
Same Pre-training Loss, Better Downstream:
Implicit Bias Matters for Language Models

Hong Liu Sang Michael Xie Zhiyuan Li Tengyu Ma
Stanford University

{hliu99, sxie, zhiyuanli, tengyuma}@stanford.edu

Abstract
Language modeling on large-scale datasets leads to impressive performance gains
on various downstream tasks. The validation pre-training loss (or perplexity) is
often used as the evaluation metric when developing language models since the
pre-training loss is correlated with downstream performance. This paper shows
that 1) pre-training loss cannot fully explain downstream performance and 2)
flatness of the model is well-correlated with downstream performance where
pre-training loss is not. On simplified datasets, we identify three ways to produce
models with the same pre-training loss but different downstream performance:
continuing pre-training after convergence, increasing the model size, and changing
the training algorithm. These experiments demonstrate the existence of implicit bias
of pre-training algorithms—among models with the same pre-training loss, they
implicitly prefer more transferable ones. We prove that SGD prefers flatter minima
in language models, and empirically observe a strong correlation between flatness
and downstream performance among models with the same pre-training loss.

1 Introduction
Large language models (LLMs) trained on internet-scale data have improved performance on a wide
array of downstream tasks [12, 53, 37, 38, 7]. These models are trained with a language modeling
pre-training loss to “fill in the blanks"—either predicting the next token/word (autoregressive lanugage
modeling loss, or perplexity) or masked tokens (masked language modeling (MLM) loss). The
validation pre-training loss is used to monitor the training process [7, 55] and compare different
models since the pre-training loss is generally strongly correlated with downstream performance [19].
Theoretical works on understanding LLMs also focus on how the pre-training loss affects downstream
performance. Saunshi et al. [40], Wei et al. [49], Xie et al. [52] show that good pre-training loss is
a main reason for downstream success of LLMs.

In this paper, we question the correlation between the validation pre-training loss and downstream
performance for language modeling. We find that different parameter configurations with the same
pre-training loss can have different downstream performance, especially when the pre-training loss
reaches a near-optimal level. Concretely, we find three situations that demonstrate such a phenomenon:
(1) Even after the pre-training loss converges, models at a later time step still tend to perform better. (2)
Models trained by standard algorithms have better performance than adversarially trained models with
the same pre-training loss. (3) Larger models tend to perform better downstream than smaller models
even if they have the same pre-training loss. These situations are most prominent in the saturation
regime, where the models are close to the minimal possible pre-training loss (aka the entropy of the
conditional probability). In the saturation regime, the pre-training loss of all models are almost the
same, but the transferability to downstream tasks varies.

In each of the first two cases above, we find two models with the same pre-training loss and the same
architecture; but one has a better performance than the other. They only differ by the training algorithms.
This suggests the training algorithms have an implicit bias toward one of these models—standard
algorithms with more training steps biases towards parameter configurations that transfer better
to downstream tasks. The third case has a more subtle but similar interpretation. There exists a

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of Steps / 1000

48

50

52

54

Do
wn

st
re

am
 A

cc
ur

ac
y

%
Linear Probe

3

4

5

6

7

8

Pr
e-

tra
in

in
g

Lo
ss

PCFG, Task C, 41M

Pre-training

4 10 29 67 135
Model Size / M

40

50

60

70

80

90

Do
wn

st
re

am
 A

cc
ur

ac
y

%

HMM, Task-10

Fine-tuning
Linear Probe

3.7
5

3.7
6

3.7
7

3.7
8

3.7
9

3.8
0

Pr
e-

tra
in

in
g

Lo
ss

Pre-training

5 12 41 80 235 436 730
Model Size / M

52

54

56

58

60

62

64

66

68

70

Do
wn

st
re

am
 A

cc
ur

ac
y

%

OPT, QNLI

Fine-tuning
Linear Probe

1.9

2.0

2.1

2.2

2.3

2.4

Pr
e-

tra
in

in
g

Lo
ss

Pre-training

Figure 1: Models with the same pre-training loss can perform differently on downstream tasks. Left:
Models at a later time step performs better, even after the pre-training loss converges. Middle and Right:
Larger models perform better than smaller models, even with almost the same pre-training loss.

hypothetical large model that represents the smaller model with worse performance (by padding zeros
to the smaller model). The training algorithm on the large architecture could have chosen it, but did
not. This suggests the algorithm has an implicit bias against the hypothetical model.

In supervised settings, the implicit bias selects generalizable models among all models with small
empirical loss [11, 29]. However, the role of implicit bias in language modeling has not been studied.
The gap between empirical and population losses is typically small in language modeling. The implicit
bias selects local minima of the population self-supervised loss that transfer better to downstream tasks.

In Section 3, we provide a first-cut theoretical analysis of the implicit bias in language modeling. We
prove that mini-batch SGD prefers flatter minima of population pre-training loss. Interestingly, we
obtain cleaner theoretical results for the standard mini-batch SGD, without the artificial label noise
in [11, 29], partly because the mini-batch noise for LLMs does not vanish even at convergence.

We corroborate our theory with empirical evidence in Section 4. We show that for models with the
same pre-training loss in the three cases above, flatness of the model (measured by the trace of Hessian
of the loss) strongly correlates with the downstream performance.

2 The Existence of Implicit Bias in Language Modeling
We investigate the relationship between pre-training loss and downstream performance, and find out
that models with the same pre-training loss but different pre-training procedures can have different
downstream performance.

2.1 Formulations
Masked language modeling. Consider a vocabulary W = {0,1,...,c}, where 0 is a special token
for the mask. Let x= [x1,...,xT] denote the input sequence, and x−t = [x1,...,xt−1,0,xt+1,...,xT]
denote the masked sentence, where t is sampled uniformly randomly and independently from [T].1
The MLM conditional probability refers to the probability of xt given the rest of the sequence
Pr (xt |x−t). We use Pr (· |x−t) to denote the c-dimensional probability vector Pr (· |x−t) :=
[Pr(xt=1 |x−t),...,Pr(xt=c |x−t)]∈Rc. The model fθ(·) outputs the predicted MLM conditional
probability vector fθ(x−t)∈Rc. The model is trained to predict the masked token xt given the rest of
the sentence x−t with cross entropy loss,L(θ)=Ex,t[`(fθ(x−t),xt)]=Ex,t[−log([fθ(x−t)]xt

)]. On
downstream tasks, we use a randomly initialized linear classfier on top of the contextual representations.
In fine-tuning, both of them are trained, while in linear probe, only the classifier is updated.

Saturation regime. We introduce the saturation regime, where the model output equals the true condi-
tional probability, fθ(x−t)=Pr(· |x−t). The MLM loss is equal to the entropy of the true conditional
probability L(θ) = Ex,t[−log(Pr(xt |x−t))] = 1

T

∑T
t=1H(xt | x−t). All models in the saturation

regime have the same, optimal pre-training loss, and we will show that they behave differently on down-
stream tasks. Our experiments use expressive enough architectures such that we can enter saturation
regime for our simplified datasets. For real large-scale data, it is currently computationally challenging
to arrive at the saturation regime. We hope that our experiments can provide insights for even larger mod-
els in the future and for other regimes where pre-training loss does not explain downstream performance.

2.2 Experimental Setup
We design controlled experiments to study the correlation between pre-training loss and downstream
performance. In particular, we will find a set of models with almost the same pre-training loss. We
effectively use the same architecture family so that the main difference between the models only stems
from training algorithms. More details and additional results are provided in Section A.

1For simplicity, we only consider masking out one one token in each sentence.

2

Datasets. We introduce three generative models PCFG [8], HMM and OPT [55] to produce simplified
datasets, with which we can study various factors systematically. With the knowledge of the true gen-
erative models that generate the data, we can compute the true conditional probability and scale up the
models until they approach the saturation regime to ensure they have almost the same pre-training loss.
For PCFG and HMM, the downstream task is to classify the hidden variables. For OPT, we use QNLI
and SST-2 from GLUE [46] as downstream tasks. The true conditional probability can be computed
efficiently for the three datasets given the knowledge of the generated models, as detailed in Section A.

Models and algorithms. For PCFG and OPT generated datasets, we use transformers. For the HMM
generated dataset, we use LSTM. In pre-training, all the models are pre-trained with AdamW. For
comparison, we also consider other training algorithms. The first adversarial algorithm is inspired
by Liu et al. [31], Raghu et al. [39], where the models are pre-trained with an additional meta-learning
objective which messes up downstream performance. The second algorithm is manually setting the
weight of the model to represent a lookup table which memorizes all the masked sentences and the
corresponding true conditional probability. When the transformer is sufficiently large, the lookup
table can be encoded as shown in Yun et al. [54].

2.3 Results

We compare the downstream performance of models with the same pre-training loss in the following
situations: (2) training for different number of steps after the pre-training loss converges, (2) using dif-
ferent model sizes, and (3) training with normal training algorithms vs. adversarial training algorithms.

In Figure 1 Left, we plot the validation pre-training loss and the downstream performance of different
models checkpoints along pre-training. After the pre-training loss converges, although the pre-training
loss does not improve, the downstream accuracy continues increasing.

In Figure 1 Middle and Right, we plot the pre-training loss and the downstream performance of models
with different sizes. As we increase the model size, the pre-training loss approaches the entropy
of the true conditional probability, which is 3.758 and 1.865 for HMM and OPT respectively. For
OPT-generated dataset, we use the vertical dashed line to indicate the place where the pre-training loss
saturates as we scale up the model. For the much simpler HMM, the smallest model can fit pre-training
close to the entropy of the true conditional probability. With the same pre-training loss, scaling up
the models improves linear probe performance by 4.5% and 2.0%, on HMM, and OPT generated data.

