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Abstract

Recent methods in self-supervised learning have demonstrated that masking-based
pretext tasks extend beyond NLP, serving as useful pretraining objectives in com-
puter vision. However, existing approaches apply random or ad hoc masking
strategies that limit the difficulty of the reconstruction task and, consequently, the
strength of the learnt representations. We improve upon current state-of-the-art
work in learning adversarial masks by proposing a new framework that generates
masks in a sequential fashion with different constraints on the adversary. This leads
to improvements in performance on various downstream tasks, such as classifi-
cation on ImageNet100, STL10, and CIFAR10/100 and segmentation on Pascal
VOC. Our results further demonstrate the promising capabilities of masking-based
approaches for SSL in computer vision.

1 Introduction

Self-supervised learning (SSL) involves designing pretext tasks to learn useful representations from
unlabeled data. In NLP, prior works [7, 16, 20] have demonstrated that filling in removed words
or sequences of words in a sentence serves as a useful pretext task, learning better representations
for various downstream tasks. In computer vision, however, the prevalent trend has been to employ
contrastive approaches [4], given that we do not have natural objects to mask out (such as words in
sentences). Recent works, such as [2, 12, 1], have applied masking-based pretext tasks to computer
vision tasks and achieved comparable performance to contrastive approaches. One major caveat of
these works is that they employ simple, random masking procedures to remove parts of an image.
This pretext task is much easier, as the network can perform reconstruction by extending textures or
colors. It appears that networks can learn trivial correlations instead of the global structure (over the
distribution) of images. This is supported by the boosted performance of MAE [12] when removing
larger amounts of the image, forcing the network to use some notion of global reasoning.

Our work addresses this masking procedure. We aim to learn how to mask out regions of an
image to improve upon existing ad hoc masking pipelines. Other recent work looks to learn more
meaningful masking procedures [26, 21]. We further build on the initial results of the Adversarial
Inference-Occlusion Self-supervision (ADIOS) model [26], which learns to generate these masks in
an adversarial fashion. This prior work demonstrates that a masking network trained to maximize the
error of an encoder can learn to generate imperfect yet semantically meaningful masks. Furthermore,
the approach learns better features for downstream tasks when added to the standard contrastive setup.
However, there are a few limitations to this existing approach. It simultaneously generates a fixed
number of masks N, constraining them to be roughly equal in strength through a pixel-wise softmax
and a penalty term. We argue that this particular constraint is not flexible and leads to undesirable
outcomes. For example, each pixel must be covered by a mask, and these masks are encouraged to be
completely disjoint. Moreover, the simultaneous generation by the masking network is somewhat
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Figure 1: Visualization the masking pipeline M of existing work (a) and our sequential approach (b).
(a) generates masks simultaneously, while (b) feeds masks recurrently into the masking head.

ill-suited to the task as the resulting masks are equally valid when permuted, leading to potentially
unstable results.

We fundamentally change this masking procedure and provide a new framework that generates masks
in a sequential fashion under a different constraint on the adversary. We add a budget parameter b
that controls the strength of each of the N masks by requiring each to remove only b% of the total
number of pixels. We note that this is more flexible than the ADIOS framework, which has an implicit
budget of %, as each mask is of roughly equal strength. This allows us to impose the constraint
for each mask independently and hence generate the masks sequentially. To encourage the learnt
masks to capture different regions of the image, we introduce an overlap penalty (i.e., a dot product
of the proposed mask and the sum of all previous masks). This mirrors similar intuition in instance
segmentation [22], where we remove object proposals one by one. Here, we learn to iteratively mask
out a region of the image and pass previously masked regions back into the network, so it selects from
the remaining portion of the image. This sequential formulation breaks the symmetry that masks are
equally valid under permutations in previous work.

