES [piipijβg(S \ β)]| ≤ σ2
β

∣∣∣∣ES [∣∣∣∣∂piipij∂β

∣∣∣∣ |g(S \ β)|
]∣∣∣∣ ≤ σ2

βqiiqijES

Z|g(S \ β)|
∑
j′∈[m]

cj′ |β̄j′ |

 ,

(23)
where

∑
j′∈[m] cj′ ≤ C for some constant C, and Z :=

piipij
qiiqij

. Finally, we plug in a bound for Z in
Claim E.15, an use Lemma E.4 to take the expectation over S, again iteratively over each variable.

Thus we have, for some (different) constant C,
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1.
∣∣ES [piipij (y′ (µTk′uk′ − xµTk′vk′

)) (
µTk ukξj

)]∣∣ ≤ Cqiiqijσ
2
ξj
∥θk∥∥θ∥k′∥ =

Cqiiqij∥θk∥3∥θ∥k′∥.

2.
∣∣ES [piipij (y′ (µTk′uk′ − xµTk′vk′

)) (
µTk ukξi

)]∣∣ ≤ Cqiiqijσ
2
ξi
∥θk∥∥θ∥k′∥ ≤

Cqiiqij∥θk∥3∥θ∥k′∥.

3.
∣∣αkES [piipij (η′i (µTk′uk′ − xµTk′vk′

)) (
µTk uky

)]∣∣ ≤ Cαkqiiqijσ
2
η′i
∥θk′∥∥θ∥k∥ =

Cαkqiiqij∥θ⊥k′∥2∥θk′∥∥θ
∥
k∥ ≤ Cαkqiiqij∥θk′∥3∥θ∥k∥.

4.
∣∣αkES [piipij (y′(−xζ ′i))

(
µTk uky

)]∣∣ ≤ Cαkqiiqijσ
2
ζ′i
∥θk′∥∥θ∥k∥ =

Cαkqiiqij∥θ∥k′∥2∥θk′∥∥θ
∥
k∥.

5.
∣∣∣ES [piipij (y′ (µTk′uk′ − xµTk′vk′

)) (
ξi(vk − v

(j)
k )Tµk

)]∣∣∣ ≤ Cqiiqijσ
2
ξi
∥θk∥∥θ∥k′∥ ≤

Cqiiqij∥θk∥3∥θ∥k′∥.

6.
∣∣∣αkES [piipij (η′i (µTk′uk′ − xµTk′vk′

)) (
x(vk − v

(j)
k )Tµk

)]∣∣∣ ≤

Cαkqiiqijσ
2
η′i
∥θk′∥∥θ∥k∥ = Cαkqiiqij∥θ⊥k′∥2∥θk′∥∥θ

∥
k∥ ≤ Cαkqiiqij∥θk′∥3∥θ∥k∥.

7.
∣∣∣ES [piipij (y′ (µTk′uk′ − xµTk′vk′

)) (
x(vk − αkuk − v

(j)
k )Tµk

)]∣∣∣ ≤

Cqiiqijσ
2
x∥θk∥∥θ

∥
k′∥ = Cqiiqij∥θ∥k∥2∥θk∥∥θ

∥
k′∥.

Combining the bounds on these 10 terms proves the lemma:∣∣ES [piipijµTk (h(S)− h1(S))
]∣∣ ≤ Cqiiqij

(
∥θk′∥3∥θk∥3 + ∥θ∥k′∥∥θk∥

3 + αk

(
∥θk′∥3∥θ∥k∥

))
.

Proof of Lemma E.10. The proof of Lemma E.10 is nearly identical, besides some differences in the
terms we need to bound. We list them below:

1. (a)
∣∣ES [piipij (η′i (µTk′uk′ − xµTk′vk′

)) (
θTk ukξj

)]∣∣ (b)∣∣ES [piipij (y′ (µTk′uk′ − xµTk′vk′
)) (

θTk ukξj
)]∣∣

2. (a)
∣∣ES [piipij (η′i (µTk′uk′ − xµTk′vk′

)) (
θTk ukξi

)]∣∣ (b)∣∣ES [piipij ((y′ (µTk′uk′ − xµTk′vk′
)) (

θTk ukξi
)]∣∣

3. (a)
∣∣αkES [piipij (η′i (µTk′uk′ − xµTk′vk′

)) (
θTk uky

)]∣∣ (b)
∣∣αkES [piipij (y′ (µTk′uk′ − xµTk′vk′

))
(ηiy)