Table 1: Different pre-training algorithms on PCFG.

Method Pre-training Task A % Task B %

AdamW 3.204 89.9±0.3 49.2±0.8
Adversarial 3.206 83.1±0.6 42.3±1.5
Lookup table 3.196 71.2 39.7

Naturally trained transformers are better than adver-
sarially trained ones. In Table 1, we evaluate the
235M transformers on PCFG tasks A and B with
different pre-training algorithms. Although the ad-
versarially trained transformer has almost the same
pre-training loss as the normally trained 235M trans-
former, it is more than 6% worse than the normal 235M model, and even worse than a normal 9M model
on the downstream task B. The lookup table has perfect pre-training loss, but it performs the worst.

The experiments above indicate that for models with the same architecture family and the same pre-
training loss, the choice of training algorithms, model sizes, and the number of steps of the optimizer
affect the downstream performance. This indicates the implicit bias of the training algorithms toward
choosing more transferable models among those with the same pre-training loss and architecture.

3 Implicit Bias Leads to Flat Solutions in Language Modeling
We show that mini-batch SGD can find models in the flatter areas of pre-training loss landscape. The
flatness is measured by the trace of Hessian of the pre-training loss Tr[∇2L(θ)].

We analyze SGD on the population cross-entropy loss L(θ)=Ex,t[−log([fθ(x−t)]xt
)] with freshly

sampled data at every iteration. Let η be the learning rate and let θηk denote the parameter at step
k. We analyze the process starting from a global minimizer θ. At each iteration, we get a fresh
sample (x,t), where x is a sentence and t is the position of the mask, and update the parameter θ by
θk+1 =θk−η∇θ`(fθk(x−t),xt). As a regularity condition following prior works [14, 29, 3], we also
assume that the minimizers of the loss functionL are connected and form a smooth manifold.
Assumption 3.1. Assume that the lossL is a C3-smooth function, and that the set of global minimizers,
Γ, is a (d −M)-dimensional C2-submanifold of Rd for some integer 1 ≤ M ≤ d, where for all
θ∈Γ,rank

(
∇2L(θ)

)
=M .

3

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Number of Steps / 1000

42

44

46

48

50

52

54

56

Do
wn

st
re

am
 A

cc
ur

ac
y

%

Linear Probe, Task C

2

3

4

5

6

7

8

9

Pr
e-

tra
in

in
g

Lo
ss

22.82

15.84

9.959.37 9.26 9.12 8.95 8.36 8.09 7.93 7.84

PCFG, SGD, 235M

Pre-training
Trace of Hessian

5 9 18 24 75 210 950
Model Size / M

35.0

37.5

40.0

42.5

45.0

47.5

50.0

52.5

55.0

Do
wn

st
re

am
 A

cc
ur

ac
y

%

PCFG

Linear Probe, Task B

3.2
0

3.2
2

3.2
4

3.2
6

3.2
8

3.3
0

3.3
2

3.3
4

Pr
e-

tra
in

in
g

Lo
ss

45.8

19.8
16.2 15.2 13.6 13.1 12.6

Pre-training
Trace of Hessian

18 24 75 210 950
Model Size / M

53

54

55

56

57

58

59

60

Do
wn

st
re

am
 A

cc
ur

ac
y

%

OPT

Linear Probe, QNLI

1.9

2.0

2.1

2.2

2.3

2.4

2.5

Pr
e-

tra
in

in
g

Lo
ss

79.7

36.4

14.95 10.54 7.1

Pre-training
Trace of Hessian

Figure 2: The trace of Hessian correlates with downstream performance. Left: model checkpoints
with different number of steps after the pre-training loss converges. Middle and Right: models with
different sizes and almost the same pre-training loss.

Even if the language model reaches a point on the manifold Γ of the minimizers, the optimization
process still has non-vanishing gradient noise, because the cross-entropy loss is non-zero at the global
minimizers and the stochastic gradient variance is also non-zero. Therefore, the dynamics of SGD do
not completely stop; instead, the iterate oscillates around the manifold Γ. The following lemma shows
the covariance of stochastic gradient for language models equals the Hessian of pre-training loss.

Lemma 3.2. For any θ∈Γ, Σ(θ)=∇2L(θ), where Σ(θ) is the covariance of the stochastic gradient
at θ, that is, Σ(θ)=Et,x

[
∇θlog[fθ(x−t)]xt

(∇θlog[fθ(x−t)]xt
)>
]
−∇L(θ)>∇L(θ).

With Lemma 3.2, we can invoke Corollary 5.2 of Li et al. [29] to derive the following theorem: SGD
will locally decrease the trace of Hessian along the solution of ordinary differential equation (1).

dθ̂(t)=−1

4
∇ΓTr[∇2L(θ̂(t))]dt, θ̂(0)=θ (1)

where ∇Γ = P⊥Γ ∇ is the Riemannian gradient on manifold Γ. In other words, the ODE (1) is
essentially a projected gradient descent algorithm with loss function Tr[∇2L(θ)], the constraint set
Γ, and infinitesimal learning rate. We show that SGD effectively minimizes the trace of the Hessian
Tr[∇2L(θ)] with the constraint set Γ similarly to ODE in (1).

Theorem 3.3. Suppose the loss functionL and the manifold of global minimizers Γ satisfy Assumption
3.1. For any K > 0 such that ODE (1) has a solution {θ̂(t)}Kt=0, it holds that θηK/η2 converges in

distribution to θ̂(K) as η→0.

4 Flatter Models Have Better Downstream Performance
Evaluation of flatness. As in Theorem 3.3, we measure the flatness of different models by the trace of
Hessian of the pre-training loss. For computational feasibility, we adopt a technique inspired by Wei
et al. [48] to unbiasedly estimate the trace of Hessian. Details are provided in Section B.

Table 2: A 235M transformer pre-trained with dif-
ferent algorithms evaluated on PCFG Task C.

Method Pre-training Acc % Tr(H)

AdamW 3.20 55.7±0.6 8.01±0.73
Adversarial 3.20 50.2±1.0 19.34±0.92

Results. In Figure 2 Left, we compare the down-
stream accuracy and the trace of Hessian of check-
points at different times in pre-training. The trace
of Hessian demonstrates a decreasing trend after the
validation pre-training loss converges. Furthermore,
as the trace of Hessian decreases, the downstream
performance improves by 1.6% on the PCFG dataset.

We compare the trace of Hessian of the models pre-trained with adversarial algorithm and standard
AdamW in Table 2. The trace of Hessian of the adversarially pre-trained model is 2 times larger than
the normally pre-trained model, corresponding to a drop of 5.5% in downstream performance.

In Figure 2 Middle and Right, we compare the downstream accuracy and the trace of Hessian of models
with different sizes. On the datasets generated by OPT, the pre-training loss is almost the same for
models larger than 75M. As we increase the model size, the trace of Hessian of the pre-training loss
decreases from 14.9 to 7.1, correlating with the increase of linear probe accuracy from 57.3% to 59.7%.
The same observation hols on the PCFG-generated datasets.

Interaction between implicit bias and model size. Intuitively, the implicit bias drives the model
toward flat minima on both larger models and smaller models. The smaller transformer architecture
is a subset of the larger transformer architecture family (as justified in Section B). Thus the flattest
minimum found within a larger transformer is flatter than the flattest minimum found within a smaller
transformer, and performs better downstream.

4

Acknowledgement

We thank Jeff Z. HaoChen, Yining Chen, Garrett Thomas and Ananya Kumar for valuable feedbacks.
HL is supported by the Stanford Graduate Fellowship. SMX is supported by an NDSEG Fellowship.
The authors would like to thank the support from NSF IIS 2045685.

References
[1] Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix

factorization. In Advances in Neural Information Processing Systems, pp. 7411–7422, 2019.

[2] Sanjeev Arora, Hrishikesh Khandeparkar, Mikhail Khodak, Orestis Plevrakis, and Nikunj Saunshi.
A theoretical analysis of contrastive unsupervised representation learning. In International
Conference on Machine Learning, 2019.

[3] Sanjeev Arora, Zhiyuan Li, and Abhishek Panigrahi. Understanding gradient descent on the
edge of stability in deep learning. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp. 948–1024.
PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.press/v162/arora22a.html.

[4] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[5] Yu Bai and Jason D Lee. Beyond linearization: On quadratic and higher-order approximation of
wide neural networks. International Conference on Learning Representations (ICLR), 2020.

[6] Guy Blanc, Neha Gupta, Gregory Valiant, and Paul Valiant. Implicit regularization for deep
neural networks driven by an ornstein-uhlenbeck like process. arXiv preprint arXiv:1904.09080,
2019.

[7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[8] Noam Chomsky. Three models for the description of language. IRE Transactions on information
theory, 2(3):113–124, 1956.

[9] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane,
Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking
attention with performers. arXiv preprint arXiv:2009.14794, 2020.

[10] Zihang Dai, Guokun Lai, Yiming Yang, and Quoc Le. Funnel-transformer: Filtering out sequential
redundancy for efficient language processing. Advances in neural information processing systems,
33:4271–4282, 2020.

[11] Alex Damian, Tengyu Ma, and Jason D Lee. Label noise sgd provably prefers flat global
minimizers. Advances in Neural Information Processing Systems, 34:27449–27461, 2021.

