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Abstract
Contrastive self-supervised learning (SSL) learns an embedding space that maps
similar data pairs closer and dissimilar data pairs farther apart. Despite its success,
the fairness aspect of contrastive SSL has been overlooked. Without mitigation,
contrastive SSL techniques can incorporate sensitive information such as gender or
race and cause potentially unfair predictions on downstream tasks. In this paper,
we propose a Conditional Contrastive Learning (CCL) approach to improve the
fairness of contrastive SSL methods. Our approach samples positive and negative
pairs from distributions conditioning on the sensitive attribute. We show that
our approach provably maximizes the conditional mutual information between
the learned representations of the positive pairs, and reduces the effect of the
sensitive attribute by taking it as the conditional variable. On seven datasets,
we empirically demonstrate that the proposed approach achieves state-of-the-art
downstream performances compared to unsupervised baselines and significantly
improves the fairness of contrastive SSL models on multiple fairness metrics.

1 Introduction

Figure 1: Conventional contrastive SSL vs. the proposed Condi-
tional Contrastive Learning (CCL). Conventional contrastive learn-
ing is performed on mixed female and male samples, and the model
can easily contrast females from males, creating gender biases. The
proposed Conditional Contrastive Learning only samples positive
and negative pairs from the same gender, making it harder for the
model to pick up gender information and create gender biases.

Contrastive self-supervised learning
(contrastive SSL) [6, 18] have per-
formed well in a variety of different
vision or language tasks [8, 7, 34].
Such frameworks perform the con-
trastive pre-training by pulling to-
gether related data pairs (termed pos-
itive pairs) and pushing away unre-
lated pairs (termed negative pairs),
and then evaluate the learned repre-
sentation by a supervised fine-tuning
with labels. They have been exten-
sively studied because of strong em-
pirical results [20, 24].

However, despite the growing popu-
larity of contrastive SSL, the potential
issue of fairness in these learned repre-
sentations has been understudied: do
contrastive SSL models learn fair representations, and how to mitigate potential biases? We are
particularly interested in the scenario where a potential sensitive attribute, such as gender or race,
is already available in the dataset. We show that without care, contrastive models can incorporate
information from the sensitive attributes and cause unfair predictions in downstream tasks. For
example, Figure 1 illustrates a case where contrastive SSL is used to learn representations of human
faces. A conventional contrastive SSL setup [6] uses two augmented views of the same image as a
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positive pair, and selects random images as negative pairs. In this setup, two images for the positive
pair will always share the same gender since both are augmented from the same image, but two images
for the negative pairs may have different genders. Therefore, a contrastive SSL model can learn to
use gender-related visual attributes to push away mixed-gender images present in negative pairs. By
capturing this gender-related information in the embedding space of the learned representation, the
representation can potentially causes unfair predictions when it is applied to downstream tasks.

In this paper, we empirically study this potential issue of fairness with contrastive SSL approaches,
and propose a new method, Conditional Contrastive Learning (CCL), to reduce the effect from a
sensitive attribute during the contrastive pre-training. We focus on scenarios where the sensitive
attribute is known and our goal is to mitigate its effect. The proposed CCL approach first defines
the sensitive attribute (e.g., gender) as a conditional variable and samples the positive and negative
pairs from distributions conditioning on the sensitive attribute. Empirically, this can be efficiently
implemented by sampling from the same sensitive attribute, i.e., from the same gender. This simple
but effective approach makes it harder for the model to leverage information from the sensitive
attribute to distinguish positive pairs from negative pairs. We then proved that the proposed CCL
maximizes a lower bound of conditional mutual information between the learned representations,
which explicitly excludes information from the conditional variable.

We evaluate our approach on five fairness datasets: Adult [11], German [11], COMPAS [1], Crime
[11], and Law School [40], and two real-world facial datasets, CelebA [27] and UTK-Face [44]. We
study the fairness of contrastive SSL with multiple fairness metrics including demographic parity,
equalized odds, and equality of opportunity, with the goal of maintaining strong downstream task
performances compared to unsupervised baselines.

2 Method
We use x and y to denote the learned representations after encoding two data views v1 and v2
created by stochastic augmentation on images, where v1 and v2 could be a positive (from the same
image) or a negative pair (from different images): x = encoder (v1) , y = encoder (v2) . Recent work
[33, 3, 41, 2, 38] has shown that the successes of contrastive SSL objectives are related to maximizing
a lower bound of mutual information shared between the representations of positive pairs. Formally,
the conventional contrastive objective, InfoNCE [33], maximizes MI(X;Y ) as follows:

InfoNCE := sup
f

E(xi,yi)∼PX,Y

[
1

n

n∑
i=1

log
ef(xi,yi)

1
n

∑n
j=1 e

f(xi,yj)

]
≤ DKL (PX,Y ∥PXPY ) = MI(X;Y ),

(1)
where the positive pairs {(xi, yi)}ni=1 are drawn from the joint distribution: (xi, yi) ∼ PX,Y , and
the negative pairs {(xi, yj ̸=i)} are drawn from the product of marginal distributions: (xi, yj ̸=i) ∼
PXPY . MI(X;Y ) is the mutual information between X and Y . The score function is f(x, y) =
cos (g(x), g(y))/τ , where τ is the temperature hyper-parameter.

2.1 Conditional Contrastive Learning
Next, we propose our method, Conditional Contrastive Learning (CCL), which differs from conven-
tional contrastive SSL by taking positive and negative pairs from the distributions conditioning on a
sensitive attribute referred as Z. Our CCL approach reduces information from the sensitive attribute
Z by taking Z as the conditional variable between X and Y . We assume Z is readily available in the
dataset (e.g., gender, race or age), following previous work on fairness [29, 37]. Now we present the
proposed Conditional Contrastive Learning objective:

CCL := sup
f

Ez∼PZ

[
E(xi,yi)∼PX,Y |z

[
1

n

n∑
i=1

log
ef(xi,yi)

1
n

∑n
j=1 e

f(xi,yj)

]]
(2)

where the positive pairs {(xi, yi)}ni=1 represent samples drawn from the conditional joint distribution:
(xi, yi) ∼ PX,Y |z , while the negative pairs {(xi, yj ̸=i)} represent samples drawn from the product
of conditional marginal distributions: (xi, yj ̸=i) ∼ PX|zPY |z . The score function is f(x, y) =
cos (g(x), g(y))/τ , same as (1). The difference between CCL and InfoNCE can be phrased as
follows: CCL first samples z ∼ Z, and then samples positive and negative pairs from PX,Y |z and
PX|zPY |z , respectively. InfoNCE, on the contrary, directly samples from PX,Y and PXPY . Sampling
from conditional distributions in CCL means all positive and negative pairs share the same outcome z
of the sensitive attribute Z. Maximizing CCL results in maximizing a lower bound of CMI(X;Y |Z)
between the representation X of data view V1 and representation Y of data view V2 given Z. Previous
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work [19, 33, 38] has shown that maximizing the information shared between X and Y can produce
a good embedding space that has high representation quality for downstream tasks.

