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Abstract

Recent self-supervision methods have found success in learning feature represen-
tations that could rival ones from full supervision, and have been shown to be
beneficial to the model in several ways: for example improving model robustness
and out-of-distribution detection. We conduct an empirical study to answer the
question: when does visual self-supervision (SSL), as a pretext task, aid adversarial
training in improving robustness to adversarial perturbations? Including visual self-
supervision as part of adversarial training can indeed improve model robustness,
however it turns out the devil is in the details. To improve model robustness for
large values of adversarial perturbation, one should take the approach of adversarial
semi-supervised ensemble training (ASSET) to generate images that are trying to
fool both the self-supervised and supervised training objectives.

1 Introduction

Though neural networks achieve state of the art results in many tasks and domains, much recent work
has focused on defending against and understanding adversarial examples, one of the main weaknesses
of deep models [30, 11, 35]. Adversarial examples are inputs which have been imperceptibly changed
and cause a model to provide erroneous output. However, recent work suggests that leveraging
self-supervised learning can lead to improvements in the robustness of models [4, 9, 15, 29]. Self-
supervised learning [10, 25, 3] and unsupervised learning [8, 18] were developed to learn generalizable
representations without requiring labeled data. Self-supervised learning (SSL) leverages the structure
of the data to learn representations through optimizing the network weights via an auxiliary task:
e.g. in-painting [28], rotation prediction [10], or image colorization [38]. The goal of this paper
is to understand how incorporating self-supervision into adversarial training [24] affects model
robustness to adversarial perturbations and common image corruptions [14], as there is more to using
self-supervision to improve robustness than meets the eye.

Contributions We find that the best way to leverage self-supervision for boosting model robustness
is via adversarial semi-supervised ensemble training (ASSET), however it could penalize the non-
robust accuracy. This work presents a comprehensive study to understand various ways one can
combine self-supervision with adversarial training and observe the effects on adversarial robustness
against adversarial perturbations.

Related Work Our work is most closely related to [4, 9, 15–17, 29], which explore using self-
supervision to improve model robustness. [4, 15] demonstrate that self-supervision improves model
robustness via self-supervised adversarial pre-training (SSAPT) and as an auxiliary loss. [9, 16, 17]
propose methods to learn robust representations via self-supervised contrastive learning methods
without labeled data. Sun et al. [29] study the use of SSAPT and using pre-text task loss as a form
of auxiliary supervision (akin to T1, described in Sec. 2) in the setting of robust 3D point cloud
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recognition. Our empirical study significantly extends our understanding of the effect self-supervision
can have on model robustness.

Note that our work is complimentary to self-supervised pre-training approaches [4, 9, 16, 17]. Our
methods can be pipelined with the various pre-training approaches to potentially further enhance
model robustness. In our experiments, we study the following self-supervised tasks: rotation
prediction [10], and solving a jigsaw puzzle [2, 25]. Both of these tasks are implemented as a
supervised task with multi-class cross-entropy loss as a criterion to be optimized.

2 Improving robustness with self-supervision

In this section, we describe the various approaches to combine self-supervised learning (SSL) with
adversarial training (AT). Please see Section A.3, which provides background on adversarial training
and generation of adversarial examples. The baseline AT method of projected gradient descent (PGD)
attack [24] is denoted as T0. One can use image rotations (or other self-supervision) in the image
pre-processing pipeline for data augmentation (without incorporating self-supervised loss).

Adversarial training with self-supervision The first way to incorporate SSL into AT is to apply
the self-supervised transformation T to the batch of images X to obtain transformed versions of the
batch and corresponding labels Xt and yt respectively. One then computes the adversarial version of
Xadv

t and minimizes the following loss to optimize model weights:

LT{1,2} = Lsup(Fθ(X
adv
t ), y) + λ · Lt(F

t
θ (X

adv
t ), yt), (1)

where λ is the weight of the self-supervised loss , Fθ and F t
θ together represent a neural network

model that takes as input a batch Xadv
t and two prediction heads, one for the supervised task (Fθ(·), y)

and the other for the self-supervised task (F t
θ (·), yt) with corresponding loss functions Lsup and Lt.