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[13] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[14] Benjamin Fehrman, Benjamin Gess, and Arnulf Jentzen. Convergence rates for the stochastic
gradient descent method for non-convex objective functions. Journal of Machine Learning
Research, 21:136, 2020.

[15] Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit bias of gradient descent
on linear convolutional networks. In Advances in Neural Information Processing Systems, pp.
9461–9471, 2018.

5

https://proceedings.mlr.press/v162/arora22a.html

[16] Jeff Z HaoChen, Colin Wei, Jason D Lee, and Tengyu Ma. Shape matters: Understanding the
implicit bias of the noise covariance. arXiv preprint arXiv:2006.08680, 2020.

[17] Jeff Z HaoChen, Colin Wei, Adrien Gaidon, and Tengyu Ma. Provable guarantees for self-
supervised deep learning with spectral contrastive loss. arXiv preprint arXiv:2106.04156, 2021.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

[19] Danny Hernandez, Jared Kaplan, Tom Henighan, and Sam McCandlish. Scaling laws for transfer.
arXiv preprint arXiv:2102.01293, 2021.

[20] John Hewitt and Christopher D Manning. A structural probe for finding syntax in word rep-
resentations. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pp. 4129–4138, 2019.

[21] Phu Mon Htut, Jason Phang, Shikha Bordia, and Samuel R Bowman. Do attention heads in bert
track syntactic dependencies? arXiv preprint arXiv:1911.12246, 2019.

[22] Peter Izsak, Moshe Berchansky, and Omer Levy. How to train bert with an academic budget.
arXiv preprint arXiv:2104.07705, 2021.

[23] Ziwei Ji and Matus Telgarsky. Gradient descent aligns the layers of deep linear networks. arXiv
preprint arXiv:1810.02032, 2018.

[24] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

[25] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu
Soricut. Albert: A lite bert for self-supervised learning of language representations. arXiv
preprint arXiv:1909.11942, 2019.

[26] Hae Beom Lee, Hayeon Lee, Donghyun Na, Saehoon Kim, Minseop Park, Eunho Yang, and
Sung Ju Hwang. Learning to balance: Bayesian meta-learning for imbalanced and out-of-
distribution tasks. In International Conference on Learning Representations, 2020.

[27] Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-parameterized
matrix sensing and neural networks with quadratic activations. arXiv preprint arXiv:1712.09203,
pp. 2–47, 2017.

[28] Zhiyuan Li, Yuping Luo, and Kaifeng Lyu. Towards resolving the implicit bias of gradient descent
for matrix factorization: Greedy low-rank learning. arXiv preprint arXiv:2012.09839, 2020.

[29] Zhiyuan Li, Tianhao Wang, and Sanjeev Arora. What happens after sgd reaches zero loss?–a
mathematical framework. arXiv preprint arXiv:2110.06914, 2021.

[30] Hanxiao Liu, Zihang Dai, David So, and Quoc V Le. Pay attention to mlps. Advances in Neural
Information Processing Systems, 34:9204–9215, 2021.

[31] Hong Liu, Jeff Z HaoChen, Colin Wei, and Tengyu Ma. Meta-learning transferable representations
with a single target domain. arXiv preprint arXiv:2011.01418, 2020.

[32] Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural
networks. arXiv preprint arXiv:1906.05890, 2019.

[33] Jonathan Mamou, Hang Le, Miguel Del Rio, Cory Stephenson, Hanlin Tang, Yoon Kim, and
SueYeon Chung. Emergence of separable manifolds in deep language representations. arXiv
preprint arXiv:2006.01095, 2020.

[34] Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and
Luke Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work?
arXiv preprint arXiv:2202.12837, 2022.

6

[35] Maurice Nivat. On some families of languages related to the dyck language. In Proceedings of
the second annual ACM symposium on Theory of computing, pp. 221–225, 1970.

[36] Matthew E Peters, Mark Neumann, Luke Zettlemoyer, and Wen-tau Yih. Dissecting contextual
word embeddings: Architecture and representation. arXiv preprint arXiv:1808.08949, 2018.

[37] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[38] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21:1–67, 2020.

[39] Aniruddh Raghu, Jonathan Lorraine, Simon Kornblith, Matthew McDermott, and David K
Duvenaud. Meta-learning to improve pre-training. Advances in Neural Information Processing
Systems, 34:23231–23244, 2021.

[40] Nikunj Saunshi, Sadhika Malladi, and Sanjeev Arora. A mathematical exploration of why
language models help solve downstream tasks. arXiv preprint arXiv:2010.03648, 2020.

[41] Nikunj Saunshi, Jordan Ash, Surbhi Goel, Dipendra Misra, Cyril Zhang, Sanjeev Arora, Sham
Kakade, and Akshay Krishnamurthy. Understanding contrastive learning requires incorporating
inductive biases. arXiv preprint arXiv:2202.14037, 2022.

[42] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The
implicit bias of gradient descent on separable data. The Journal of Machine Learning Research,
19(1):2822–2878, 2018.

[43] Yi Tay, Dara Bahri, Donald Metzler, Da-Cheng Juan, Zhe Zhao, and Che Zheng. Synthesizer:
Rethinking self-attention for transformer models. In International conference on machine
learning, pp. 10183–10192. PMLR, 2021.

[44] Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung,
Sharan Narang, Dani Yogatama, Ashish Vaswani, and Donald Metzler. Scale efficiently: Insights
from pre-training and fine-tuning transformers. arXiv preprint arXiv:2109.10686, 2021.

[45] Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas
Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer:
An all-mlp architecture for vision. Advances in Neural Information Processing Systems, 34:
24261–24272, 2021.

[46] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

[47] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

[48] Colin Wei, Sham Kakade, and Tengyu Ma. The implicit and explicit regularization effects of
dropout. arXiv preprint arXiv:2002.12915, 2020.

[49] Colin Wei, Sang Michael Xie, and Tengyu Ma. Why do pretrained language models help in
downstream tasks? an analysis of head and prompt tuning. arXiv preprint arXiv:2106.09226,
2021.

[50] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny
Zhou. Chain of thought prompting elicits reasoning in large language models. arXiv preprint
arXiv:2201.11903, 2022.

[51] Blake Woodworth, Suriya Gunasekar, Jason D Lee, Edward Moroshko, Pedro Savarese, Itay
Golan, Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models.
arXiv preprint arXiv:2002.09277, 2020.

[52] Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. arXiv preprint arXiv:2111.02080, 2021.

7

[53] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le.
Xlnet: Generalized autoregressive pretraining for language understanding. Advances in neural
information processing systems, 32, 2019.

[54] Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J Reddi, and Sanjiv Kumar.
Are transformers universal approximators of sequence-to-sequence functions? arXiv preprint
arXiv:1912.10077, 2019.

[55] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

[56] Tianyi Zhang and Tatsunori Hashimoto. On the inductive bias of masked language modeling:
From statistical to syntactic dependencies. arXiv preprint arXiv:2104.05694, 2021.

[57] Yi Zhang, Arturs Backurs, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar, and Tal Wagner.
Unveiling transformers with lego: a synthetic reasoning task. arXiv preprint arXiv:2206.04301,
2022.

8

A Details in Section 2

A.1 Generating Simplified Datasets

PCFG-generated dataset. We consider a PCFG with vocabulary size 200. The state space is S, and
|S|=50. All the production rules have two symbols on the right side. The sentence length is limited to
32, which means the depth of the parse tree is limited to 6. We generate a total of 2×107 sentences,
which is 3.4×108 tokens. The downstream tasks are classifying the non-terminal symbols in the parse
tree of the PCFG (50-way classification). The label is defined as y=argmaxs∈SPr(s |x1,x2,...,x1+L).
Tasks A, B and C are defined on the symbols corresponding to span lengthL=32,16 and 8, respectively.
Each of the downstream task contains 0.1M examples. Examples of the generated trees are provided in
Figure 3.

Figure 3: An example of the genearated PCFG sentence.

HMM-generated dataset. We consider an HMM with vocabulary size 200 and state space size 100.
The sentence length is restricted to 16. We generate a total of 1×107 sentences, which is 1.6×107

tokens. The downstream task is to classify the latent variable in the HMM generative model. We
consider task-6 and task-10, which classify the 6-th and 10-th hidden variables respectively. Each of
the downstream task contains 0.1M examples.

OPT-generated dataset. We use the 125M OPT model to generate the training dataset. To simplify the
dataset, we further process the logit of OPT to select only from the top-2000 tokens in the vocabulary.
Starting from the bos token, we sample every token of the sentence from the predicted autoregressive
LM probability. The sentence length is restricted to 24. We generate a total of 2×108 sentences, which
is 3.2×109 tokens. Examples of the generated text are provided in Figure 4.

Figure 4: An example of the genearated OPT sentence.

A.2 Compute the True Conditional Probabilities

We can compute the true MLM conditional probability Pr (xt |x−t) from the joint probability
Pr(xt,x−t),

Pr(xt=c |x−t)=
Pr(xt=c,x−t)∑
c∈WPr(xt=c,x−t)

.

Since we already know the generative model, we can compute the joint probability efficiently. For
PCFG, we can compute the joint probability with the inside algorithm, which decomposes the joint
probability into lower layers in the parse tree. For HMM, we can compute the joint probability with the
Viterbi algorithm. For OPT, we have Pr(x1,...,xT)=Pr(x1)

∏T−1
t=1 Pr(xt+1 |x1,...,xt).