We apply our pretraining approach to multiple datasets (ImageNet100s, STL10) and demonstrate
its efficacy by using the pretrained models for downstream tasks including in distribution (ID)
classification, transfer learning, and semantic segmentation on Pascal VOC [8]. Our method achieves
better performance than prior work, especially on linear readout on ImageNet100s (an increase of
3 accuracy points or a 7% reduction in error). We achieve comparable performance in fine-tuning
and almost a 5% relative improvement in mloU for semantic segmentation on Pascal VOC. We also
compare visualizations of our masks with those generated by existing work in Appendix B.

2 Preliminaries

Following the promising results of adversarial approaches in generating mask-based pretext tasks for
SSL [26], we consider the same setting where we have an encoder model Z and a masking network
M, which is illustrated in Figure 1. Our masking network generates a set of real-valued masks
m = M(x), which we apply to the original image through a Hadamard product m o 2. We perform
our reconstruction in latent space, as is done in ADIOS and other existing work [1]. We learn our
inference and masking models in an adversarial fashion, captured by the equation

¥, M* = argmin max L(x,Z, M),
T M

where L is some loss function. We perform alternating update steps to the encoder model and the
masking network, following the procedure in generative adversarial networks [10]. First, we find the
loss of our encoder model Z. We use SimCLR [4] as our underlying SSL objective, and we denote
our positive pairs of x; as 2}, 2P, where A, B are two randomly sampled augmentations. Then, the
loss function of our encoder model is given by

?
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where D is the negative cosine similarity and m is a mask generated by the adversarial masking
network. This is simply the standard SImCLR loss function, except with one of the positive pairs
having applied the mask generated by our masking network.
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‘ ImageNet100s STL10

Method ‘ Linear Fine Tune Linear Fine Tune
SimCLR 55.10 = 0.15 - 85.10 £ 0.12 -
+ ADIOS 5591 +£0.12 64.83 £ 0.22 86.03 + 0.03 86.82 + 0.11

+ Sequential 58.95 + 0.10 65.43 + 0.34 86.4 = 0.04 89.41 £ 0.26

Table 1: Results for ID classification (top-1 accuracy) when pretrained and evaluated on ImageNet100s
and STL10. Results are averaged over 3 seeds. [talics denote results that are reported from existing
work [26]. The best performing method is denoted in bold.

3 Sequential Masking Network

We now propose our new sequential masking framework to improve on prior work that generates
masks simultaneously. We describe the loss function of our masking network M, which is depicted
in Figure 1 (b). In Equation 1, we considered the encoder loss for a single mask m. However, we
generate a set of masks {m?,...,mV} for each image x. As these are produced in a sequential fashion,
we have that m* = M(z, m?', ..., m*~1). Given this set of N masks, we compute the average loss
over all masks, which is also done in ADIOS. This gives us that our masking network loss is given by

maqk encoder 1 i—1
LimcIR = E /:'SlmCLR z,, M(z,m",....m ))

If M is unconstrained, then it would tr1V1a11y learn to remove all the pixels from an image. Therefore,
we incorporate a budget term b to constrain the network learns to mask out only 5% of the total
number of pixels in the image. Then, our budget-regularization term R} given by

b) = (Zmi,jfb)%

We note that this budget constraint is similar to MAE [12] and other random masking schemes, which
choose to randomly mask out a fixed 75% of the image. However, since our masking procedure is
much stronger than random, our selection of b tends to be much smaller. For our experiments, we
choose b = 0.25, which is roughly equivalent to the strength of masks in ADIOS. To encourage our
sequentially generated masks to be disjoint, we introduce an overlap penalty. We can simply compute
a dot product between a proposed mask m! with the sum of all previous masks Z;;ll mJ. This
penalty term encourages the newly generated mask to be disjoint from previous masks, and it is a
more flexible constraint as compared to that in ADIOS. As a result, our final optimization problem is
given by a combination of the encoder loss, the budget regularization, and the overlapping penalty, or