2.2 Theoretical Motivation
In this section, we provide the theoretical motivation for our CCL method. In particular, we are
interested in understanding why our method can reduce the information related to the sensitive
attribute Z. We defer detailed proofs to Appendix. Recall that InfoNCE is maximizing a lower
bound of DKL (PX,Y ∥PXPY ) as shown in (1). Similarly, our CCL method aims to maximize the
divergence between PXY |z and PX|zPY |z for all z ∼ PZ , leading to a connection with conditional
mutual information MI(X;Y |Z). First, we define conditional mutual information (CMI):

CMI(X;Y |Z) := Ez∼Z

[
DKL

(
PX,Y |Z=z∥PX|Z=zPY |Z=z

)]
,=

∫
Z

DKL

(
PX,Y |Z∥PX|ZPY |Z

)
dPZ , (3)

Figure 2: Venn diagram of
CMI(X;Y |Z) in green.

which measures the expected mutual information of X and Y given
Z. Intuitively, CMI(X;Y |Z) measures the averaged shared infor-
mation by X and Y but exclude the effect from Z [28], as shown in
Figure 2. This is because conditioning Z = z means taking Z = z
as known and, therefore, ignoring the effect of Z [32]. By ignoring
the effect of Z, CMI(X;Y |Z) explicitly excludes the information
from Z when measuring the shared information between X and Y .
Next, we show our main theoretical result, that the proposed CCL
objective is a lower bound of the conditional mutual information
CMI(X;Y |Z):

CCL ≤ DKL

(
PX,Y ∥EPZ

[
PX|ZPY |Z

])
= Weak-CMI (X;Y |Z) ≤ CMI(X;Y |Z), (4)

where Weak-CMI (X;Y |Z) is the KL-divergence between PX,Y and EPZ

[
PX|ZPY |Z

]
. This notion

can achieve the so-called weak-conditional independence [10, 13, 14]. Weak-CMI (X;Y |Z) is a
lower bound of CMI(X;Y |Z) and can be seen as capturing only part of information in CMI(X;Y |Z).
More discussions can be found in Appendix.

3 Experiments

Table 1: Accuracies and fairness results on five fairness
datasets. CCL has better downstream accuracy than
existing baselines in four datasets, and exhibits better
fairness measurements in 11 out of 18 results.

Model Accuracy (%) (↑) ∆DP (↓) ∆EO (↓) ∆EOPP
(↓)

A
D

U
LT

– LAFTR [29] 84.0 0.163 0.030 0.026
– Ragonesi et al. [35] 85.0 - 0.030 -
– DTM [25] 71.6 - 0.050 -
– FNF [4] 80.0 0.110 - -
– SimCLR [6] 83.1 0.210 0.410 0.320
– FairMixRep [5] 85.0 0.172 - -
– CCL (Ours) 85.4 0.110 0.070 0.040

C
O

M
PA

S – DTM [25] 66.0 - 0.200 -
– FNF [4] 65.0 0.240 - -
– SimCLR [6] 71.2 0.103 0.227 0.134
– CCL (Ours) 71.0 0.080 0.132 0.081

C
R

IM
E – LCIFR [36] 84.4 0.443 0.314 0.212

– FNF [4] 82.5 0.540 - -
– SimCLR [6] 82.1 0.502 0.530 0.383
– CCL (Ours) 82.6 0.211 0.224 0.183

G
E

R
M

A
N – LCIFR [36] 73.1 0.102 0.080 0.063

– Ragonesi et al. [35] 74.0 - 0.060 -
– FairMixRep [5] 71.8 0.089 - -
– SimCLR [6] 72.5 0.250 0.382 0.195
– CCL (Ours) 74.3 0.083 0.128 0.062

L
A

W

– LCIFR [36] 84.4 0.110 0.180 0.070
– FNF [4] 84.6 0.050 - -
– SimCLR [6] 83.6 0.086 0.212 0.110
– CCL (Ours) 84.8 0.051 0.153 0.056

We evaluate the proposed Conditional Con-
trastive Learning on five fairness datasets: Adult
[11], Compas [1], Crime [11], German [11],
and Law School [40], and two facial datasets:
CelebA [26] and UTKFace [44]. We evaluate
on prediction accuracy (all tasks being binary
predictions) and three fairness metrics (in the
form of distance): Demographic Parity (∆DP ),
Equalized Odds (∆EO), and Equality of Op-
portunity ( ∆EOPP

). Lower metrics suggest
better fairness results. Details of the sensitive
attributes for each dataset, the differences of the
metrics, baselines, and implementation details
are in Appendix.
Fairness datasets’ results. Table 1 shows the
results on accuracy and fairness metrics. First,
we observe that self-supervised SimCLR and
CCL have strong downstream prediction results
close to or better than the state-of-the-art base-
lines in Adult, Compas, German and the Law
School datasets. Next, looking at the fairness
measurements, we observe that the SimCLR
baseline performs significantly worse than un-
supervised fairness baselines, sometimes two to

three times higher (∆DP in Adult, ∆EO in German, and ∆EOPP
in Adult), confirming our earlier

concern that contrastive self-supervised learning will produce highly unfair predictions without bias
mitigation. The proposed CCL is much better than SimCLR and very competitive compared to other
unsupervised baselines, in terms of fairness criteria: the average improvement over five datasets from
SimCLR to CCL is 12.28% on ∆DP , 21.08% on ∆EO, and 13.43% on ∆EOPP

.
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Figure 3: Left: Accuracies using different augmentation noise level σ and temperature τ . Right: t-SNE
embeddings of conventional contrastive SSL (SimCLR) vs. the proposed Conditional Contrastive Learning.