A.3 Models

We use transformers on PCFG and OPT-generated datasets. We use learning rate 1e-3 and warmup
proportion 0.06. All the models are trained based on the implementation of Izsak et al. [22]. We list the
sizes of the transformers in Table 3. d-model is the size of the hidden layers. d-inter is the size of the
intermediate layers in MLP. n-head is the number of heads per layer. #layers is the number of layers.
For LSTMs, we use the implementation of PyTorch. We consider d-hidden in [128,256,512,768,1024],
and #layers in [4,6,8,12,16].

9

Table 3: Shape of the transformers in Section 2.

d-model n-nead #layers d-inter

64 1 1 256
128 2 4 512
192 3 5 768
256 4 6 1024
512 8 8 2048
768 12 12 3072

1024 16 16 4096
1280 20 20 5120
1536 24 24 6144

A.4 Algorithms

The lookup table. To evaluate the downstream performance of the lookup table, we first create the
lookup table with the data of the downstream task. With the method mentioned in Section A.2, we can
generate the true conditional probability of each token and use it as the contextual embeddings.

The adversarial algorithm. The adversarial algorithm we use to mess up the downstream performance
is maximizing a meta-learning objective in pre-training. Suppose the linear head of the downstream
task is gφ and the feature representation is hψ. The meta-learning algorithm first trains the head gφ
to minimize the training loss of the downstream task, and then update hψ to maximize the validation
loss on the downstream tasks. Concretely, we randomly sample two disjoint subsetsD1 andD2 from
the downstream training dataset D. We train gφ to minimize the loss of downstream tasks on D1,
φ̂(ψ)∈argmin 1

|D1|
∑

(x,y)∈D1
`(gφ(hψ(x)),y). Then we train hψ to maximize the validation loss on

D2 during pre-training, minimizeψL(ψ)−λ 1
|D2|

∑
(x,y)∈D2

`(gφ̂(ψ)(hψ(x)),y). The optimization can
be efficiently carried out with closed form solution of φ as shown in Liu et al. [31].

Fine-tuning. Following the standard protocol of Devlin et al. [12], we use the contextual embeddings
of the CLS token for fine-tuning. We use AdamW with learning rate 1e-4. We perform 200 warmup
steps and train on the downstream tasks for 10 epochs.

Linear probe. Since the CLS token is not trained in pre-training, we concatenate embeddings of all the
tokens in the sentence as the representations. We use AdamW with learning rate 1e-3 to train the linear
head. We train on the downstream tasks for 100 epochs. Note that to make the capacity of the linear
probe itself controlled, we adopt a random Gaussian projection to dimension 512 on the concatenation
of the embeddings and find out that this does not affect the final performance. Therefore we report the
results of standard linear probe by default.

We report the standard deviation of linear probe and fine-tuning from 5 random seeds.

Evaluation of pre-training loss. Since we have access calculate the true conditional probability, we
can calculate the cross entropy loss as the sum of the entropy of the true conditional probability and the
KL divergence between the predicted and true conditional probabilities. This is more accurate than
evaluating on the validation datasets in the standard ways. We report the number of pre-training loss
with 106 sentences, and calculate the standard deviation on 5 subsets, each of which has size 2×105.

A.5 Results on Other Downstream Tasks.

We also provide results on other downstream tasks in this subsection. On PCFG Task A, OPT SST-2
and the Task-6 of HMM, we can also observe the increase in downstream performance as we scale up
the models in the saturation regime.

A.6 Evaluation of Pre-training Loss with KL Divergence.

Since we have access to the true conditional probability from the generative models, we can decompose
the cross entropy into the KL divergence between prediction and true conditional probability plus the
entropy of the true conditional probability. When comparing different models in the saturation regime,
we can use the KL divergence to reduce the variance of the loss evaluation. We provide the results with

10

2 5 9 12 41 80 235 436 730
Model Size / M

78

80

82

84

86

88

90

92

94

Do
wn

st
re

am
 A

cc
ur

ac
y

%

PCFG, Task A

Fine-tuning
Linear Probe

3.2
0

3.2
2

3.2
4

3.2
6

3.2
8

3.3
0

3.3
2

3.3
4

3.3
6

Pr
e-

tra
in

in
g

Lo
ss

Pre-training

(a) PCFG→Task A

5 12 41 80 235 436 730
Model Size / M

50

55

60

65

70

75

80

85

Do
wn

st
re

am
 A

cc
ur

ac
y

%

OPT, SST2

Fine-tuning
Linear Probe

10

11

12

13

14

15

Pr
e-

tra
in

in
g

Lo
ss

Pre-training

(b) OPT→SST-2

4 10 29 67 135
Model Size / M

40

50

60

70

80

90

Do
wn

st
re

am
 A

cc
ur

ac
y

%

HMM, Task-6

Fine-tuning
Linear Probe

3.7
5

3.7
6

3.7
7

3.7
8

3.7
9

3.8
0

Pr
e-

tra
in

in
g

Lo
ss

Pre-training

(c) HMM→Task-6

Figure 5: The downstream accuracy continues to rise as we increase the model size, althought the
pre-training loss remains unchanged.

KL divergence evaluation in Figure 6. Even with the log of the KL divergence as the pre-training loss,
we can still observe the models are saturating as training proceeds or as we scale up the models.

2 5 9 12 41 80 235 436 730
Model Size / M

30

40

50

60

70

80

Do
wn

st
re

am
 A

cc
ur

ac
y

%

PCFG, Task B

Fine-tuning
Linear probe, features

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0
Pr

e-
tra

in
in

g
Lo

ss
, l

og
(D

_k
l)

Pre-training

(a) PCFG→Task B

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Number of Steps / 1000

42

44

46

48

50

52

54

56

Do
wn

st
re

am
 A

cc
ur

ac
y

%

Linear Probe, Task C

5

4

3

2

1

0

1

2

Pr
e-

tra
in

in
g

Lo
ss

, l
og

(d
_k

l)PCFG, SGD, 235M

Pre-training

(b) PCFG→Task C

Figure 6: Results with KL divergence evaluation.

11

B Details in Section 4

B.1 Unbiased Estimate of the Trace of Hessian.

Evaluating the trace of Hessian requires the norm of the Jacobian∇θlog[fθ(x−t)]. Since the output
dimension c and the number of parameters are all very large, computing the Jacobian∇θlog[fθ(x−t)]
will be very inefficient. Instead, we can estimate the trace of Hessian unbiasedly with random samples
as follows. Suppose fθ(x−t) is the predicted probability of the conditional probability. In the saturation
regime, as fθ(x−t) approaches the true conditional probability, the Hessian of the pre-training loss
w.r.t. the parameters can be expressed as

∇2L(θ)=Et,x−tExt|t,x−t

[
∇θlog[fθ(x−t)]xt(∇θlog[fθ(x−t)]xt)

>].
Therefore we have

Tr(∇2L(θ))=Et,x−t
Ext|t,x−t

‖∇θlog[fθ(x−t)]xt
‖22.

To approximate this expectation, we can first sample t,x−t from the language, then draw i.i.d. samples
xt from (fθ(x−t)), and use the average as the unbiased estimate. For all experiments, we sample 10000
x−t and sample 50 xt for each x−t.

B.2 Details in Figure 2.

To verify Theorem 3.3 that SGD biases the model towards flatter minima, we conduct MLM on PCFG
and HMM-generated datasets with SGD. We set the proportion of warmup stage to 12% total number
of steps, and fix the learning rate to 1e-3 after the warmup. We evaluate the downstream performance
and the trace of Hessian of different checkpoints along pre-training. The standard deviation of trace
of Hessian is calculated based on 5 times of sampling 50 examples as mentioned above. Apart from
the PCFG task C and HMM task-10, we also provide results on PCFG tasks A, B and HMM task-6 in
Figure 7.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Number of Steps / 1000

50
55
60
65
70
75
80
85
90

Do
wn

st
re

am
 A

cc
ur

ac
y

%

Linear Probe, Task A

2

3

4

5

6

7

8

9

Pr
e-

tra
in

in
g

Lo
ss

22.82

15.84

9.959.37 9.26 9.12 8.95 8.36 8.09 7.93 7.84

PCFG, SGD, 235M

Pre-training
Trace of Hessian

(a) PCFG, SGD, Task A, 235M

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Number of Steps / 1000

36

38

40

42

44

46

48

Do
wn

st
re

am
 A

cc
ur

ac
y

%

Linear Probe, Task B

2

3

4

5

6

7

8

9

Pr
e-

tra
in

in
g

Lo
ss

22.82

15.84

9.959.37 9.26 9.12 8.95 8.36 8.09 7.93 7.84

PCFG, SGD, 235M

Pre-training
Trace of Hessian

(b) PCFG, SGD, Task B, 235M

0 3 6 9 12 15 18 21 24 27
Number of Steps / 1000

65.0
67.5
70.0
72.5
75.0
77.5
80.0
82.5
85.0

Do
wn

st
re

am
 A

cc
ur

ac
y

%

Linear Probe, Task-6

3.5

4.0

4.5

5.0

5.5

Pr
e-

tra
in

in
g

Lo
ss

3.84

2.15
1.63 1.6 1.57 1.45 1.38 1.32 1.31

HMM, SGD, 67M

Pre-training
Trace of Hessian

(c) HMM, SGD, Task-6,67M

Figure 7: The trace of Hessian correlates with downstream performance for model checkpoints with
different number of steps after the pre-training loss converges.

B.3 Details in Figure ??.

To compare the trace of Hessian of transformers with different sizes, we need to embed the smaller
transformers into larger transformers. However, this requires the width of the larger transformers to be
a multiple of the width of the smaller transformers. We set the width of the largest transformer to the
least common multiple of the width of the smaller transformers as in Table 4. For evaluation, we still
use linear probe, and follow the setting of Section 2.