N i1
1 . _ . .
I M* = argzrninmj\z/mlx i E L£aeder (x,Z,m*) — Ry(m®,b) — (mz- E mj)
i=1 j=1

4 Experiments

We provide empirical results to demonstrate the efficacy of using our sequential mask generation in
a SSL pretraining objective. We compare the performance of our method to ADIOS and the base
method of SimCLR across classification, transfer learning, and semantic segmentation tasks. For our
experiments, we largely follow the same experimental procedure in ADIOS. We evaluate ADIOS
and our approach with SimCLR [4] as the underlying contrastive SSL objective. For all of these
approaches, we use a ResNet18 [14] backbone. We provide details about our hyperparameters and
architectures in Appendix D.

4.1 Classification Results

We pretrain networks on STL10 and ImageNet100s and then perform classification on the same
dataset. STL10 is a dataset consisting of 10 object classes from ImageNet [24], and ImageNet100s is
a compressed (96x96 pixels) version of ImageNet100 [27] that is introduced in ADIOS [26].



‘ CIFARI10 CIFAR100 iNaturalist21 Pascal VOC

Method ‘ Linear Fine Tune Linear Fine Tune Linear Fine Tune Fine Tune

SimCLR 62.324+0.21 91.344+090 3791 +0.16 65.04 +0.48 79.78 £ 0.06 92.78 £ 0.04 | 36.63 £+ 0.42
+ ADIOS 62.93 + 042 9393 +0.27 38.75+0.08 73.26 +1.32 81.07 +0.02 93.74 £ 0.03 | 38.14 £ 0.47
+ Sequential | 63.97 £ 0.05 93.59 +£0.33 38.83 £0.09 72.44 +0.46 80.79 +0.02 93.31 4 0.03 | 39.86 & 0.14

Table 2: Results for classification (top-1 accuracy) on CIFAR10, CIFAR100, and iNaturalist21.
Results for semantic segmenatation (mloU) on Pascal VOC. All methods have been pretrained on
ImageNet100s. Results are averaged over 3 seeds, and improvements larger than 1% are shown in
bold.

We report our classification results for both linear probing (LP) and fine tuning (FT) on these datasets
in Table 1. We observe that our sequential mask procedure outperforms ADIOS across all tasks.
We highlight that our method significantly improves upon LP of ADIOS on ImageNet100s (by 3
accuracy points or a 7% reduction in error) and upon FT on STL (by 2.5 accuracy points or almost a
3% reduction in error). We remark that these are larger improvements than ADIOS observes over the
base method SimCLR.

4.2 Transfer Learning and Segmentation Results

We also provide experimental results on multiple different transfer learning tasks. We first pretrain all
methods on ImageNet100s and use these learnt encoders for classification on CIFAR10, CIFAR100
[19], and iNaturalist 2021 [15]. We also provide results on a semantic segmentation task on Pascal
VOC [9]. While we only add a linear layer for the classification tasks, we add connections between
the ResNet’s layers for the segmentation task, following the architectural choices of FCN [25].

We report the transfer learning results and the semantic segmentation results in Table 2. We observe
comparable results across all transfer learning datasets. Our method is slightly better than ADIOS for
LP on CIFAR10, but it is slightly weaker than ADIOS for FT on CIFAR100. These results support
that our method learns better (more linearly separable) features for these downstream transfer learning
tasks. While our method is slightly worse on FT, we note that all these approaches do achieve 100%
training accuracy, so this may be better addressed by modifying the FT procedure with additional
regularization. We do remark that our approach is better on the semantic segmentation task by more
than 1.5 accuracy points or a 5% relative improvement, suggesting that our approach learns features
that are better suited for more fine-grained reasoning.