Table 2: Accuracies and fairness results on two vision
datasets and four tasks. CCL has better downstream
accuracy in all four tasks, and exhibits better or close-to-
the-best fairness measurements in 11 out of 12 results.

Model Accuracy (%) (↑) ∆DP (↓) ∆EO (↓) ∆EOPP
(↓)

C
E

L
E

B
A

A
T

T
R

A
C

T
IV

E – MFD [21] 80.2 - 0.050 -
– Balunovic et al. [4] 79.4 - 0.238 -
– Morales et al. [30] 77.7 - 0.070 -
– SimCLR [6] 81.7 0.277 0.212 0.110
– RCL [15] 81.83 0.231 0.144 0.072
– CCL (Ours) 82.1 0.202 0.101 0.048

C
E

L
E

B
A

W
AV

Y

– FactorVAE [22] 64.5 - 0.388 0.288
– FFVAE [9] 61.0 - 0.211 0.154
– SimCLR [6] 67.7 0.403 0.355 0.210
– CCL (Ours) 67.7 0.202 0.189 0.102

C
E

L
E

B
A

SM
IL

E – Morales et al. [30] 88.4 - 0.060 -
– SimCLR [6] 89.3 0.102 0.142 0.078
– CCL (Ours) 89.7 0.086 0.060 0.053

U
T

K
G

E
N

D
E

R – AD [42] 74.7 - 0.204 -
– MFD [21] 74.7 - 0.178 -
– SimCLR [6] 78.0 0.335 0.421 0.287
– CCL (Ours) 78.5 0.191 0.156 0.089

Effect of hyper-parameters on downstream
performances. We study two important hyper-
parameters using the Adult dataset: the σ of
the Gaussian noise for data augmentation, and
the temperature τ in Equation 2. The Gaus-
sian noise controls the level of data augmen-
tation, and τ smooths the distribution of the
score output of the encoder. Details can be
found in Appendix. We use τ ∈ [0.001, 1];
and σ ∈ [0.001, 2]. The results are shown
in Figure 3. Concisely, a mid-range tempera-
ture (τ = 0.25) and a mild noise augmentation
(σ = 0.25) to the tabular data help the most in
representation learning.
Effect of hyper-parameters on fairness. We
also study the effect of σ and τ in terms of fair-
ness criteria: ∆DP , ∆EO, and ∆EOPP

. Overall,
a similar trend occurs for three criteria: a large
noise (σ > 0.75) and a large temperature (τ > 0.5) generates the worst representation in terms of
fairness metrics ( ∆DP > 0.2, ∆EO > 0.3 and ∆EOPP

> 0.3). On the other hand, a large noise
(σ > 0.75) and a medium-to-small temperature (τ < 0.5) generates the best results on fairness, but
in these cases the representation performs badly on downstream tasks. Concisely, the results suggest
that a larger noise and a mid-range temperature may help remove bias information.
Vision datasets’ results. We also provide results on the CelebA and UTK datasets in Table 2.
We observe that the proposed CCL outperforms unsupervised or self-supervised baselines on the
prediction tasks. The CCL also achieves much better fairness criteria than the SimCLR baseline,
producing much lower ∆DP , ∆EO, and ∆EOPP

in all four tasks across two datasets.
CCL embeddings are hard to separate by gender. We plot the embedding spaces of SimCLR
and CCL using t-SNE [39], to verify our claim in the introduction that contrastive embeddings have
gender biases. The visualization is in Figure 3. The embeddings of two genders are clearly separated
in SimCLR, making it easy for the models to pick up gender bias. On the other hand, the model
trained by CCL is much hard to separate two groups, because the sampling from the same gender
makes it hard for models to leverage gender bias during contrastive pre-training.

4 Conclusion
We introduce Conditional Contrastive Learning (CCL) which perform conditional sampling on the
sensitive attribute to remove its effect and improve fairness. By conditioning on the sensitive attribute,
CCL samples the positive and negative pairs from the same subgroup, making it harder for the model
to leverage gender information. We show CCL is a lower bound of conditional mutual information.
CCL significantly improves the fairness of conventional contrastive models, while achieving SOTA
downstream performances compared to both contrastive SSL and other unsupervised baselines. We
acknowledge that while our method improve fairness on the chosen attributes, it does not provide any
guarantees that the resulting method is more or less fair for the other attributes.
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A Theoretical Analysis

This section provides the theoretical analysis of Equations (4) and (5) in the main text. The full set
of assumptions of all theoretical results and complete proofs of all theoretical results are presented
below.

A.1 Useful lemmas

We first present the following lemmas, which will be later used in the proof:

Lemma 1 (Nguyen et al. [31] with two variables). Let X and Y be the sample spaces for X and Y ,
f be any function: (X × Y) → R, and P and Q be the probability measures on X × Y . Then,

DKL (P ∥Q) = sup
f

E(x,y)∼P [f(x, y)]− E(x,y)∼Q[e
f(x,y)] + 1.

Proof. The second-order functional derivative of the objective is −ef(x,y) · dQ, which is always
negative. The negative second-order functional derivative implies the objective has a supreme value.
Then, take the first-order functional derivative and set it to zero:

dP − ef(x,y) · dQ = 0.

We then get the optimal f∗(x, y) = log dP
dQ . Plug in f∗(x, y) into the objective, we obtain

EP [f
∗(x, y)]− EQ[e

f∗(x,y)] + 1 = EP [log
dP
dQ

] = DKL (P ∥Q) .

Lemma 2 (Nguyen et al. [31] with three variables). Let X , Y , and Z be the sample spaces for X ,
Y , and Y , f be any function: (X × Y × Z) → R, and P and Q be the probability measures on
X × Y × Z . Then,

DKL (P ∥Q) = sup
f

E(x,y,z)∼P [f(x, y, z)]− E(x,y,z)∼Q[e
f(x,y,z)] + 1.