B.4 Embedding of a Smaller Transformer into a Larger Transformer.

In this subsection, we show that a smaller transformer can be embed into a larger transformer without
changing the functionality. We enable the embedding by considering two techniques (1) adding
additional layers using residual connections without changing the functionality and (2) increasing
feature dimension / adding more attention heads without change the functionality by duplicating the
weights.

12

Table 4: Shape of the transformers in Figure ??.

d-model n-nead #layers d-inter

128 2 4 512
192 3 5 768
320 5 6 1024
384 6 7 2048
640 10 12 3072
960 15 16 4096

1920 30 20 5120

B.4.1 The Base Case with MLPs.

To gain some insights of how to increase the feature dimension without changing the functionality, we
start with vanilla MLPs without layer-norm [4] and residual connections [18]. Consider a multi-layer
MLP fW,a(x). The weight matrices are W = [W0,...,WL−1].The dimensionality is Wl ∈Rdl+1×dl .
The representations are defined recursively, hl+1(x)=σ(Wlhl(x)). We denote the input by h0(x)=x
and the final output is defined as fW,a(x)=a>hL(x). The activation σ here is relu or leaky relu. We
aim to embed fW,a(x) into fW̃ ,ã(x), where W̃ = [W̃0,...,W̃L−1] and W̃l ∈R2dl+1×2dl . We need to
make sure fW,a(x)=fW̃ ,ã(x) for all x.

For this case, we can set W̃l=1/2

[
Wl Wl

Wl Wl

]
for l∈ [L−1], W̃0 = 1√

2

[
W
W

]
, and ã= 1√

2

[
a
a

]
. We can

verify that h̃l(x)= 1√
2

[
hl(x)
hl(x)

]
inductively. Therefore we have

fW̃ ,ã(x)=ã>h̃L(x)

=
1√
2

[a>,a>]
1√
2

[
hL(x)
hL(x)

]
=

1

2
fW,a(x)+

1

2
fW,a(x)

=fW,a(x).

B.4.2 Real Transformers.

Next we turn to transformers with residual connections and layer norm. We first use the same strategy
as the MLP case to add additional feature dimension and attention heads by replicating the weights,
and then show how to add new layers using residual connections. At a high level, replicating the weight
maintains the mean and the variance calculated by the layernorm. Therefore the representations inside
the transformer also get replicated, without changing the values in each of the replicated groups.

Setup. A transformer is composed of an input embeddingWE , L blocks of self-attention, and an
output layer. Transformers also contain layer-norm and residual connections. Suppose the input
x = [x1, ... , xT], where xi ∈ Rd. Each block of the self-attention contains of an attention layer
and an MLP layer, both equipped with residual connections and layer-norm. Let us denote by
[h0(x)]i=LN(WExi) the input embeddings. Suppose the hidden size is dh, i.e. [hl(x)]i∈Rdh . The
attention layer is defined as [vl(x)]i = LN([hl(x)]i+[Attnl(hl(x))]i), and the MLP layer is defined
as [hl+1(x)]i = LN([vl(x)]i+Ulσ(Wl[vl(x)]i+bl)). The activation σ is GeLU. The final output is
[f(x)]i=W>E [hL(x)]i. Note thatWE is both the input embedding and the weight of the output layer.
They are tied in training.

The layer norm is on the feature dimension. [LN(xi)]j=γj∗x̂ij+βj . x̂i is the normalized version of
xi with zero mean and unit variance. γ and β are trainable.

The multi-head attention consists of nh self-attention heads. The definition of the multi-head attention
is Attnl(hl(x)) = [(Al1hl(x)Vl1)>, ... , (Alnh

hl(x)Vlnh
)>]>Ol. The output matrix Ol ∈ Rdh×dh .

The attention heads composes of the attention score times the feature matrix times the value matrix.

13

The attention score Alk ∈Rd
′×d′ is computed with softmax dot product. For each k ∈ [nh], Alk =

softmax(hl(x)QlkK
>
lkhl(x)>).

Following the implementation of Devlin et al. [12], the dimension of the attention head is always
d′ = 64, thus dh = 64nh. The dimension of the intermediate layer in the MLP is set to 4dh, which
meansUl∈Rdh×4dh andWl∈R4dh×dh .

We aim to embed the smaller transformer f(x) into f̃(x), where d̃h=2dh, ñh=2nh, and L̃=L+L′.

Increasing feature dimension with replication of the parameters. Although the transformers
have layer-norm and residual connections, we can still modify the strategy in the base case with MLPs
slightly to increase the width of the model and the number of attention heads without changing the
functionality. Consider the following weight replication method. For l∈ [0,...,L−1],

W̃E=
1

2

[
WE

WE

]
, γ̃l=

[
γl
γl

]
, b̃l=

[
bl
bl

]
, β̃l=

[
βl
βl

]
, W̃l=

1

2

[
Wl Wl

Wl Wl

]
, Ũl=

1

2

[
Ul Ul
Ul Ul

]
, Õl=

1

2

[
Ol Ol
Ol Ol

]
,

Q̃lk=
1

2
[Qlk,Qlk], K̃lk=

1

2
[Klk,Klk], Ṽlk=

1

2
[Vlk,Vlk] for k∈ [1,...,nh],

Q̃lk=
1

2
[Ql(k−nh),Ql(k−nh)], K̃lk=

1

2
[Kl(k−nh),Kl(k−nh)], Ṽlk=

1

2
[Vl(k−nh),Vl(k−nh)] for k∈ [nh+1,...,2nh].

We observe that the intermediate layers of the transformers are also replicated for the first L blocks,

i.e. h̃l(x)=

[
hl(x)
hl(x)

]
and ṽl(x)=

[
vl(x)
vl(x)

]
for l∈ [1,...,L]. First note that [h0(x)]i=LN(WExi). Since

replicating the features will not change the mean and the variance, we have h̃0(x)=

[
h0(x)
h0(x)

]
. Then

we can show that replicating the features will not change the attention scores as well. This makes

ṽl(x) =

[
vl(x)
vl(x)

]
. Finally note that we can apply the base case of the MLP to reason about the MLP

layer, and show h̃l+1(x)=

[
hl+1(x)
hl+1(x)

]
. Therefore we have shown h̃l(x)=

[
hl(x)
hl(x)

]
inductively.

Adding additional layers using residual connections. We have demonstrated that h̃l(x)=

[
hl(x)
hl(x)

]
for l∈ [0,...,L]. Now let’s consider the addedL′ blocks on top of the small model. Since the transformer
contains residual connections, we can add new blocks on top of a small model and fill in zeros to the
added parameters. We will show that in this way, h̃l(x)= h̃L(x), for any l∈ [L,...,L+L′]. This will

indicate that h̃L+L′(x)= h̃L(x)=

[
hl(x)
hl(x)

]
. Recall that W̃E= 1

2

[
WE

WE

]
. This indicate that

[f̃(x)]i=W̃
>
E h̃L+L′(x)

=
1

2
[W>E ,W

>
E]

[
hL(x)
hL(x)

]
=

1

2
[f(x)]i+

1

2
[f(x)]i

=[f(x)]i,

which means we can add new layers on top of a small transformer without changing the functionality.

Now we show that Ul = 0 and Ol = 0 for l ∈ [L,...L+L′− 1] will make h̃l(x) = h̃L(x), for any
l ∈ [L,...,L+L′]. This holds because [vl(x)]i = LN([hl(x)]i + [Attnl(hl(x))]i) and [hl+1(x)]i =
LN([vl(x)]i +Ulσ(Wl[vl(x)]i + bl)). If Ol = 0, we have vl(x) = hl(x) from the first equation. If
Ul=0, we have hl+1(x)=vl(x) from the second equation. Therefore we have h̃l(x)= h̃L(x), for any
l∈ [L,...,L+L′].

14

B.4.3 Viewing a Small Transformer as a Special Case of a Large Transformer

As demonstrated above, smaller transformers can be embedded into larger transformers with func-
tionality preserved. The smaller transformer architecture can therefore be viewed as a subset of the
larger transformer architecture. In this sense, a set of transformers with different sizes and the same
pre-training loss found in Section 2 can be viewed as a set of transformers with the same size after the
embedding. Note that the training algorithm only finds out the natural larger models, instead of the
larger models which are embedded from the smaller models. This indicates that the implicit bias of
the optimizer can interact with the model architecture. The implicit bias drives the model toward flat
minima on both larger models and smaller models. The smaller transformer architecture is a subset of
the larger transformer architecture, thus the flattest minima found with a larger transformer is flatter
than the minima found with a smaller transformer. (See Figure 8).

15

C Additional Related Work
Language modeling and downstream adaptation. Large language modeling has revolutionized
the NLP field. Starting from Devlin et al. [12], a line of works improve the downstream performance on
a wide range of tasks with increasing model size and data amount [53, 37, 38, 7]. LLMs even exhibit
unexpected emergent behaviors, such as in-context learning [52, 34], step-by-step reasoning [50], and
zero-shot learning [7]. Kaplan et al. [24], Hernandez et al. [19] study the behavior of language models
with increasing size, and find out that the pre-training loss is typically correlated with downstream
performance as model size increases. In practice, the pre-training loss is used as an evaluation metric
for language models. A notable example is the efficient transformer line of works, which benchmark
the pre-training loss given the same computation constraint [10, 47, 9, 43, 30].