5 Discussion

We provide a new framework to sequentially generate masks in an adversarial fashion to enhance
the standard contrastive learning pipeline for SSL. Our approach improves upon existing work by
changing the underlying mechanism for constraining the adversary and introduces a new penalty to
encourage that the learnt masks are disjoint. We demonstrate our method on various experimental
tasks, showing significant improvements on ImageNet100s and STL10, as well as in linear readout
on downstream classification and in fine-tuning for a semantic segmentation task. While our method
shows improvement for many of these metrics, we expect the most benefit when tackling other, larger
datasets. For pretraining on ImageNet100s and STL, we note that most images consist of a single,
foreground image, which may not require multiple masks. However, for larger multi-object images
(which may potentially not be a majority of the foreground), our approach will likely show even
larger benefits over random masking and previous adversarial approaches. Scaling up our adversarial
method to larger, multi-object datasets is an open direction for future research.

Finally, we note that our approach is flexible and can benefit from improved approaches for setting
the budget constraint on the masking network. We are currently investigating a principled way to
determine a dynamic budget via using the sizes of clusters of superpixels (clusters determined by
average RGB values) as a proxy for the budget for each mask. This further would strengthen our
masking procedure, as it would now be able to mask out exactly the size of particular objects in
the image, and this budget would now depend on the input image. We believe that determining this
budget in a dynamic fashion is another fertile area of future research.
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Appendix

A Related Work

Contrastive Learning

Many SSL pretext tasks fall under the category of contrastive learning, where a network learns an
invariance to a particular set of data augmentations. This line of work [4, 13, 5, 6, 1] trains a network
by making two positive views (i.e., differently augmented views of the same image) nearby in a
latent space, while making two negative views (i.e., augmented version of different images) far apart.
However, this approach can be computationally expensive as it requires a large batch size to have
sufficient negative samples. Also, relying on strong image augmentations can potentially be harmful
for particular downstream tasks; for example, relying on rotations and flips might harm the network’s
ability to classify directions.

Masked-based SSL

More recently, other approaches have applied mask-based reconstruction tasks in SSL. These ap-
proaches [12, 1, 2] have demonstrated strong performance albeit using a random masking procedure.
Under a random masking scheme, a large amount of pixels (50-75% depending on the architecture)
need to be masked to encourage a network to learn some notion of global reasoning, which bene-
fits downstream tasks. Other works have shown strong initial progress in improving this masking
procedure to learn more meaningful, difficult masks [26, 21]. ADIOS [26] is the most related work,
which looks to learn a masking model in an adversarial fashion with particular constraints on the
adversary. This work also empirically demonstrates that better masks (i.e., masks that correspond
to individual object boundaries) lead to better (ID) classification performance. Our work looks to
further this line of work by changing the procedure that existing work uses to generate masks and
changing the underlying adversary constraints.

Unsupervised Segmentation

While not directly related to learning representations for classification, there are similarities between
learning how to mask out objects and unsupervised segmentation tasks. The goal of unsupervised
segmentation is to group regions of images together that capture objects or other semantic meaning
without any (pixel-level) supervision. Many existing works [18, 3, 28, 11, 17] tackle this problem by
encouraging consistency or grouping across input tokens to vision transformers. An adversarially
learnt masking network seems to learn some unsupervised segmentation capability, although it
is trained for a fundamentally different objective without any of these loss terms to encourage
consistency. As a result, adversarially learnt masks are semantically meaningful but are imperfect as
they sometimes do not respect object boundaries or contain various noisy pixels.