Proof. The second-order functional derivative of the objective is −ef(x,y,z) · dQ, which is always
negative. The negative second-order functional derivative implies the objective has a supreme value.
Then, take the first-order functional derivative and set it to zero:

dP − ef(x,y,z) · dQ = 0.

We then get the optimal f∗(x, y, z) = log dP
dQ . Plug in f∗(x, y, z) into the objective, we obtain

EP [f
∗(x, y, z)]− EQ[e

f∗(x,y,z)] + 1 = EP [log
dP
dQ

] = DKL (P ∥Q) .

A.1.1 Immediate results following Lemma 1

Lemma 3.

Weak-CMI (X;Y |Z) = DKL

(
PX,Y ∥EPZ

[
PX|ZPY |Z

])
= sup

f
E(x,y)∼PX,Y

[f(x, y)]− E(x,y)∼EPZ [PX|ZPY |Z ][e
f(x,y)] + 1.

Proof. Let P be PX,Y and Q be EPZ

[
PX|ZPY |Z

]
in Lemma 1.

Lemma 4. sup
f

E(x,y1)∼P,(x,y2:n)∼Q⊗(n−1)

[
log ef(x,y1)

1
n

∑n
j=1 ef(x,yj)

]
≤ DKL (P ∥Q) .

8



Proof. ∀f , we have
DKL (P ∥Q) = E(x,y2:n)∼Q⊗(n−1) [DKL (P ∥Q)]

≥ E(x,y2:n)∼Q⊗(n−1)

[
E(x,y1)∼P

[
log

ef(x,y1)

1
n

∑n
j=1 e

f(x,yj)

]
− E(x,y1)∼Q

[
ef(x,y1)

1
n

∑n
j=1 e

f(x,yj)

]
+ 1

]

= E(x,y2:n)∼Q⊗(n−1)

[
E(x,y1)∼P

[
log

ef(x,y1)

1
n

∑n
j=1 e

f(x,yj)

]
− 1 + 1

]

= E(x,y1)∼P,(x,y2:n)∼Q⊗(n−1)

[
log

ef(x,y1)

1
n

∑n
j=1 e

f(x,yj)

]
.

The first line comes from the fact that DKL (P ∥Q) is a constant. The second line comes from
Lemma 1. The third line comes from the fact that (x, y1) and (x, y2:n) are interchangeable when they
are all sampled from Q.

To conclude, since the inequality works for all f , and hence

sup
f

E(x,y1)∼P,(x,y2:n)∼Q⊗(n−1)

[
log

ef(x,y1)

1
n

∑n
j=1 e

f(x,yj)

]
≤ DKL (P ∥Q) .

Note that Lemma 4 does not require n → ∞, which is a much more practical setting compared to
the analysis made only when n → ∞. And a remark is that the equality holds in Lemma 4 when
n → ∞.

A.1.2 Immediate results following Lemma 2

Lemma 5.
CMI(X;Y |Z) = EPZ

[
DKL (PX,Y |Z ∥PX|ZPY |Z)

]
= DKL (PX,Y,Z ∥PZPX|ZPY |Z)

= sup
f

E(x,y,z)∼PX,Y,Z
[f(x, y, z)]− E(x,y,z)∼PZPX|ZPY |Z [e

f(x,y,z)] + 1.

Proof. Let P be PX,Y,Z and Q be PZPX|ZPY |Z in Lemma 2.

A.1.3 Showing Weak-CMI (X;Y |Z) ≤ CMI(X;Y |Z)

Proposition 6. Weak-CMI (X;Y |Z) ≤ CMI(X;Y |Z).

Proof. According to Lemma 3,

Weak-CMI (X;Y |Z) = sup
f

E(x,y)∼PX,Y
[f(x, y)]− E(x,y)∼EPZ [PX|ZPY |Z ][e

f(x,y)] + 1

= sup
f

E(x,y,z)∼PX,Y,Z
[f(x, y)]− E(x,y,z)∼PZPX|ZPY |Z [e

f(x,y)] + 1.

Let f∗
1 (x, y) be the function when the equality for Weak-CMI (X;Y |Z) holds, and let f∗

2 (x, y, z) =
f∗
1 (x, y) (f∗

2 (x, y, z) will not change ∀z ∼ PZ):

Weak-CMI (X;Y |Z) = E(x,y,z)∼PX,Y,Z
[f∗

1 (x, y)]− E(x,y,z)∼PZPX|ZPY |Z [e
f∗
1 (x,y)] + 1

= E(x,y,z)∼PX,Y,Z
[f∗

2 (x, y, z)]− E(x,y,z)∼PZPX|ZPY |Z [e
f∗
2 (x,y,z)] + 1.

Comparing the equation above to Lemma 5,

CMI(X;Y |Z) = sup
f

E(x,y,z)∼PX,Y,Z
[f(x, y, z)]− E(x,y,z)∼PZPX|ZPY |Z [e

f(x,y,z)] + 1,

we conclude Weak-CMI (X;Y |Z) ≤ CMI(X;Y |Z).
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A.2 Proof of a tighter bound of CMI(X;Y |Z)

Next, we show a bound of CMI(X;Y |Z) which is tighter than the proposed CCL. We term this
bound as Tight-CCL.

Proposition 7 (A tighter bound of CMI(X;Y |Z)).

Tight-CCL := sup
f

Ez∼PZ

[
E(xi,yi)∼PX,Y |z⊗n

[
log

ef(xi,yi,z)

1
n

∑n
j=1 e

f(xi,yj ,z)

]]
≤ EPZ

[
DKL (PX,Y |Z ∥PX|ZPY |Z)

]
= CMI(X;Y |Z),

Proof. Given a z ∼ PZ , we let P = PX,Y |Z=z and Q = PX|Z=zPY |Z=z . Then,

E(x,y1)∼P,(x,y2:n)∼Q⊗(n−1)

[
log

ef(x,y1,z)

1
n

∑n
j=1 e

f(x,yj ,z)

]
= E(xi,yi)∼PX,Y |z

⊗n

[
log

ef(xi,yi,z)

1
n

∑n
j=1 e

f(xi,yj ,z)

]
.