This approach is denoted either T1 or T2 depending on the next model choice. We have to make a
choice whether to use the self-supervision loss Lt in the PGD attack, which results in the following
expression for the loss LPGD used to generate adversarial examples (see Section A.3 for detailed
background on using PGD to generate adversarial examples):

LPGD = Lsup(Fθ(X
k), y) + w1 · Lt(F

t
θ (X

k
t ), yt). (2)

When we use just Lsup to generate adversarial images (w1 = 0 in Equation 2), we denote this variation
as T1. If w1 > 0, we denote this variation as T2. Note that in variation T2 we are essentially crafting
an adversarial example against an ensemble of known classifiers (supervised and self-supervised
classifiers). T2 can therefore be viewed as a variation of the average PGD attack [23], and a particular
variation of the “Ensemble Attack over Multiple Models” [34], in which we assign the importances 1
and w to the supervised and self-supervised models respectively.

Augmenting training with self-supervised examples Another way to add SSL to AT is by
augmenting the training set with self-supervised examples by making a copy of the batch X to
which the self-supervised transformation T will be applied, resulting in a batch (X, y) and a batch
(Xt, yt) = T (X). The simplest way to add self-supervision into AT with a separate batch (denoted
as T3) is by generating adversarial examples Xadv, while leaving Xt unchanged, and minimizing the
following joint loss,

LT3
= Lsup(Fθ(X

adv), y) + λ · Lt(F
t
θ (Xt), yt). (3)

Lastly, one can attack both the original batch images X and transformed images Xt, resulting in the
following loss that will be used to optimize the network parameters.

LT{·} = Lsup(Fθ(X
adv), y) + λ · Lt(F

t
θ (X

adv
t ), yt). (4)

When generating adversarial examples for X and Xt, should one use the supervised loss, the self-
supervised loss, or both to find the worst case adversarial examples? As X and Xt are both passed
into the PGD function together (stacked), this results in the following expression for LPGD :
LPGD = Lsup(Fθ(X

k), y)+w1 ·Lt(F
t
θ (X

k
t ), yt)+w2 ·Lsup(Fθ(X

k
t ), y)+w3 ·Lt(F

t
θ (X

k),0). (5)
For majority of the experiments, we set w2 and w3 to 0 in order to simplify ablation experiments. We
consider the following two methods T4 and T5. They both minimize Eq. 4, however the difference
between T4 and T5 is that for T4, w1 is set to 0, whereas it is positive for T5. Incorporating the
self-supervision task loss into PGD can be viewed as a form ensemble adversarial training [31],
where we augment the training set with adversarial examples crafted from the self-supervised task,
and thus calling it adversarial semi-supervised ensemble training (ASSET).
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Figure 1: Comparison of models trained with T3 for which the weight of the self-supervised loss, λ,
is varied. The plots highlight different parts of the domain to better illustrate the trend. Leftmost plot
rather than showing the performance of the various models, shows the comparison of performance
for the given model, e.g. the line in left plot that shares the yellow colour with the plot in the middle
or right plot, shows the difference in performance Acc(λ = 0.25)− Acc(λ = 0).

3 When does including SSL into AT improve model robustness?

In this section, we compare the ways SSL can be incorporated into AT against the baseline AT
procedure of Madry et al. [24] (T0). Table 1 summarizes the general trends we saw for l∞-robust
performance of the various methods for the ResNet-18 architecture on CIFAR-10 dataset.

Our first set of experiments explored the scenario in which we apply the self-supervised transformation
T (·) to an image batch X , to obtain Xt. In the first approach, T (·) is used as part of the pre-processing
pipeline, however the SSL labels yt are not used to optimize the model. Though image rotations are
often included in augmentation pipelines, they rotate the image through a much smaller range of
angles (e.g. pick a random rotation between −45◦ to 45◦). As we can see from the second line of
Table 1, applying extreme rotations significantly degrades adversarial training performance, dropping
the test accuracy (TA) and robust accuracy at ϵtest = 8/255 (RA8/255) from 85.09% and 46.06% to
72.44% and 40.88% respectively. Using Lt as an auxiliary loss (T1 and T2) helps regularize learning
and improves the TA and RA for several values of ϵtest as compared to “T0 w/ rot aug.”. From these
results, we can see that replacing the supervised task with self-supervised tasks which significantly
modify or distort the data are likely to harm adversarial training. As we will show, a better way
improve robustness is to augment the training set with self-supervised examples.