B Mask Visualizations

We provide visualizations of the masks generated by ADIOS in Figure 2 (a) and by our sequential
mask generation procedure in Figure 2 (b). We observe that both masking procedures frequently
learn to remove semantically meaningful regions to pass into the encoder network. For ADIOS, in
many instances, the rightmost masking channel learns to remove one continuous foreground object,
while the remaining masks learn to fight over noise and patterns in the background. In our sequential
masking procedure, we observe that our network learns to produce multiple semantically meaningful
masks. On ImageNet100s, we observe that 3 of the 4 masks learn meaningful regions in the image.
The leftmost mask corresponds to the foreground object. Two other masks learn to mask out parts of
the foreground and the background. Finally, the last mask learns to mask out nothing; the penalty
incurred by removing any more regions (and overlapping with existing masks) is larger than the
increased loss of the encoder network. We can observe that in a few instances (e.g., the second row
and the fourth row) our sequential masking network seems to learn masks that better correspond
to the multiple foreground objects in the image, such as the person’s face and hand. On the other
hand, multiple masks from ADIOS learn to remove noise or patterns in the background. This finding
supports the added flexibility of our method; with ADIOS, each network must remove roughly equal
amounts of pixels and each pixel in the image must completely be removed. However, with our more
flexible constraint, we can develop better masking procedures, as is demonstrated on this dataset by
only requiring 3 meaningful masks for better performance.



(a) Masks from ADIOS (b) Masks from our sequential masking framework

Figure 2: Visualization of the masks generated by ADIOS (a) and our sequential mask pipeline (b) on
ImageNet100s images. For ADIOS, we use N = 4, and for our pipeline, we use N = 4 and b = 0.25.
Within each row, the leftmost image is the original image, and the remaining images correspond to the
N = 4 learnt masks. We note that our method learns to mask out nothing for one output as the penalty
incurred by overlapping and consistency outweighs the increased loss from a new masked region.

We note that including this fourth mask (and other additional masks) seems to further increase
performance; it serves a purpose similar to regularization towards the original contrastive method
(SimCLR), by adding additional positive augmented pairs without any masking. We also note that
adding a small consistency penalty (Appendix C) encourages our network to learn more continuous,
well-grouped regions. This further discourages that each mask needs to remove a region; the
remaining regions after some masks may not be continuous, and thus a masking network incurs less
penalty by not producing any mask. In all, both masking procedures are still imperfect, although our
sequential framework seems to be a step towards generating more meaningful segmentations of the
original image.

C Consistency Penalty

We observe that the masks that are learnt by existing work [26] are imperfect and contain noise in
many masks. We can improve the quality of these masks by introducing a small consistency penalty,
which encourages the network to remove more continuous regions. Our penalty takes the form of

C(m) = [jm —m*|[3

where m is a predicted mask, and m* is an average-pooled version of the same mask. By encouraging
a mask to be similar to its average-pooled version, we are encouraging the masks to be smooth and
not have different pixel values within a small neighborhood defined by our average-pooling kernel.
For our experiments, we use a kernel size of 3x3.

D Parameter and Architecture Settings

For all of the methods, we use a ResNet18 [14] as an encoder and a single feed-forward layer as our
projection head for SimCLR. For the masking network, we use a U-Net [23] for the mask generation
network, which is shared among all mask heads. We use 1x1 convolutional layers to generate our N
masks. For our optimization and training, we follow many of the same parameter settings that are
used in ADIOS [26].

We note that we use N = 5 and b = 0.25 in our pipeline. This results in two different masks learning
to mask out nothing (i.e., adding two additional regularizing pairs of positive images from standard



Name Value

Optimizer SGD
Momentum 0.9
Scheduler warmup cosine
Epochs 500
Batch Size 256
Enc. Learning Rate 0.11
Temperature 0.2

Table 3: Pretraining hyperparameters used for all methods

Name Value Name Value

N 4 N 5
entropy 0.71 budget 0.25
sparsity  0.93 overlap  0.0001

consistency 0.0001

Table 4: Pretraining hyperparameters used for ADIOS (left) and our sequential masking procedure
(right).

SimCLR). As noted above, this leads to slightly better performance, further improving upon the gains
from our sequential masking procedure.

E Downstream Task Setup

For our linear probe and fine tuning experiments on classification tasks, we run all approaches with a
fixed learning rate of 0.1, a batch size of 256, and no weight decay. For fine tuning, we use a learning
rate of 0.5, a batch size of 256, and no weight decay.
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