Understanding large language models. Empirical works on understanding MLM find out that the
representations of language models encode rich semantic and syntactic information [36, 21, 20, 33].
Theoretical works show that good LM loss, or the ability to fit the LM conditional probability, is
a sufficient condition for good performance on downstream tasks. Zhang & Hashimoto [56] show
MLM representations recover latent variables in graphical models. Saunshi et al. [40] introduce the
natural assumption, which states that downstream tasks can be solved linearly with the true conditional
probability. Wei et al. [49] instantiate MLM on datasets generated by HMMs and show linear probe
on top of MLM models solves downstream tasks. In contrast, our empirical evidence indicates that
other factors related to the architecture and optimization also contribute to the performance beyond
the natural assumption—somewhat surprisingly, we show that linear probe on top of the features of
language models is better than linear probe on top of true conditional probability.

Recent works also provide empirical evidence that good pre-training loss cannot fully explain the
downstream success. Tay et al. [44] find out that a narrow but deep transformer is better than a wide but
shallow transformer with the same pre-training loss. Zhang et al. [57] demonstrate that Albert [25]
generalizes better to OOD tasks than Bert on a synthetic reasoning task. These works indicate that
the architecture is an important factor for good downstream performance beyond pre-training loss.
This paper discovers the implicit bias in language modeling on models with the same architecture and
the same pre-training loss. Similar to our findings, Xie et al. [52] also observe that despite similar
perplexity, larger models are better than smaller modes for in-context learning, while in this paper, we
focus on the standard fine-tuning and linear probe evaluation of language models, and provide a novel
understanding of the mechanism behind the superiority of large models over small models.

Understanding self-supervised learning. Our work is also related to the broader theoretical self-
supervised learning literature. This line of works study why a seemingly unrelated self-supervised
objective helps improve the performance on downstream tasks. Arora et al. [2] prove that con-
trastive learning representations work on downstream linear classification tasks. Lee et al. [26] study
reconstruction-based self-supervised learning algorithms and show that linear probe on top of the
self-supervised representations solves downstream tasks. HaoChen et al. [17] show that the contrastive
learning loss can be viewed as a principled spectral clustering objective. With the spectral contrastive
loss, self-supervised representations recover the cluster structure in the augmentation graph. Recently,
Saunshi et al. [41] introduce the disjoint augmentation regime, where the minimizer of the contrastive
learning loss can perform poorly on downstream tasks. Empirically, they find out that subtracting the
mean of the representations of each class makes self-supervised models perform worse on downstream
tasks, and ResNet [18] can have better downstream performance on downstream tasks than ViT [13]
and MLP-Mixer [45] on modified images. This indicates that pre-training loss is not all that matters for
good downstream performance in self-supervised learning.

Implicit bias in supervised learning. The training algorithm chooses solutions with certain prop-
erties, and usually leads to better generalization [15, 42, 27, 23, 1, 32, 28, 51, 16]. Recently, Blanc
et al. [6], Damian et al. [11], Li et al. [29] demonstrate label noise SGD biases the models toward
flatter minima. However, the setting of implicit bias in supervised learning is different from language
modeling. In language modeling, we have access to gigantic corpus, and cannot interpolate the pre-
training dataset. Moreover, we care about the adaptability of the solution on downstream tasks instead
of generalization in distribution.

16

D Omitted Proofs in Section 3

Proof of Lemma 3.2. We first recall loss

L(θ)=Ex,t[−log [fθ(x−t)]xt
]=Et,x−t

Ext|t,x−t
[−log [fθ(x−t)]xt

].

Note that conditioned on any x−t,t, it holds that

Ext|t,x−t

[
−∇2

θlog [fθ(x−t)]xt

]
=Ext|t,x−t

[
−∇

2
θ[fθ(x−t)]xt

[fθ(x−t)]xt

]
+Ext|t,x−t

[
∇θ[fθ(x−t)]xt

(∇θ[fθ(x−t)]xt
)>

[fθ(x−t)]2xt

]
=0+Ext|t,x−t

[
∇θlog[fθ(x−t)]xt(∇θlog[fθ(x−t)]xt)

>],
where in the last step, we use the assumption that θ∈Γ, that is, for all x,t, fθ(x−t)=Pr(· |x−t), which
implies the following

Ext|t,x−t

[
−∇

2
θ[fθ(x−t)]xt

[fθ(x−t)]xt

]
=−

c∑
xt=1

∇2
θ[fθ(x−t)]xt

=−∇2
θ

c∑
xt=1

[fθ(x−t)]xt =−∇2
θ1=0.

Since θ is a global minimizer of L, we have that∇L(θ)=Et,x∇θlog[fθ(x−t)]xt =0. Therefore, we
have that

Σ(θ)=Et,x
[
∇θlog[fθ(x−t)]xt(∇θlog[fθ(x−t)]xt)

>]
−Et,x∇θlog[fθ(x−t)]xt(Et,x∇θlog[fθ(x−t)]xt)

>

=Et,x−t
Ext|t,x−t

[
∇θlog[fθ(x−t)]xt

(∇θlog[fθ(x−t)]xt
)>
]

=Et,x−t
∇2
θ

(
Ext|t,x−t

[−log [fθ(x−t)]xt
]
)

=∇2L(θ),

which completes the proof.

17

𝑦 = −1

<<>-<>

1

1

-1

±1

1

-1

<-<><>

1

±1

1

-1

1

-1
Encodings

Input

𝑋

𝑄

𝐾

Softmax Attention

1

-1

±1

1

1

-1

𝑧

1 1 1 1 1 1

-1 -1 -1 -1 -1 -1𝑉

𝑉

Configuration (1)

Configuration (2)

-1

1 𝑢

𝑢
𝑦 = −1

𝑥! 𝑥" 𝑥# 𝑥$ 𝑥% 𝑥&

Figure 8: The synthetic language setting. Left: An example of input encodings with sentence length
T =6. Right: Illustration of the two solutions. The softmax attention can sum the token encodings into
z. Solution (1) contains two features transferable to the downstream task. The neurons in solution (2)
are sampled from Gaussian distribution, and not related to the downstream task. Both solutions can
output the correct prediction for MLM pre-training, but solution (1) has much smaller trace of Hessian.

E Flatness Regularization Provably Identifies Transferable Models on
Synthetic Language

Toward formally proving the connection between the flatness regularization (introduced by the stochas-
tic gradient as argued in Section 3) and the downstream performance, we consider a setting with
synthetic Dyck language. The simplicity of the data allows us to sharply analyze the internal working
of a single-layer transformer (with an attention layer and an MLP layer) for masked language modeling.
We show that multiple parameter configurations can predict the conditional probability well, including
one ideal model that learns the correct representations capturing the intrinsic structure of the sentence,
and many “cheating” models that essentially memorize the conditional probability using random
features. We will prove that the flattest model is the desired model that transfers to downstream tasks.

Pre-training Distribution. Consider a variant of the Dyck language [35] consisting of matching
brackets. The vocabulary of the language has two brackets 〈 and 〉. Each sentence is composed of a
sequence of tokens such that the total numbers of 〈’s and 〉’s are equal. To sample from the pre-training
distribution P , we first draw a sentence uniformly over all valid sentences with even length T . Then,
we randomly select one position in [T] and replace the bracket with a mask token.

Downstream Task. The most intrinsic property about the synthetic language is the difference in the
number of left and right brackets in a prefix, and thus we use it as the downstream task. Concretely, for
any sequence x in {〈,〉}∗ of length T , let g∗(x) count the number of mismatches in x:

g∗(x),# of 〉’s in x− # of 〈’s in x (2)

Thus, the sentence x is a valid string in the language if and only if g∗(x)=0. For MLM, the masked
token can also be recovered from g∗(x): g∗(x) = 1 if the masked token is 〈, and g∗(x) =−1 if the
masked token is 〉. To evaluate if the model learns the structure, we consider a downstream distribution
of sentences which do not necessarily belong to the the language. Each token is sampled from {〈,〉}
uniformly, randomly, and independently.

Encoding of the Inputs. With a slight abuse of notation, we also denote by xt the encoding of the
t-th token. We encode the input as a one-hot vector in dimension d = 2T , where the index of the
nonzero element encodes the position and the sign encodes the bracket. Concretely, let et ∈Rd be
the natural basis vector where the t-th entry is 1. Let xt = et if the t-th token is 〈 and xt = −et
otherwise. If the position t is a mask, we set xt to v, where v ∼Unif({±et+T }). Examples of the
encodings with T =6 are provided in Figure 8 (Left). Note that the target function can be expressed as
g?(x)=−〈1T ,[

∑T
t=1xt]1:T 〉with this input encoding, where 1T is the all one vector in RT and [a]1:T

refers to the first T coordinates in a.

Models and Algorithms. SupposeQ,K∈Rk×d are the query and key matrices, V ∈Rm×d is the value
matrix and u∈Rm is the parameter of the output layer. Letψ=(Q,K,V). A single-layer transformer is
composed of an attention layer and an MLP layer. [Attnψ,u(x)]t=

1
mu
>σ(

∑T
j=1at,jV xj), where the

attention score at,1:T =softmax(〈Qxt,Kxt〉,···〈Qxt,KxT 〉). σ(x)=max{x,0} is the relu activation.
We use the output of the first token, fψ,u(x)=[Attnψ,u(x)]1.

We use the squared loss for both MLM and downstream adaptation. The loss function of MLM is
L(ψ,u). In downstream adaptation, we have a finite dataset {x(i)}ni=1 sampled i.i.d. from Pds. The
training loss with n data is L̂Pds(ψ,u), and the population loss for the downstream task isLPds(ψ,u).