In the following set of experiments we (1) augment X with Xt (unlike T0, T1, T2) and (2) vary how
Xt is modified during adversarial training with the variations described by T3, T4, and T5. In the
training scenario T3, we optimize the empirical loss from Equation 3 , where Lsup is the supervised
portion of the loss operating on PGD-attacked batch Xadv, and Lt is the self-supervised loss (SSL)
operating on clean batch Xt. Figure 1 illustrates general trends we see for T3, as the self-supervision
importance (λ) and the level of robustness tested (ϵtest) vary. The tabulated results for various values
of ϵtest and λ can be found in the Appendix Table C1. In general, we see that TA is higher for models
with λ > 0. The use of self-supervision (λ > 0) consistently improves the TA and RA for several
values of ϵtest < ϵtrain, as compared to baseline T0 (see left plot of Figure 1). Furthermore, larger
values of λ result in larger increase in TA and RA for several values of ϵtest < ϵtrain. However, for
ϵtest > ϵtrain (middle and right plots of Figure 1) we see the opposite behavior — RA drops further as
compared to the baseline the larger the weight λ. From Figure 1, and Table 1, we can see that T3 is
very effective in regularizing the model training and provides the largest increase in TA as compared
to other methods (though sacrificing RA). The rows T4 and T5 from Table 1 show the cases in which
both original images (X) and transformed images (Xt) are passed into PGD and use the loss from
Equation 4 for network parameter optimization. For the case of T4 we have w1 = 0 and we see that
the TA and RA are better than T0 for all values of ϵtest, though TA is worse than T3. Lastly, for T5 we
have w1 > 0 and we see that TA in general either does not change or gets worse compared to all the
other methods, showing that if one wants to optimize the model for clean accuracy, one should not
use SSL loss in generating adversarial examples. However, T5 shows the largest increase in RA as
compared to the baseline and the other methods, especially for larger values of ϵtest. What causes
this drop in TA and increase in RA? By having two separate batches of images (X and Xt), and
attacking both the supervision and self-supervision loss, we are performing a variation of ensemble
adversarial training (EAT) [31], in which we augment the training set with adversarial examples
from the self-supervised classifier. As can be seen in the last paragraph of Section 2, there are two
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Table 1: Mean Top-1 accuracy (averaged over 10 trials) on the CIFAR-10 test set with ResNet-18
models trained with l∞ norm and ϵtrain = 8/255 evaluated at different values of ϵtest used to generate
the robust test set as we vary the training method and SSL involvement.

Method / ϵtest 0/255 3/255 4/255 5/255 6/255 7/255 8/255 9/255 10/255

T0 [24] 85.16 72.73 67.76 62.55 57.06 51.47 46.00 40.82 35.83
T0 w/ rot aug. 72.54 61.90 57.82 53.70 49.38 45.07 40.68 36.38 32.19
T1 74.60 63.60 59.41 55.04 50.57 45.96 41.34 36.82 32.47
T2 74.51 63.10 58.67 54.27 49.67 45.16 40.63 36.05 31.79
T3 86.49 73.16 67.64 61.64 55.51 49.54 43.59 38.17 33.03
T4 85.90 73.95 68.82 63.27 57.65 51.85 46.23 40.77 35.76
T5 84.54 72.70 67.97 62.89 57.60 52.23 46.88 41.67 36.80
ASSET (Best) 85.15 73.19 68.35 63.27 57.84 52.50 46.94 41.66 36.82

additional terms w2 · Lsup(Fθ(X
k
t ), y) and w3 · Lt(F

t
θ (X

k),0) that can be added to LPGD: w2 term
adds SSL perturbations to the original batch, w3 adds original perturbations to the SSL batch. We
perform evaluation by varying w2 and w3 while keeping w1 set to 0.5 as this setting resulted in
the highest gain in RA. We found that the best setting for our parameters is w1 = 0.5, w2 = 0.0,
w3 = 0.5, which is shows in the last row of Table 1. By further adding adversarial perturbation from
the supervised task to Xadv

t , we are able to preserve the TA, while boosting the RA.