]∣∣
4.
∣∣αkES [piipij (y′ (−xζ ′i))

(
θTk uky

)]∣∣
We use the same approach as before. For the terms (1a) and (2a) we apply Stein’s Lemma to (η′i, ξj)
and (η′i, ξi) respectively. For (1b), (2b), (3a) and (3b) and (4), we apply Stein’s Lemma to ξj , ξi, η′i,
ηi, and ξ′i respectively. Using Claim E.15 and then Lemma E.4 as before, we obtain the following
result:

1.
∣∣ES [piipij (η′i (µTk′uk′ − xµTk′vk′

)) (
θTk ukξj

)]∣∣ ≤ Cqiiqijσ
2
η′i
σ2
ξj
∥θk′∥∥θk∥∥θk∥ =

Cqiiqij∥θ⊥k′∥2∥θk′∥∥θk∥4 ≤ Cqiiqij∥θk′∥3∥θk∥4.

2.
∣∣ES [piipij (η′i (µTk′uk′ − xµTk′vk′

)) (
θTk ukξi

)]∣∣ ≤ Cqiiqijσ
2
η′i
σ2
ξi
∥θk′∥∥θk∥∥θk∥ ≤

Cqiiqij∥θ⊥k′∥2∥θk′∥∥θk∥4 ≤ Cqiiqij∥θk′∥3∥θk∥4.

3.
∣∣ES [piipij (y′ (µTk′uk′ − xµTk′vk′

)) (
θTk ukξj

)]∣∣ ≤ Cqiiqijσ
2
ξj
∥θk∥∥θk∥∥θ∥k′∥ =

Cqiiqij∥θk∥4∥θ∥k′∥
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4.
∣∣ES [piipij (y′ (µTk′uk′ − xµTk′vk′

)) (
θTk ukξi

)]∣∣ ≤ Cqiiqijσ
2
ξi
∥θk∥∥θk∥∥θ∥k′∥ ≤

Cqiiqij∥θk∥4∥θ∥k′∥

5.
∣∣αkES [piipij (η′i (µTk′uk′ − xµTk′vk′

)) (
θTk uky

)]∣∣ ≤ Cαkqiiqijσ
2
η′i
∥θk′∥∥θk∥∥θ∥k∥ =

Cαkqiiqij∥θ⊥k′∥2∥θk′∥∥θk∥∥θ
∥
k∥

6.
∣∣αkES [piipij (y′ (µTk′uk′ − xµTk′vk′

))
(ηiy)

]∣∣ ≤ Cαkqiiqijσ
2
ηi∥θk∥∥θ

∥
k′∥∥θ

∥
k∥ =

Cαkqiiqij∥θ⊥k ∥2∥θk∥∥θ
∥
k′∥∥θ

∥
k∥.

7.
∣∣αkES [piipij (y′ (−xζ ′i))

(
θTk uky

)]∣∣ ≤ Cαkqiiqijσ
2
ζ′i
∥θk′∥∥θk∥∥θ∥k∥ ≤

Cαkqiiqij∥θ∥k′∥2∥θk′∥∥θk∥∥θ
∥
k∥.

Combining the bounds on these 7 terms, proves the lemma:∣∣ES [piipijθTk (h(S)− h1(S))
]∣∣ ≤ Cqiiqij

(
∥θk′∥3∥θk∥4 + ∥θ∥k′∥∥θk∥

4 + αk

(
∥θk′∥3∥θk∥∥θ∥k∥+ ∥θ∥k′∥∥θk∥

3∥θ∥k∥
))

.

We now prove the lemmas on the non-junk terms.

Proof of Lemma E.9.