The only variables in the above equation are X and Y with Z being fixed at z, and hence the following
can be obtained via Lemma 4:

E(xi,yi)∼PX,Y |z
⊗n

[
log

ef(xi,yi,z)

1
n

∑n
j=1 e

f(xi,yj ,z)

]
≤ DKL (P ∥Q) = DKL (PX,Y |Z=z ∥PX|Z=zPY |Z=z).

The above inequality works for any function f(·, ·, ·) and any z ∼ PZ , and hence

sup
f

Ez∼PZ

[
E(xi,yi)∼PX,Y |z

⊗n

[
log

ef(xi,yi,z)

1
n

∑n
j=1 e

f(xi,yj ,z)

]]
≤ EPZ

[
DKL (PX,Y |Z ∥PX|ZPY |Z)

]
.

We discuss the similarities and differences between CCL and Tight-CCL. Both are lower bounds
of conditional mutual information CMI(X;Y |Z), and both share formulations similar to InfoNCE
[33]. The differences are that the scoring function f(x, y, z) of Tight-CCL takes z as input, while
CCL does not. Taking z as input makes Tight-CCL a tighter bound than CCL, which we show in
Proposition 9. The reason we do not take z as an input in the CCL is because the sensitive attribute z
in our setup is mostly binary, carries little information, and empirically Tight-CCL performs very
similar to the proposed CCL (see Section B). CCL, on the other hand, has a simpler formulation and
is easier to adapt to existing contrastive frameworks.

A.3 Proof of Equation (4) in the Main Text

Proposition 8 (Conditional Contrastive Learning (CCL), restating Equation (4) in the main text).

CCL := sup
f

Ez∼PZ

[
E(xi,yi)∼PX,Y |z⊗n

[
log

ef(xi,yi)

1
n

∑n
j=1 e

f(xi,yj)

]]
≤ DKL

(
PX,Y ∥EPZ

[
PX|ZPY |Z

])
= Weak-CMI (X;Y |Z) ≤ CMI(X;Y |Z).

Proof. By defining P = PX,Y and Q = EPZ

[
PX|ZPY |Z

]
, we have

E(x,y1)∼P,(x,y2:n)∼Q⊗(n−1)

[
log

ef(x,y1)

1
n

∑n
j=1 e

f(x,yj)

]
= Ez∼PZ

[
E(xi,yi)∼PX,Y |z

⊗n

[
log

ef(xi,yi)

1
n

∑n
j=1 e

f(xi,yj)

]]
.

Via Lemma 4, we have

sup
f

Ez∼PZ

[
E(xi,yi)∼PX,Y |z

⊗n

[
log

ef(xi,yi)

1
n

∑n
j=1 e

f(xi,yj)

]]
≤ DKL

(
PX,Y ∥EPZ

[
PX|ZPY |Z

])
.

Combing with Proposition 6 that Weak-CMI (X;Y |Z) ≤ CMI(X;Y |Z), we conclude the proof.
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A.4 Showing CCL is a lower bound of Tight-CCL

Proposition 9.

CCL := sup
f

Ez∼PZ

[
E(xi,yi)∼PX,Y |z

⊗n

[
log

ef(xi,yi)

1
n

∑n
j=1 e

f(xi,yj)

]]

≤ Tight-CCL := sup
f

Ez∼PZ

[
E(xi,yi)∼PX,Y |z

⊗n

[
log

ef(xi,yi,z)

1
n

∑n
j=1 e

f(xi,yj ,z)

]]
.

Proof. Let f∗
1 (x, y) be the function when the equality holds in CCL, and let f∗

2 (x, y, z) = f∗
1 (x, y)(

f∗
2 (x, y, z) will not change ∀z ∼ PZ

)
:

CCL := Ez∼PZ

[
E(xi,yi)∼PX,Y |z

⊗n

[
log

ef
∗
2 (xi,yi,z)

1
n

∑n
j=1 e

f∗
2 (xi,yj ,z)

]]
.

Since the equality holds with the supreme function in Tight-CCL, and hence

CCL ≤ Tight-CCL.

A.5 Discussions of Weak Conditional Independence

We have the weak conditional independence between X and Y given Z when Weak-CMI (X;Y |Z) =
0. First, Weak-CMI (X;Y |Z) = 0 is a necessary but not sufficient condition for CMI(X;Y |Z) = 0,
suggesting that conditional independence implies weak conditional independence. For example,
if X , Y , and Z are pairwise independent but jointly dependent, Weak-CMI (X;Y |Z) = 0 but
CMI(X;Y |Z) may not be zero. Although weak conditional independence does not fully characterize
conditional independence, it has been shown to be widely useful in practice. For instance, testing
weak conditional independence can be simpler and more powerful than the original conditional
independence test [43]. Our approach benefits from the notion of weak conditional independence in
similar ways. Also, we prove that Weak-CMI (X;Y |Z) is a lower bound of CMI(X;Y |Z) and can
be seen as a more “conservative” measurement of CMI(X;Y |Z), capturing only part of information
in CMI(X;Y |Z).

B Experimental Details

B.1 Methodology

We follow the setup from the contrastive SSL learning literature [6, 18], which contains two stages:
contrastive pre-training and supervised fine-tuning. We use the SimCLR framework [6]. In contrastive
pre-training, we train an encoder without any labels. In the supervised fine-tuning stage, we freeze
the encoder and fune-tine an additional small network with the downstream labels. We then evaluate
the fine-tuned representations on the test splits of the corresponding datasets. For fairness datasets,
we use a three-layer neural network with hidden dimension 100 as the encoder and a linear layer
as the fine-tuning network. For vision datasets, we use a ResNet-50 [17] as the encoder and a
two-layer network as the fine-tuning network. There are two types of baselines: unsupervised
and SSL baselines. Unsupervised baselines include models dedicated for improving fairness in
unsupervised representations. The SSL baseline includes implementations of SimCLR. We did not
include supervised fair representation models, as they often require labels and sensitive attributes
available simultaneously, which is not our case.

B.2 Fairness Tabular Dataset Details

UCI Adult [11] focuses on predicting income of a person exceeds fifty thousand per year based on
census data. It has a total of 48, 842 samples, with a pre-determined training split of 32, 561 samples
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Table 3: Details of datasets, the chosen sensitive attributes, and the corresponding prediction tasks.
There are three prediction task for CelebA: attractiveness, weary hair, and smiling.