Discussion. From our empirical study, we see that for self-supervised tasks that make a significant
modification to the original data batch, it is crucial to generate a separate batch on which the SSL task
is applied (augmenting rather than replacing the original data). In general, leveraging the SSL task
loss as an auxiliary loss is helpful in regularizing AT and improving TA and RA for several values of
ϵtest. Furthermore, we can see that both (a) combining the supervision with self-supervised loss, and
(b) attacking both the supervision and self-supervision losses in PGD play a vital role in affecting the
TA and robustness to adversarial perturbations, which is contrary to findings of [4]. Just adding SSL
loss (T3 with λ > 0) improves the TA and RA for ϵtest ≤ ϵtrain, however it hurts RA for larger values
of ϵtest. Using the adversarial version of both X and Xt using only the supervised loss (T4) slightly
improves the accuracy for all ϵtest as compared to T3, however slightly lowers TA and RA for small
values of ϵtest. T5 can be viewed as a form of a ensemble adversarial training (EAT) [31], resulting in
an increase in model robustness to larger perturbations however sacrificing TA.

How beneficial is pre-training? Another question is: how beneficial is SSAPT to our most robust
model, T5. Please see Table C2 for a comparison of the training methods with the different pre-
training scenarios. Similar to [4], we see a boost in model robustness when SSAPT is followed by AT
(T0). However, we do not see any significant benefit from SSAPT if AT includes self-supervision
during training (T5).

4 Conclusion
We provide a comprehensive study on the effects of SSL and training choices on model robustness,
with explanations of observed trends. This work is a solid platform for exploring and understanding
the ways that incorporating SSL into AT affects model accuracy and robustness; with findings that
reach significantly beyond results from other published work. As we saw, the task of incorporating
SSL into AT is not straightforward and requires care. Augmenting the training set by images
transformed by the self-supervised task and incorporating self-supervised task loss into the training
objective provide a significant boost in standard testing accuracy, though can hurt the robust testing
accuracy for larger values of ϵtest. Instead, if the main goal is to improve model robustness for
large values of ϵtest, one should take the approach of adversarial semi-supervised ensemble training
(ASSET) and generate images that are trying to fool both the self-supervised and supervised training
objectives. Though ASSET could result in a drop in clean accuracy, we see gains in robustness
against adversarial perturbations and natural image corruptions (Sec. C.2). Additionally, we show
that these benefits can be had with different SSL tasks (Sec. C.1), on various datasets and using
various base architectures (Sec. C.3).
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information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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A Appendix: Preliminaries

A.1 Self-supervised learning

Self-supervised learning has gained popularity in recent years as a method of learning feature
representations without the need for labeled data in domains such as images [10] and video [37].
Many visual self-supervised learning methods use the particular structure of the data to modify
the samples and generate pseudo-labels that can then be fit using supervised learning, e.g. image
colorization [38], or rotation prediction [10]. [25] learn features by solving jigsaw puzzles on natural
images. [38] learn image features by learning to predict a plausible color version of a photograph
from its grayscale version. [10] learn visual features by predicting the nature of a geometrical
transformation applied to the image, in this case image rotation. [32] learn visual features by learning
to predict which image patches correctly fill in a masked out image among a set of “distractor"
patches. Further, some of the recent methods such as SwAV [3] or MoCo-V2 [5] utilize contrastive
learning and feature clustering to learn strong feature representations.