18

Main Intuitions. We are interested in two kinds of parameter configurations both with good pre-
training loss: (1) learning the natural and transferable features 1T and (2) fitting the pre-training task
by memorizing the masked sentences. We construct the two solutions as follows. For solution (1), first
note that the softmax attention layer can take the average of all the token encodings [xt]

T
t=1 in a sentence.

Let us denote the sum by z∈Rd, z=
∑T
t=1xt. Note that the first T coordinates in z are±1 indicating

the bracket type and the last T coordinates indicate the position of the mask (See Figure 8 (Right)).
On top of z, two neurons can predict the masked token in MLM perfectly. Consider the two neurons
V1 =[1T ;0T], V2 =[−1T ;0T]. Then g∗(x)=σ(V >2 z)−σ(V >1 z), which is the transferable solution.
For solution (2), we set the entries in V to i.i.d. samples fromN (0,T). Ifm is sufficiently large, we
can find the coefficient u to express g∗(x) with random Gaussian features, i.e. g∗(x)=u>σ(V z).

We observe that the trace of Hessian of configuration (1) is smaller than configuration (2), due to a main
difference between them–the cancellation between activated neurons. In configuration (1), for every
possible input, only one of the neurons σ(V >1 z) and σ(V >2 z) is activated. In contrast, in configuration
(2), many neurons can be activated at the same time. Among them, the output coefficient ui’s contain
both positive and negative values, leading to cancellation between activated neurons. In Lemma F.1, we
link the trace of the Hessian with the cancellation between neurons. Indeed, we show that the mimimum
of trace of the Hessian can be achieved only if there is no such cancellation. Therefore solution (1) is
also the minimizer of the trace of Hessian. The intuitions are formalized in Theorem E.1.

Consider minimizing the trace of Hessian among all the solutions to the MLM pre-training task:
minimizeψ,uTr[∇2

ψL(ψ,u)]+Tr[∇2
uL(ψ,u)], subject toL(ψ,u)=0.

Theorem E.1. Suppose m ≥ 2 and T ≥ 6. The flattest solution ψ̂, û are defined as the solution
of the optimization problem above. ũ is the minimizer of downstream training loss on top of ψ̂,
ũ∈argminu‖u‖2 subject to L̂Pds(ψ̂,u)=0. Then with probability at least 1−2−n,LPds(ψ̂,ũ)=0.

19

F Omitted Proofs in Section E

F.1 Omitted Proofs of Theorem E.1

Recall that the loss function of MLM is L(ψ,u) = Ex∼P [(fψ,u(x) − g∗(x))2]. In downstream
adaptation, we have access to a finite dataset {x(i)}ni=1 sampled i.i.d. from Pds. The training loss is
L̂Pds(ψ,u) = 1

n

∑n
i=1[(fψ,u(x(i))−g∗(x(i)))2], and the population loss for the downstream task is

LPds(ψ,u)=Ex∼Pds [(fψ,u(x)−g∗(x))2].

Proof of Theorem E.1. We first calculate the trace of Hessian of the pre-training loss and then derive
a lower bound for it in Lemma F.1. We then show that the lower bound can be achieved only if the
output of the attention are in one direction for all the downstream input in Lemma F.3. This translates
to constant sample complexity for the downstream task.

Lemma F.1. Denote by hQ,K(x) =
∑T
j=1ajxj the output of the attention head. In the setting of

Theorem E.1, I+ ={i∈ [m] |ui>0} and I−={i∈ [m] |ui<0}. The trace of Hessian can be lower
bounded,

Tr[∇2
ψL(ψ,u)]+Tr[∇2

uL(ψ,u)]≥
√

4

T
,

where the lower bound is achieved if and only if the following conditions are satisfied,

∀ i∈ [m],x∈{x |V >i hQ,K(x)>0}, V >i hQ,K(x)= |ui|‖hQ,K(x)‖2, (3)

∀x, i∈I+, i′∈I−, V >i xV
>
i′ x≤0, (4)

∀x, j∈ [T], aj=
1

T
. (5)

Denote by D+ = {x | y = 1} and D− = {x | y = −1}. Ix is the set of index of neurons which is
activated on x, Ix = {i ∈ [T] | V >i x > 0}. By the condition in equation 5, the attention is taking
the average of [xt]

T
t=1. We can map D+ and D− to the feature space, H+ = {hQ,K(x) | y= 1} and

H−={hQ,K(x) |y=−1}. We first show that one neuron cannot be activated on inputs from bothD+

andD−, and all non zero neuron has to be activated on some input. Also note that a neuron cannot be
activated on no input, unless the weight is 0.

Fact F.2. (1) ∀x∈D+, Ix⊆I+. Similarly we have ∀x∈D−, Ix⊆I−. (2) Suppose Vi 6=0, then there
exists h∈H+∪H−, V >i h>0.

Proof of Fact F.2. (1) Otherwise, suppose j∈Ix∩I−, since y= 1
m

∑m
i=1uiσ(V >i hQ,K(x))>0, there

has to be j′ ∈ Ix∩ I+, which contradicts the condition in equation 4. (2) Suppose v>h≤ 0 for all
h∈H+∪H−. Then we have v>h=0 for all h, since v>h<0 indicates v>(−h)>0, and−h belongs
to the support of P due to the symmetry of the distribution. However, in Lemma F.5, we show that the
matrix stacking all input together has full row rank, thus v has to be 0, leading to a contradiction.

We have the following lemma characterizing the solutions achieving all the qualities in Lemma F.1.
Intuitively, all the neurons can be divided into two sets, and each input can only activate neurons in one
of the sets, leading to no cancellation between activated neurons. This holds because of equation 4 and
the properties of the input distribution.

Lemma F.3. SupposeQ,K,V satisfy the equality in Lemma F.1. For all i∈I−, on downstream data x,
if g∗(x) = 1, we have V >i hQ,K(x) = ci> 0. ci is a constant which holds for every x if g∗(x) = 1. If
g∗(x)=−1, we have V >i hQ,K(x)=0.

For all i∈ I+, on downstream data x, if g∗(x) =−1, we have V >i hQ,K(x) = ci>0. ci is a constant
which holds for every x if g∗(x)=1. If g∗(x)=1, we have V >i hQ,K(x)=0.

20

Now let us consider the downstream task. It suffices to consider the constant vector c. If samples
satisfying g∗(x) = 1 and g∗(x) = −1 both show up in the downstream dataset, the minimal norm
solution ũ is ũI−=

mcI−

‖cI−‖
2

2

, ũI+ =
−mcI+
‖cI+‖

2

2

, and ũ[m]\(I+∪I−) =0. Then we can verify that

fψ̂,ũ(x)=
1

m

∑
i∈I+

−mci∥∥cI+∥∥2

2

σ(V >i hQ,K(x))+
∑
i∈I−

mci∥∥cI−∥∥2

2

σ(V >i hQ,K(x))

=

1

m

∑
i∈I+

−mci∥∥cI+∥∥2

2

ciI[g∗(x)=−1]+
∑
i∈I−

mci∥∥cI−∥∥2

2

ciI[g∗(x)=1]

=I[g∗(x)=1]−I[g∗(x)=−1]

=g∗(x).

Therefore,LPds(ψ̂,ũ)=Ex∼Pds [(fψ̂,ũ(x)−g∗(x))2]=0, which completes the proof.

We first show that when the pre-training loss equals 0, the trace of Hessian equals the square of the
norm of the gradient.
Lemma F.4. For any parameters θ, if the pre-training lossL(θ)=Ex[(fθ(x)−y)2]=0, the trace of
Hessian equals the square of the norm of the gradient,

Tr[∇2
θL(θ)]=E[‖∇θfθ(x)‖22].

Proof of Lemma F.4. We can express the Hessian as follows.

∇2
θL(θ)=Ex[`′(fθ(x),y)∇2

θfθ(x)]+Ex[
1

2
`′′(fθ(x),y)∇θfθ(x)∇θfθ(x)>].

SinceL(θ)=Ex[(fθ(x)−y)2]=0, we have with probability 1, `′(fθ(x),y)=0 and `′′(fθ(x),y)=2 is
a constant.

Proof of Lemma F.1.

Tr[∇2
ψL(ψ,u)]+Tr[∇2

uL(ψ,u)]=
∑

θ∈[Q,K,V,u]

E[‖∇θfψ,u(x)‖22] (By Lemma F.4)

≥E[‖∇V fψ,u(x)‖22+‖∇ufψ,u(x)‖22] (6)

=
1

m
E
[
‖σ(V hQ,K(x))‖22+

∥∥hQ,K(x)(I[V hQ,K(x)>0]�u)>
∥∥2

2

]
=

1

m
E

[
m∑
i=1

σ(V >i hQ,K(x))2+‖hQ,K(x)‖22I[V
>
i hQ,K(x)>0]u2

i

]

≥ 2

m
E

[
m∑
i=1

σ(V >i hQ,K(x))‖hQ,K(x)‖2|ui|

]
(7)

≥ 2

m
E

[
‖hQ,K(x)‖2

∣∣∣∣∣
m∑
i=1

σ(V >i hQ,K(x))ui

∣∣∣∣∣
]

(8)

=2E
[
‖hQ,K(x)‖2|fθ,u(x)|

]
≥
√

4

T
. (9)

The equality in step 6 is achieved if and only if the gradient of Q and K is 0. Equation (7) is from
AM-GM, and the equality is achieved iff

V >i hQ,K(x)= |ui|‖hQ,K(x)‖2 ∀ i∈ [m],x∈{x |V >i hQ,K(x)>0}.
The equality in step 8 is achieved iff on all input, there is no cancellation between activated neurons,

∀x, i∈I+, i′∈I−, V >i xV
>
i′ x≤0.