Datasets Type Number Sensitive Prediction
of Samples Attribute Task(s)

Adult [11] Tabular 48, 842 Gender Income level
Compas [1] Tabular 5, 278 Race Recidivism
Crime [11] Tabular 1, 994 Race Crime level
German [11] Tabular 1, 000 Age Credit approval
Law School [40] Tabular 36, 022 Race Exam result
UTKFace [44] Vision 23, 708 Race Age
CelebA [26] Vision 202, 599 Gender Multiple

and a test split of 16, 281 samples. We choose the gender attribute as the sensitive attribute. It has the
CC0: Public Domain License.

UCI German [11] focuses on predicting whether a person has good credit or not based on a set of
attributes. It has a total of 10, 00 samples. We follow the split in Ruoss et al. [36], where 80% of
samples are drawn randomly and used as the training set and 20% samples are drawn randomly and
used as the test set. We choose the age attribute as the sensitive attribute, which is determined by
whether the individual’s age exceeds a threshold. It has the Database Contents License v1.0.

UCI Crime: The Communities and Crime dataset [11] contains data including socioeconomic, law
enforcement, and crime information for US communities. Specifically, it focuses on predicting
whether a specific community is above or below the median number of violent crimes per population.
It has 1, 994 samples. We follow the split in Ruoss et al. [36], where 80% of samples are drawn
randomly and used as the training set and 20% samples are drawn randomly and used as the test set.
We choose the race attribute as the sensitive attribute, which is determined by whether the individual
has race white. It has the Database Contents License v1.0.

COMPAS: The Recidivism Risk COMPAS Score dataset [1] contains a variety of demographic and
crime information collected on the use of the COMPAS risk assessment tool in Broward County,
Florida Angwin. It focuses on predicting recidivism (whether a criminal will reoffend or not) in the
USA. It has 5, 728 samples. We follow the split in Ruoss et al. [36], where 80% of samples are
drawn randomly and used as the training set and 20% samples are drawn randomly and used as the
test set. We choose the predefined binary race attribute as the sensitive attribute. It has the Database
Contents License v1.0.

Law School: The Law School dataset is from the Law School Admission Study [40]. It has
application records for 25 different law schools. It focuses on predicting whether a student passes the
law school bar exam. It has 36, 022 samples. We follow the split in Ruoss et al. [36], where 80% of
samples are drawn randomly and used as the training set and 20% samples are drawn randomly and
used as the test set. We choose the race attribute as the sensitive attribute, which is determined by
whether the individual has race white. It has the Database Contents License v1.0.

Dataset pre-processing : We perform the following types of preprocessing on all five fairness
datasets: first, we standardize each numerical feature of the data to zero mean and unit variance.
Next, we use one-hot encoding scheme for categorical features. Then, we drop rows and columns
with missing values, and lastly we split into train, test and validation sets. For the contrastive pre-
training, we augment each data sample using two noise vectors sampled from an isotropic Guassian
distribution, where the variance is a hyper-parameter. For the supervised fine-tuning, all downstream
classification tasks are binary prediction tasks.

Personal identifiable information : Personally identifiable information is not available in all five
datasets, because the authors of the datasets explicitly remove personal information when creating
the datasets.
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B.3 Differences of fairness metrics

We use three types of fairness metrics: the demographic parity (DP [12]) distance ∆DP [29],
equalized odds (EO [16]) distance ∆EO [37], and the equality of opportunity (EOPP [16]) distance
∆EOPP

[37].

Given the data X , the sensitive attribute Z indicating group information, the ground truth downstream
task label l, and the label prediction from the model l̂, the ∆DP calculates the expected difference
(in absolute value) in model predictions between two groups: ∆DP = |P{l̂ = 1|Z = 0} − P{l̂ =
1|Z = 1}|. The second metric, ∆EO, calculates the sum of the expected difference (in absolute
value) of the True Positive Rate and the False Positive Rate of the model predictions between two
groups: ∆EO = |P{l̂ = 1|Z = 0, l = 1} − P{l̂ = 1|Z = 1, l = 1}| + |P{l̂ = 1|Z = 0, l =

0} − P{l̂ = 1|Z = 1, l = 0}. As a relaxation of ∆EO, ∆EOPP
calculates the expected difference

(in absolute value) of only the True Positive Rate of the model predictions between two groups:
∆EOPP

= |P{l̂ = 1|Z = 0, l = 1} − P{l̂ = 1|Z = 1, l = 1}|. ∆DP , ∆EO, ∆EOPP
range from 0

to 1, and a smaller distance is desirable. ∆DP = 0 corresponds to the statistical independence of the
sensitive attribute Z and the prediction l̂, and ∆EO = 0 corresponds to the conditional independence
of Z and l̂ given the true label l. ∆DP = 0 suggests that members of different groups (e.g., female
and male) have the same chance of receiving a favorable prediction (l = 1).

B.4 Fairness tabular dataset training details and results

The self-supervised baseline, SimCLR [33], and the unsupervised baseline, LCIFR [36] are re-
implemented based on Ruoss et al. [36]. To stochastically augment tabular features (e.g., age,
education, occupation, etc in Adult [11] dataset) and create data views similar to Chen et al. [6],
we first standardize each tabular feature, and then use noise vectors from an isotropic Gaussian to
perturb the features. Each dataset uses one separate Gaussian, and σ of the Gaussian is treated as a
hyper-parameter for different datasets. Then we feed the augmented views to the encoder, and then
use the output of the encoder to estimate our proposed CCL.

We follow the implementation from [36]. We use a three-layer neural network with hidden dimension
100 as the encoder and a linear layer as the fine-tuning network. We train 100 epochs and report the
result. For pre-training, we use the Adam [23] optimizer, with a batch size of 256, a learning rate of
0.001, and a weight decay of 0.01. For fine-tuning, we use the same optimizer, batch size, weight
decay, but a slightly larger learning rate 0.005.