As [22] points out, “self-supervised learning obtains supervisory signals from the data itself". We
are given an input image x and we apply to it a transformation T (·) that gives us the a transformed
version of the image xt and label yt:

(xt, yt) = T (x). (6)

In our experiments, we study the following self-supervised tasks: rotation prediction [10], and solving
a jigsaw puzzle [25, 2] (see Figure A1). Both of these tasks are implemented as a supervised task
with multi-class cross-entropy loss as a criterion to be optimized. This allows us to easily incorporate
rotation (or jigsaw) prediction as an auxiliary task to be optimized in addition to classification. In
the case of rotation prediction, the transformation T (·) consists of rotating the image by a multiple
of 90◦, and returning a rotated image xt and a label yt designating the degree of rotation. In the
case of the jigsaw puzzle, the task consists of dividing the image into an n× n grid, and randomly
picking a set of J permutations (each assigned its own label). The transformation T (·) then consists
of scrambling the image parts according to the randomly chosen permutation, returning the scrambled
image and label associated with the permutation. The task of the network is then to either predict the
rotation of the image, or the permutation that would unscramble the image.

A.2 Adversarial robustness

Though neural networks have been in the forefront of state-of-the-art research in many branches of
computer vision, they exhibit some weaknesses, among them vulnerability to adversarial examples
[30, 12], which completely change the output of the model. Recent years have seen many attempts to
propose defenses against such examples. [6] proposes stochastic activation pruning, a strategy which
randomly prunes a subset of activations. [13] uses input transformation (e.g. JPEG compression) to
defend against adversarial attacks. [36] attempts to defend against adversarial attacks by adding an
additional layer that randomly rescales the input. However, as [1] shows, many of these defenses can
be easily circumvented. One of the most effective approaches to defending against adversarial attacks
is shown to be adversarial training [24, 1].

A.3 Defending against adversarial perturbations

To set the setting, we follow the notation from [24, 33]. Given a distribution of data, D, from
which pairs (x, y) of features x ∈ Rd and labels y ∈ [q] are sampled; a machine learning model F ,
parameterized by θ (denoted Fθ), is typically optimized to minimize the expected loss L:

E
(x,y)∼D

[L(x, y;Fθ)] . (7)

To improve adversarial robustness, the goal of adversarial training is to train models that minimize
the adversarial loss,

E
(x,y)∼D

[
max
δ∈∆

L(x+ δ, y;Fθ)

]
, (8)

where ∆ is a set of lp-bounded perturbations, or alternatively a set S of adversarial examples x′ ∈ X
where S = {x′ ∈ X : ∥x′ − x∥p < ϵ} for some perturbation strength ϵ.
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Figure A1: Overview of the ASSET model for adversarial training with self-supervision. The top half
of the diagram, denoted T0, is a baseline adversarial training approach. As we will show, the most
successful way to include SSL into AT is by way of augmenting the training set with a copy of the
data batch to which the self-supervised transformation is applied. Then self-supervision can be added
as an additional loss function in three ways: T3 includes a self-supervision loss but no adversarial
attacks on self-supervised images; T4 adversarial attacks only consider the supervised loss; and T5
(the full diagram) is our approach combining the supervised and self-supervised losses in adversarial
attacks. Note that T5 is a form of adversarial semi-supervised ensemble training (ASSET), in which
we use adversarial examples for a supervised model and self-supervised model. A similar diagram
for T1 and T2 is in the Supplement.

Algorithm 1 Finding adversarial examples

1: input: Robustness parameter ϵ, attack learning rate α, number of attack steps K, image batches
X and Xt, labels y and yt, self-supervision weight w1

2: output: Adversarial images X and optionally Xt

3: Randomly perturb images X (and optionally Xt)
4: X0 = X + U(−ϵ, ϵ), X0

t = Xt + U(−ϵ, ϵ)
5: for k = 0, . . . ,K − 1 do
6: LPGD = Lsup(Fθ(X

k), y)
7: if should use self-supervised loss then
8: LPGD += w1 · Lt(F

t
θ (X

k
t ), yt)

9: end if
10: Xk+1 = ΠS

(
Xk + α · sign (∇xLPGD)

)
11: end for

One of the most successful methods for defending is adversarial training [11, 24, 35]. A variant of
adversarial training proposed by [24] solves the above problem by finding the worst case lp bounded
adversarial examples using projected gradient descent (PGD) and finds set of parameters θ that
minimize the empirical training loss using these examples [1],