21

Since the attention score aj satisfies aj >0 and
∑T
j=1aj = 1, and all embeddings xt in one masked

sentence are orthogonal to each other with norm 1, we have ‖hQ,K(x)‖2 ≥ 1√
T

. The equality is
achieved iff aj= 1

T for all x and all j∈ [T].

Proof of Lemma F.3 . Suppose Vi is a neuron with i ∈ I−. Then there exists h ∈ H−, V >i h > 0.
Without loss of generality, suppose the masked position in h is 1, i.e. h1 = 0, h2 = 1. Now let us
consider the components in Vi corresponding to the input positions and the mask positions separately.
V

(c)
i =[Vi,1,Vi,2,...,Vi,T] and V (p)

i =[Vi,T+1,Vi,T+2,...,Vi,2T].

We claim that V (c)
i 2:T =c1 for some c>0 and V (p)

i 1 is either 0 or c. To prove this, consider h̃, which is
only different from h on the mask, h−h̃=2e2. Also consider−h and−h̃. Due to the symmetry of the
distribution,−h and−h̃ are inH+. By Fact F.2, V >i (−h)≤0 and V >i (−h̃)≤0. V >i (−h) cannot be 0,
because this will leads to V >i h=0.

Case 1. V >i (−h)< 0 and V >i (−h̃)< 0. We have V >i h= V >i h̃ > 0, indicating that V >i (h− h̃) =

2V
(p)
i 1 =0. Now we show that V (c)

i 2:T =c1. Due to the condition of equation 3, we know that for any
h∈H− masked on the first token, either V >i h=0 or they equal to the same positive value c for all h.
We claim that V >i h=c for any h∈H−. Otherwise there existH−,1 andH−,0,H−,0∩H−,1 =∅ and
H−,0∪H−,1 =H−∩{h |h2 =±1}. V >i h= c for any h∈H−,1 and V >i h=0 for any h∈H−,0. This
cannot happen for T ≥6. By Lemma F.5 we know that the matrix stacking all such h2:T together has
full row rank, thus V (c)

i 2:T =c1 for some c>0 and V (p)
i 1 =0.

Case 2. V >i (−h)< 0 and V >i (−h̃) = 0, which indicates V >i h= V
(p)
i 1. Consider another h′ ∈H−

which is not equal to h and h′2 =1. Similarly we can find h̃′, h′−h̃′=2e2. Still we have V >i (−h′)<0

and V >i (−h̃′) = 0, this tells us V >i h
′ = V >i h, due to the condition of equation 3. Applying this to

different h′s, we have that V >i h equals the same positive value for all h∈H− and the masked position
is 0. By Lemma F.5 we know that the matrix stacking all such h2:T together has full row rank, thus
V

(c)
i 2:T =c1 for some c>0 and V (p)

i 1 =c.

We have proved that V (c)
i 2:T =c1 for some c>0 and V (p)

i 1 is either 0 or c. We continue to show that
V

(c)
i =c1 for the same c>0 and either V (p)

i is 0 or its coordinates is±c.
For case 1, consider h′′∈H− whose masked position is 2, h′′4 =1. Also suppose that h′′1 =1 By Fact F.2,
we know that V >i (−h′′)≤0 and V >i (−h̃′′)≤0, this implies that−V (c)

i 1≤V
(p)
i 2≤V

(c)
i 1. Applying

the same argument above, we know that either V (p)
i 2 =0 or V (p)

i 2 =±V (c)
i 1, otherwise both V >i h

′′>0

and V >i h̃
′′ > 0 hold, and V >i h

′′ 6= V >i h̃
′′, contradicting condition in equation 3. If V (p)

i 2 = V
(c)
i 1,

from equation 3 we know V >i h
′′=V >i h, which indicates V (p)

i 2 =V
(c)
i 1 = c

2 . In this case we can find
another h′′′ whose masked position is 2, h′′′4 = 1 but h′′′1 =−1. Then V >i h

′′′ 6= V >i h, contradicting
equation 3. Thus V (p)

i 2 6=V
(c)
i 1. Similarly V (p)

i 2 6=−V
(c)
i 1. The only possible situation is V (p)

i 2 =0.
Applying the argument in this paragraph to other masked position, we have V (p)

i = 0. Since H− is
invariant under permutation, V (c)

i 1 =c, and V (c)
i =c1.

For case 2, exactly the same argument as the above paragraph with the same h′′ and h′′′ shows that the
coordinates of V (p)

i is±c.

Therefore, we have shown that for any i∈I−, V (c)
i =c1 for same c>0. The symmetry of distribution

immediately tells us for any i∈I+, V (c)
i =c1 for c<0.

On the downstream distribution P∗, since there is no masked token, only V (c)
i is working. Since

V
(c)
i =c1 always holds, we complete the proof.

22

Lemma F.5. Suppose M ∈ R(2k+1)×(2k+1) is a matrix composed of ±1. The first row of M is
[1,...,1︸ ︷︷ ︸

k+1 1’s

,−1,...,−1︸ ︷︷ ︸
k -1’s

]. Define a permutation ρ(1) = 2, ρ(2) = 3...ρ(2k+1) = 1. For all i≥2,Mi,ρ(j) =

Mi−1,j . Then the rank ofM is 2k+1.

Proof of Lemma F.5. Note thatMi+Mρk+1(i) =2ei for all i∈ [2k+1], which means we can express
the orthonormal basis as linear combination of the rows inM . Therefore, the rank ofM is 2k+1.

23

F.2 The existence of random feature solutions F.6

Theorem F.6. Supposem≥ Õ(2TT 3ε−2), and Vi∼N (0,T I2T) for all i∈ [m]. With probability at
least 1−δ over V , there exists ψ′,u′, satisfyingL(ψ′,u′)≤ε and ‖u′‖22≤O(T 2δ−1).

Proof of Theorem F.6. Since the number of possible input in pre-training is finite, we can invoke
Lemma 9 in Bai & Lee [5] to show that random Gaussian features can fit the pre-training task.

Lemma F.7 (Lemma 9 in Bai & Lee [5]). Suppose ‖h‖2 =
√

1
T , v ∼N (0,T I2T). There exists a

random variable a(v) such that

E[σ(v>h)a]=−
√
T1>h

and a satisfies Ev[a2]=O(T 2).

Consider Q = K = 0. In this case we have hQ,K(x) = 1
T

∑T
j=1 xj . Also note that for the pre-

training task, y=−
√
T1>hQ,K(x) for all x. Since xj are norm 1 orthogonal to each other, we have

‖hQ,K(x)‖2 = 1
T for all x. Now we can show that Vi ∼N (0,T I2T), i ∈ [m] independently is the

random feature solution which can solve the pre-training task.

Suppose g(h) = 1
m

∑m
r=1 σ(V >r h)a(Vr), and g(R)(h) := 1

m

∑m
r=1 σ(V >r h)a(Vr)I(‖Vr‖2 ≤√

TR). R is large enough such that Pr
(

supr∈[m]‖Vr‖2≥
√
TR
)
≥ 1 − δ/2. We have g(h) =

g(R)(h) on this event. Let g∗(R)(h) be the truncated version of g∗(h) = −
√
T1>h, g∗(h)(R) =

Ev[σ(v>h)a(v)I(‖v‖2≤
√
TR)]. We have

EV [(g(h)−g∗(h)(R))]≤
1

m
Ev[σ(v>h)2a(v)2I(‖v‖2≥

√
TR)]≤CR

2T 2

m
.

By Chebyshev and a union bound, we have

Pr

(
max
h
|g(h)−g∗(h)(R)|≥ t

)
≤Cn(h)R2T 2

mt2
.

For t= ε
2 , we havem≥n(h)R2T 2ε−2.

|g∗(R)(h)−g∗(h)|=Ev[σ(v>h)a(v)I(‖v‖2≥
√
TR)]

≤Ev[a(v)2]
1
2Ev[σ(v>h)4]

1
4 Pr
(
‖v‖2>

√
TR
) 1

4

≤CTPr
(
‖v‖>

√
TR
) 1

4

.

ChoosingR=Õ(
√

(T)) will make Pr
(
‖v‖>

√
TR
) 1

4 ≤ cε
T . Also note thatn(h)=(T/2−1)

(
T

T/2+1

)
.

Thusm≥Õ(2TT 3ε−2) suffices.

24

	Introduction
	The Existence of Implicit Bias in Language Modeling
	Formulations
	Experimental Setup
	Results

	Implicit Bias Leads to Flat Solutions in Language Modeling
	Flatter Models Have Better Downstream Performance
	Details in Section 2
	Generating Simplified Datasets
	Compute the True Conditional Probabilities
	Models
	Algorithms
	Results on Other Downstream Tasks.
	Evaluation of Pre-training Loss with KL Divergence.

	Details in Section 4
	Unbiased Estimate of the Trace of Hessian.
	Details in Figure 2.
	Details in Figure ??.
	Embedding of a Smaller Transformer into a Larger Transformer.
	The Base Case with MLPs.
	Real Transformers.
	Viewing a Small Transformer as a Special Case of a Large Transformer

	Additional Related Work
	Omitted Proofs in Section 3
	Flatness Regularization Provably Identifies Transferable Models on Synthetic Language
	Omitted Proofs in Section E
	Omitted Proofs of Theorem E.1
	The existence of random feature solutions F.6