Results. We include the results in Table 4. All entries with − indicate that the corresponding
metrics are not reported in the original papers. The following results are read off from the figures in
the paper: LAFTR [29], DTM [25], and FNF [4]. We include the confidence intervals of the results,
and bold the entries that have overlapping confidence intervals with the best performing entries in
that dataset. SimCLR is a re-implementation of Chen et al. [6] on the new datasets. Tight-CCL
represents a tighter bound of conditional mutual information, which is introduced and discussed in
Proposition 7. From the results, we can conclude that CCL outperforms all baselines on eleven out of
the eighteen fairness metrics. Also, CCL outperforms all baselines on downstream accuracy on four
out of five datasets. We note that Tight-CCL performs very close to CCL, sometimes better than CCL
in terms of fairness metrics. This may be due to that the Tight-CCL is a tighter bound of conditional
mutual information, and optimizing Tight-CCL leads to a representation closer to conditional mutual
information maximization. Because conditional mutual information explicitly excludes information
from the sensitive attribute Z, Tight-CCL is able to remove slightly more effect from the sensitive
attribute than CCL. We use CCL in the main text as it has a simpler formulation and is easier to adapt
to existing contrastive frameworks.
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Table 4: Accuracies and fairness results on five fairness datasets with confidence intervals. CCL has
better downstream accuracy than existing unsupervised and self-supervised baselines in four datasets,
and exhibits better fairness measurements in most cases.

Model Accuracy (%) (↑) ∆DP (↓) ∆EO (↓) ∆EOPP
(↓)

A
D

U
LT

Unsupervised
– LAFTR [29] 84.0 0.163 0.030 0.026
– Ragonesi et al. [35] 85.0 - 0.030 -
– DTM [25] 71.6 - 0.050 -
– FNF [4] 80.0 0.110 - -
Self-Supervised
– FairMixRep [5] 85.0 0.172 - -
– SimCLR [6] 83.1± 0.48 0.210± 0.04 0.410± 0.05 0.320± 0.04
– CCL (Ours) 85.4 ± 0.53 0.110 ± 0.02 0.070± 0.01 0.090± 0.01
– Tight-CCL (Ours) 85.3 ± 0.48 0.108 ± 0.03 0.068± 0.01 0.093± 0.01

C
O

M
PA

S

Unsupervised
– DTM [25] 66.0 - 0.200 -
– FNF [4] 65.0 0.240 - -
Self-Supervised
– SimCLR [6] 71.2 ± 0.33 0.103± 0.01 0.227± 0.06 0.134± 0.04
– CCL (Ours) 71.0 ± 0.25 0.080 ± 0.01 0.132 ± 0.03 0.081 ± 0.01
– Tight-CCL (Ours) 70.8 ± 0.28 0.090 ± 0.01 0.142 ± 0.02 0.101 ± 0.02

C
R

IM
E

Unsupervised
– LCIFR [36] 84.4 0.443 0.314 0.212
– FNF [4] 82.5 0.540 - -
Self-Supervised
– SimCLR [6] 82.1± 0.32 0.502± 0.08 0.530± 0.02 0.383± 0.01
– CCL (Ours) 82.6± 0.24 0.211 ± 0.02 0.224 ± 0.02 0.183 ± 0.01
– Tight-CCL (Ours) 82.5± 0.30 0.208 ± 0.02 0.222 ± 0.02 0.181 ± 0.02

G
E

R
M

A
N

Unsupervised
– LCIFR [36] 73.1 0.102 0.080 0.063
– Ragonesi et al. [35] 74.0 - 0.060 -
Self-Supervised
– FairMixRep [5] 71.8 0.089 - -
– SimCLR [6] 72.5± 0.11 0.250± 0.05 0.382± 0.06 0.195± 0.04
– CCL (Ours) 74.3 ± 0.28 0.083 ± 0.01 0.128± 0.03 0.062 ± 0.01
– Tight-CCL (Ours) 74.4 ± 0.25 0.085 ± 0.01 0.126± 0.02 0.062 ± 0.01

L
A

W
SC

H
O

O
L

Unsupervised
– LCIFR [36] 84.4 0.110 0.180 0.070
– FNF [4] 84.6 0.050 - -
Self-Supervised
– SimCLR [6] 83.6± 0.54 0.086± 0.02 0.212± 0.04 0.110± 0.02
– CCL (Ours) 84.8 ± 0.50 0.051 ± 0.01 0.153 ± 0.03 0.056 ± 0.01
– Tight-CCL (Ours) 84.5 ± 0.44 0.050 ± 0.01 0.150 ± 0.02 0.055 ± 0.01

B.5 Effect of hyper-parameters on downstream performance

FOr representation learning, we observe that a mid-range temperature τ = 0.25 achieves the best
results. The prediction accuracy begins to increase drastically as τ goes from 0.001, tops at τ = 0.25,
and start decreasing slightly from τ = 0.5. Next, for the noise level, we observe that a small σ
ranging from 0.001 to 0.75 achieves similar results (around or above 84%), peaks at σ = 0.25, and
then degrades fast after 0.75.

Computational resource We perform all experiments on a single GeForce RTX 2080 Ti GPU and
a 32-core Intel CPU processor. Training 100 epochs in different datasets vary based on the size of the
dataset, but the overall training time of 100 epochs on one dataset is below an hour.

B.6 Vision dataset details

CelebA [27] is a human facial recognition dataset that contains more than 200, 000 images of celebrity
faces, where each facial image is annotated with 40 human-labeled binary attributes, including gender.
Among the attributes, we select attractive, smile, and wavy hair and use them to form three separate
binary classification tasks. The sensitive attribute is gender. The license of CelebA dataset claims
that it is available for noncommercial research purposes only.
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UTKFace [44] is a human facial recognition dataset that contains more than 20, 000 images of
human faces in a variety of age groups and races, where each facial image is annotated with three
human-labeled binary attributes, including age, gender, and ethnicity. Among the attributes, we
select age as the binary classification task (if the age of the individual is above a threshold). The
sensitive attribute is the race attribute. The license of UTKFace dataset claims that it is available for
noncommercial research purposes only.

Dataset pre-processing : For CelebA, we directly use the pre-defined training and test sets from
the PyTorch data loader for CelebA. For UTKFace, we use a random 20% of all samples as the test
set. The data augmentation details of both datasets will be included in Section B.7.