θ=argmin
θ

E
(x,y)∈X

[
max

δ∈[−ϵ,ϵ]
L(x+ δ, y;Fθ)

]
. (9)

In adversarial training by [24], an image x is first perturbed in its ϵ-neighborhood, i.e.

x0 = x+ U(−ϵ, ϵ), (10)

where U is a uniform distribution. It then follows the generation process of the Basic Iterative Method
[21, 26],

xk+1 = ΠS (xk + α · sign (∇xLPGD(x+ δ, y;Fθ))) (11)

where K is the number of “attacks steps”, or iterations of projected gradient descent performed
to find the worst case lp bounded adversarial example xadv. Πp is an operator that will project the
iterates onto an lp ball, where in our case p = 2 or ∞. Algorithm 1 describes the general procedure
for generating adversarial examples using PGD attacks.
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A.4 Self-supervised pre-training

From [4] we know that self-supervised adversarial pre-training (SSAPT) can help robustness. There-
fore, we evaluate whether SSAPT further aids our model robustness. We consider the following
pre-training settings for initializing our weights: random initialization (baseline), SSAPT with l2
perturbations (which we call P1), and SSAPT with l∞ (which we call P2). For pre-training, SSAPT
uses Xt and yt in the AT algorithm of [24].

B Implementation details

All of our code is implemented in Python using the PyTorch [27] deep learning framework. In pursuit
of simplicity and reproducibility, our code extends the robustness library [7]1 (released under the
MIT License). Our code is developed on an internal cluster, where each server node is equipped with
4 NVIDIA Tesla A100 cards (each with 40 GB of VRAM), paired with a dual 64-core AMD Epyc
CPU and 256GB of memory. Each ablation experiment ran on average for 4 hours on a single node.
Our ablation experiments utilize the ResNet-18 architecture2.

When applying self-supervised transformation T (·) to X , each image is randomly rotated by ϕ
degrees, where ϕ ∈ {0◦, 90◦, 180◦, 270◦}. This implementation differs from [15], as they simultane-
ously generate and predict all four possible rotations for each image in the batch (if the size of X is b
samples, Xt is of size 4 · b). Furthermore, when leveraging SS loss to guide adversarial training (step
6 of Algorithm 1), we use the following form of the loss:

Lt(Xt, yt) =
1

N

∑
i∈{1,··· ,n}

LCE(F
t
θ (x

i
t), y

i
t), (12)

which differs from [15] in that they omit the averaging term 1/N . In our experiments, averaging
reduction for the loss gives consistently better results.

B.1 Datasets

To select our best models, ablation experiments are conducted on CIFAR-10 [19]. We validate our
best models on CIFAR-10 and CIFAR-100. The CIFAR-10C dataset [14], used to test our model
against common corruptions, is release under the Apache 2.0 License3. Note that CIFAR10[20] and
CIFAR100[20] dataset do not have license attached to them. The CIFAR10[20] and CIFAR100[20]
are publicly available on Alex Krizhevsky’s website4, and are a subset of the TinyImages dataset, that
is no longer available5.

B.2 Training and evaluation details

All of the ablation experiments investigate the addition of SSL into AT are trained for 100 epochs,
with a starting learning rate of 0.1 (reduced by 10 every 40 epochs) and optimized using Stochastic
Gradient Descent (SGD) with momentum 0.9. The CIFAR-10 training set is further split into a
training and validation set (15% or 7500 images are used for validation and the rest are used for
training). For adversarial training and evaluation, we use 10 and 20-step lp PGD attacks [24]. For
l∞ adversaries, ϵtrain = 8/255 and the attack learning rate is α = 2/255 [15, 4]. Similar to [4],
in our results we refer to the non-robust, i.e. ϵ = 0, accuracy as the Standard Testing Accuracy
(TA), and robust accuracy at ϵtest = ϵ as the Robust Testing Accuracy (RAϵ). For a particular set of
hyper-parameters, we pick the model with the highest validation TA and test across a range of ϵtest
values. The adversarial perturbations for testing images are only generated using the supervision loss
in the PGD attack.