ES
[
piipij

(
(θ

∥
k′)

Tuk′u
T
k′µk′

)(
2µTk ukαk(θ

∥
k)
Tuk

)]
= ES

[
qiiqij

(
(θ

∥
k′)

Tuk′u
T
k′µk′

)(
2µTk ukαk(θ

∥
k)
Tuk

)]
+ ES

[
(piipij − qiiqij)

(
(θ

∥
k′)

Tuk′u
T
k′µk′

)(
2µTk ukαk(θ

∥
k)
Tuk

)]
= 2αkqiiqijθ

T
k′µk′θ

T
k µk + 2αkqiiqijES

[(
piipij
qiiqij

− 1

)(
(θ

∥
k′)

Tuk′u
T
k′µk′

)(
µTk uk(θ

∥
k)
Tuk

)]
.

Now by Claim E.16, we have
∣∣∣piipijqiiqij

− 1
∣∣∣ ≤ ZiZj − 1 (where the variable’s Zi, Zj are defined in the

Claim E.16) so∣∣∣∣ES [(piipij
qiiqij

− 1

)(
(θ

∥
k′)

Tuk′u
T
k′µk′

)(
µTk uk(θ

∥
k)
Tuk

)]∣∣∣∣ ≤ ES
[
(ZiZj − 1)

∣∣∣(θ∥k′)Tuk′uTk′µk′ ∣∣∣ ∣∣∣µTk uk(θ∥k)Tuk∣∣∣]
≤ C

(
∥θk∥2 + ∥θk′∥2

)
∥θ∥k′∥∥θ

∥
k∥.

Here the second inequality follows from applying Lemma E.5 first, and then Lemma E.4 repeatedly
for the remainder of the variables in S. This proves the lemma. Note that we need to apply Lemma E.5
several times to a single variable X ∈ S. Indeed we can write

(ZiZj − 1)
∣∣∣(θ∥k′)Tuk′uTk′µk′ ∣∣∣ ∣∣∣µTk uk(θ∥k)Tuk∣∣∣ = (Eℓ exp(|tℓX|)Sℓ − 1)B|X|c

= (EℓSℓ(exp(|tℓX|)− 1))B|X|c + (EℓSℓ − 1))B|X|c

for some distribution on ℓ, and for some terms Sℓ, tℓ, and B that are independent of X , and c ∈
{0, 1, 2}. Then to take the expectation of this term over X , we first apply Lemma E.5 to on X to the
first term, and iteratively apply Lemma E.5 to the random variables appearing in the next terms.

Proof of Lemma E.11.

1

1− x2
ES
[
piipijθ

T
k h1(S)

]
= ES

[
piipij

(
(θ

∥
k′)

Tuk′u
T
k′µk′

)(
2(θ

∥
k)
Tukαk(θ

∥
k)
Tuk

)]
= ES

[
qiiqij

(
(θ

∥
k′)

Tuk′u
T
k′µk′

)(
2αk((θ

∥
k)
Tuk)

2
)]

+ ES
[
(piipij − qiiqij)

(
(θ

∥
k′)

Tuk′u
T
k′µk′

)(
2αk((θ

∥
k)
Tuk)

2
)]

= 2αkqiiqijθ
T
k′µk′∥θ

∥
k∥

2 + 2αkqiiqijES
[(

piipij
qiiqij

− 1

)(
(θ

∥
k′)

Tuk′u
T
k′µk′

)(
(θ

∥
k)
Tuk

)2]
.
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Now by Claim E.16, we have
∣∣∣piipijqiiqij

− 1
∣∣∣ ≤ ZiZj − 1, so∣∣∣∣ES [(piipij

qiiqij
− 1

)(
(θ

∥
k′)

Tuk′u
T
k′µk′

)(
(θ

∥
k)
Tuk

)2]∣∣∣∣ ≤ ES
[
(ZiZj − 1)

∣∣∣(θ∥k′)Tuk′uTk′µk′ ∣∣∣ ((θ∥k)Tuk)2]
≤ C

(
∥θk∥2 + ∥θk′∥2

)
∥θ∥k′∥θ

∥
k∥

2,

Again the second inequality follows from applying Lemma E.5 first (several times as described in the
previous lemma), and then Lemma E.4 repeatedly for the remainder of the variables in S. Taking
absolute values proves the lemma.
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