Personal identifiable information : Personally identifiable information is not available in the
UTKFace data set, because the authors of the data sets explicitly remove personal information when
creating the data set. For the CelebA dataset, each person has an ID, but the identity is not explicitly
revealed (although users can infer the identities of some celebrities). Both datasets contain the
annotated information, such as age, gender, and other facial attributes of the individuals in the images.

B.7 Vision Dataset Training Details and Results

We follow the implementation from [6]. We use a ResNet-50 as the encoder and a two-layer network
with hidden dimension 512 as the fine-tuning network. We train 100 epochs and report the result. For
the contrastive pre-training, we use the Adam [23] optimizer, with a batch size of 256, a learning rate
of 0.0003, and a weight decay of 10−6. For the supervised fine-tuning, we use the same optimizer,
batch size, weight decay, but a slightly larger learning rate 0.001.

Results. We include the results in Table 6. All entries with − indicate that the corresponding
metrics are not reported in the original papers. We include the confidence intervals of the results,
and bold the entries that have overlapping confidence intervals with the best performing entries in
that dataset. Similar to our observation in Section B.4, from the results we can conclude that CCL
outperforms all baselines on eleven out of the twelve fairness metrics. Also, CCL outperforms all
baselines on downstream accuracy on all four tasks. Tight-CCL also performs very close to CCL,
although some downstream task performances of Tight-CCL is slightly worse than that of CCL.

Computational resource We perform all experiments on a single GeForce RTX 2080 Ti GPU and
a 32-core Intel CPU processor. Training 100 epochs on CelebA or UTKFace takes approximately
20− 24 hours, depending on the server’s condition.

B.8 Contrastive SSL performs worse on fairness than supervised methods

Table 5: Fairness criteria on contrastive SSL
vs. supervised counterpart. Contrastive SSL
has mugh higher level of fairness differences
based on the three metrics.

Accuracy ∆DP (↓) ∆EO (↓) ∆EOPP
(↓)

Supervised 80.4 0.214 0.186 0.080
Contrastive SSL 80.1 0.355 0.541 0.310

To study whether contrastive SSL models perform better
or worse on fairness criteria than a supervised counterpart,
we train two ResNet-18 models [17], one with contrastive
pre-training then fine-tuning [18], and one with super-
vised training. Both models have the same architecture
and training hyperparameters. From Table 5, given simi-
lar performance, contrastive SSL has significantly larger
fairness differences, suggesting that contrastive SSL can
produce downstream predictions that perform much worse
on fairness criteria than its supervised counterpart.
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Table 6: Accuracies and fairness results on two vision datasets on four prediction tasks with confidence
intervals. Best results are bold. CCL has better downstream accuracy in all four tasks, and exhibits
better or close-to-the-best fairness measurements in 11 out of 12 results.

Model Accuracy (%) (↑) ∆DP (↓) ∆EO (↓) ∆EOPP
(↓)

C
E

L
E

B
A

A
T

T
R

A
C

T
IV

E

Unsupervised
– MFD [21] 80.2 - 0.050 -
– Balunovic et al. [4] 79.4 - 0.238 -
– Morales et al. [30] 77.7 - 0.070 -
Self-Supervised
– SimCLR [6] 81.7 ± 0.32 0.277± 0.04 0.212± 0.03 0.110± 0.01
– CCL (Ours) 82.1 ± 0.24 0.202 ± 0.03 0.101± 0.01 0.048 ± 0.01
– Tight-CCL (Ours) 81.9 ± 0.33 0.200 ± 0.02 0.106± 0.02 0.052 ± 0.01

C
E

L
E

B
A

W
AV

Y
H

A
IR

Unsupervised
– FactorVAE [22] 64.5 - 0.388 0.288
– FFVAE [9] 61.0 - 0.211 0.154
Self-Supervised
– SimCLR [6] 67.7 ± 0.76 0.403± 0.05 0.355± 0.04 0.210± 0.02
– CCL (Ours) 67.7 ± 0.69 0.202 ± 0.02 0.189 ± 0.02 0.102 ± 0.01
– Tight-CCL (Ours) 67.8 ± 0.44 0.198 ± 0.03 0.172 ± 0.02 0.093 ± 0.01

C
E

L
E

B
A

SM
IL

E

Unsupervised
– Morales et al. [30] 88.4 - 0.060 -
Self-Supervised
– SimCLR [6] 89.3 ± 0.33 0.102± 0.01 0.142± 0.01 0.078± 0.01
– CCL (Ours) 89.7 ± 0.25 0.086 ± 0.01 0.060 ± 0.01 0.053 ± 0.01
– Tight-CCL (Ours) 89.5 ± 0.27 0.084 ± 0.01 0.060 ± 0.01 0.056 ± 0.01

U
T

K
FA

C
E

G
E

N
D

E
R

Unsupervised
– AD [42] 74.7 - 0.204 -
– MFD [21] 74.7 - 0.178 -
Self-Supervised
– SimCLR [6] 78.0± 0.25 0.335± 0.03 0.421± 0.04 0.287± 0.03
– CCL (Ours) 78.5 ± 0.22 0.191 ± 0.02 0.156 ± 0.02 0.089 ± 0.01
– Tight-CCL (Ours) 78.3 ± 0.15 0.188 ± 0.02 0.159 ± 0.02 0.110 ± 0.02

B.9 Limitations, discussions and future work

One important future work direction, and a limitation of this work, is to study the scenario the
sensitive information is unknown or partially known. It could be addressed by using other auxiliary
attributes (e.g., image annotations or captions) in the datasets that are highly relevant to the sensitive
attributes, or first train a separate model to capture bias features and then train the main model by
learning features orthogonal to the bias feature. Another important problem is to remove the effect of
multiple sensitive attributes simultaneously, which may be addressed by using a joint distribution of
multiple sensitive attributes. If there are too many sensitive attributes, we can perform a dimensional
reduction.

For the social impact, CCL may bring a positive impact by removing gender, race, or identity infor-
mation from representations. The potential negative impact is that this method could be intentionally
used to remove information that should be available and included in the representation, for example,
gender information in a model for medical diagnosis.
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