1Source code can be made available upon internal review.
2Note that the robustness package uses slightly different architectures for the CIFAR-10 and Ima-

geNet dataset. CIFAR-10 uses slightly smaller convolutional kernels. For more details, please see:
https://github.com/MadryLab/robustness

3Publicly available at https://github.com/hendrycks/robustness
4https://www.cs.toronto.edu/~kriz/cifar.html
5Please see http://groups.csail.mit.edu/vision/TinyImages/
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Table C1: Top-1 accuracy on the CIFAR-10 validation set with ResNet-18 models trained with l∞
norm and ϵtrain = 8/255 evaluated at different values of ϵtest used to generate the robust validation
set as we vary λ.

Method / ϵtest 0/255 3/255 4/255 5/255 6/255 7/255 8/255 9/255 10/255

λ = 0.00 85.46 72.09 66.98 61.29 55.83 50.19 44.69 39.38 34.60
λ = 0.25 86.31 73.62 68.17 62.56 56.52 50.19 44.33 39.04 33.98
λ = 0.50 86.59 73.69 68.71 62.86 56.88 50.52 44.51 38.90 33.89
λ = 1.00 85.04 71.34 65.80 59.72 53.60 47.48 41.59 36.27 31.36
λ = 2.00 82.03 68.09 62.77 57.07 50.65 44.46 38.70 33.12 27.96

Table C2: Top-1 accuracy on the CIFAR-10 test set for ResNet-18 trained with combinations of
SSAPT (P0, P1, P2) and AT (T0, T5).

Method / ϵtest 0/255 3/255 4/255 5/255 6/255 7/255 8/255 9/255 10/255

P0|T0 85.29 71.90 66.63 60.96 55.42 49.52 44.01 39.28 34.41
P1|T0 84.67 72.67 67.91 62.61 56.91 51.46 45.91 40.27 35.88
P2|T0 85.37 72.01 66.69 61.05 55.52 49.61 43.70 38.17 33.66
P1|T5 83.78 72.75 68.20 63.32 58.25 52.85 47.37 42.24 37.93
P2|T5 84.08 72.65 68.08 62.94 58.01 52.77 47.16 41.67 36.58
P0|T5 84.61 73.33 68.61 64.01 59.09 53.73 48.11 43.42 38.76

C Additional results

C.1 Is there something special about rotation prediction?

Our experiments suggest the answer to be no. Refer to Table C3, where we compare swapping the
task of predicting image rotation to the jigsaw task [2], where one scrambles the image parts into one
of several pre-selected permutations and then predicts the nature of the permutation. We see from
Table C3 that either the rotation or jigsaw task succeed in improving the robustness of the model in a
similar way, though we can see that jigsaw is slightly inferior to rotation prediction.

Figure C1: Comparison of various methods to incorporate self-supervision into adversarial training
(T0, T3, T4, T5) for the various corruption types present in the corrupted CIFAR-10 dataset. (Top):
TA, non-robust top-1 accuracy. (Bottom): RA, robust top-1 accuracy.
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Table C3: Top-1 accuracy on the CIFAR-10 test set with ResNet-18 models trained with l∞ norm
and ϵtrain = 8/255 evaluated at different values of ϵtest used to generate the robust test set as we vary
the SSL tasks that are used in tandem with AT.

Method / ϵtest 0/255 3/255 4/255 5/255 6/255 7/255 8/255 9/255 10/255

Baseline 85.46 72.09 66.98 61.29 55.83 50.19 44.69 39.38 34.60
Rotation 84.61 73.33 68.61 64.01 59.09 53.73 48.11 43.42 38.76
Jigsaw 83.90 72.39 67.91 63.18 57.99 52.89 47.57 42.31 37.66

Table C4: Top-1 accuracy on the CIFAR-10 test set with ResNet-18 models trained with l∞ norm
and ϵtrain = 8/255 evaluated at different values of ϵtest used to generate the robust test set as we vary
the training method and SSL involvement.

Method / ϵtest 0/255 3/255 4/255 5/255 6/255 7/255 8/255 9/255 10/255

T0 [24] 85.16 (0.44) 72.73 (0.35) 67.76 (0.42) 62.55 (0.56) 57.06 (0.58) 51.47 (0.66) 46.00 (0.79) 40.82 (0.79) 35.83 (0.87)
T0 w/ rot aug. 72.54 (0.50) 61.90 (0.33) 57.82 (0.27) 53.70 (0.25) 49.38 (0.42) 45.07 (0.35) 40.68 (0.40) 36.38 (0.45) 32.19 (0.56)
T1 74.60 (0.51) 63.60 (0.44) 59.41 (0.27) 55.04 (0.29) 50.57 (0.27) 45.96 (0.36) 41.34 (0.45) 36.82 (0.49) 32.47 (0.46)
T2 74.51 (0.58) 63.10 (0.35) 58.67 (0.28) 54.27 (0.18) 49.67 (0.35) 45.16 (0.41) 40.63 (0.59) 36.05 (0.66) 31.79 (0.55)
T3 86.49 (0.50) 73.16 (0.38) 67.64 (0.47) 61.64 (0.59) 55.51 (0.66) 49.54 (0.72) 43.59 (0.77) 38.17 (0.96) 33.03 (0.98)
T4 85.90 (0.39) 73.95 (0.28) 68.82 (0.33) 63.27 (0.52) 57.65 (0.49) 51.85 (0.50) 46.23 (0.54) 40.77 (0.64) 35.76 (0.60)
T5 84.54 (0.53) 72.70 (0.40) 67.97 (0.51) 62.89 (0.50) 57.60 (0.55) 52.23 (0.57) 46.88 (0.54) 41.67 (0.47) 36.80 (0.40)

Table C5: Comparison of TA and RA of various models for T0 and T5 on the CIFAR-10 dataset.

MODEL TA T0 TA T5 RA T0 RA T5

VGG-16 76.84 75.87 43.58 44.35
RESNET-18 85.46 84.61 44.69 48.11
RESNET-34 86.04 86.03 45.83 47.94
RESNET-50 84.85 82.97 46.00 48.10
WRN-40-2 83.56 83.01 46.43 48.42

Table C6: Comparison of ResNet-18 TA and RA for T0 and T5 on various datasets.

DATASET TA T0 TA T5 RA T0 RA T5

CIFAR-10 85.46 84.61 44.69 48.11
CIFAR-100 60.99 60.09 24.20 26.01

C.2 Robustness to natural corruptions

In this section, we report the performance of the best SSL training methods on the CIFAR-10C
dataset, which contains various common corruptions, e.g. Gaussian noise, blur [14]. Figure C1
shows the plots of the non-robust TA (Top) and robust RA (Bottom) Top-1 accuracies for l∞-robust
ResNet18 models trained with ϵtrain = 8/255 (the plot for l2-robust models can be found in the
Supplement). From all of these examples we can see the following trend (which is similar to the l2
trained models): adding the self-supervised loss (T3 and T4) helps the model improve its TA accuracy
for the various common image corruptions — the clean accuracy goes from 78.36% mean accuracy
over all corruptions to 80.23% and 79.15% for T3 and T4 trained models respectively. The clean
accuracy drops from 78.36% mean accuracy to 76.52% when SSL task loss is added to PGD (T5).
However, one can see the benefit of T5 when adversarial perturbations are added to natural corruptions
as RA goes from 35.83% to 38.33% mean RA for l2-robust models and from 32.20% to 36.22%
mean RA for l∞-robust models. In terms of RA, T3 and T4 are worse than T0 (in case of l2-robust
models) and T3 is worse than T0 for l∞. Interestingly, even though the mean TA for both l2 and l∞
robust models is similar, l2-robust models (trained using T0, T4, T5) outperformed l∞ robust models.
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C.3 Robustness improvement across datasets and models

Lastly, we compare the TA and RA of baseline AT (T0) and the self-supervised augmented ensemble
adversarial training ( T5) using: (a) various architectures on CIFAR-10 (Supp. materials), and (b) on
various datasets using ResNet-18 (Supp. materials). In both of the tables, we observe the same trend
we saw previously and see that ASSET (T5) improves model robustness across various deep learning
architectures and datasets.
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