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Abstract

Human skeleton point clouds are commonly used to automatically classify and
predict the behaviour of others. In this paper, we use a contrastive self-supervised
learning method, SimCLR, to learn representations that capture the semantics of
skeleton point clouds. This work focuses on systematically evaluating the effects
that different algorithmic decisions (including augmentations, dataset partition-
ing and backbone architecture) have on the learned skeleton representations. To
pre-train the representations, we normalise six existing datasets to obtain more
than 40 million skeleton frames. We evaluate the quality of the learned represen-
tations with three downstream tasks: skeleton reconstruction, motion prediction,
and activity classification. Our results demonstrate the importance of 1) com-
bining spatial and temporal augmentations, 2) including additional datasets for
encoder training, and 3) and using a graph neural network as an encoder.

1 Introduction

Skeleton point clouds are commonly used to understand human behaviour, including activity clas-
sification [7, 23], gait analysis [15], and command recognition [9]; in fact, many sensors have been
developed to easily capture skeleton data, whether through depth cameras or motion capture systems.
However, working with skeletons has inherent challenges, such as occlusions, noisy data, missing
joints, and poor skeleton fittings [19]. Self-supervised learning has successfully been used to learn
representations robust to noise and missing data in computer vision [11], speech recognition [22]
and natural language processing [1]. Inspired by this success, we aim to train a skeleton represen-
tation which generalises to three downstream tasks: skeleton reconstruction, motion prediction, and
activity classification (see Fig. 1b).

We use SimCLR [3], a multi-view contrastive self-supervised learning algorithm, which relies on
augmentations to create two views of the same input sample. SimCLR uses a loss which attracts
the representations of views from the same samples while repelling the representations of views
from different samples (cf. Fig. 1a). We adapt SimCLR using a graph neural network backend,
ST-GCN [23], and employ eight augmentations (both spatial and temporal) to generate the views.
It is worth noting that the choice of augmentations is a form of inductive bias – it determines what
invariances will be built into the learned representations. In this work, we seek representations that
are invariant to movement speeds, the framerate of the recording, and sensor noise.

Training with SimCLR requires making many algorithmic decisions involving network architecture,
datasets, augmentations, etc. Our focus is to determine the effect of these decisions on downstream
performance, hence we run exhaustive experimental ablations. Our results highlight the importance
of combining both spatial and temporal augmentations, as well as the impact of using ST-GCN
as an encoder with additional datasets to learn the representation. In fact, we gather six existing
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Figure 1: (a) Adapted architecture of SimCLR [3] for skeleton data. We use a custom augmentation
stack (cf. Appendix A) and a ST-GCN [23] encoder. (b) Downstream tasks to evaluate the quality
of the learned representation: skeleton reconstruction, motion prediction, and activity classification.
Joints: 1) head, 2) neck, 3) right shoulder, 4) right elbow, 5) right wrist, 6) left shoulder, 7) left
elbow, 8) left wrist, 9) right hip, 10) right knee, 11) right ankle, 12) left hip, 13) left knee, 14) left
ankle, 15) torso.

skeleton datasets captured with different sensors, subjects, conditions, and labels, which results in
approximately 40 million frames, each with 15 3d joint positions.

2 Background

Our work is at the intersection of both multi-view self-supervised learning, and skeleton representa-
tion learning; therefore we will review the relevant background of both fields.

Multi-View Self-Supervised Learning. Multi-view self-supervised learning is a form of represen-
tation learning that uses augmentations to generate different views of the input. The views are then
used to contrast between the representations of views from the same input and representations of
views from other inputs. In recent years, various multi-view self-supervised learning frameworks
have been proposed, including CPC [18], MoCO v3 [4], DINO [2] and SimCLR [3]. These ap-
proaches have shown impressive results in transferability to smaller datasets like CIFAR 10, where
DINO achieves an accuracy of 99.6%. SimCLR, in particular, has been shown to be flexible, stable
to train and does not need extra logic to mine negatives samples [3]. For these reasons, we make use
of SimCLR in this work.

Skeleton Representation Learning. There are several related approaches to learning representa-
tions of skeleton point-clouds. In particular, [21] introduced a custom pretext task based on motion
consistency and motion continuity as well as an ST-GCN encoder to learn skeleton representations.
For this work, we reuse ST-GCN as our representation encoder. More recently, [5] made use of a
transformer architecture and pretext tasks inspired by BERT [8] to achieve the state-of-the-art in
activity classification accuracy. Additionally, CP-STN [24] combines contrastive learning with pre-
text tasks (e.g., masked sequences prediction) to extract spatial and temporal information to learn
fully discriminative representations. Other works, like CrosSCLR [13], further attempt to improve
contrastive learning by using extra hard contrastive pairs stored in a memory bank. Unlike these
approaches, which use custom pretext tasks to learn their representations, we take advantage of
SimCLR to train the representation encoder.

3 Learning a Skeleton Representation with SimCLR

We aggregate six skeleton datasets captured with different sensors, subjects, conditions, and labels
(refer to Table 1 for an overview). We hypothesise that the combined diversity of the data leads
to better representations (as shown in Section 4). Our custom pre-processing pipeline2 consists of
the following five steps: 1) transform the datasets joint representation into 3d global coordinates, 2)
reduce the joint-space to 15 fundamental joints commonly provided by skeleton sensing systems, 3)
scale each skeleton to a height of 2m, i.e. have the z-axis extend from -1.0 to 1.0, 4) translate the
skeleton so that the torso is at the centre-of-coordinates, and 5) rotate each frame around the x- and
z-axes so that the skeleton faces the camera. We do not alter frame-rate, nor the skeleton structure,
so each skeleton retains its scaled bone lengths.

2Code available at: https://github.com/apple/ml-skeleton-preprocessing
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Table 1: Datasets used in this work. Training set of datasets marked with ∗ are used to pre-train
skeleton representation with SimCLR, those marked with ⋄ are used for downstream task training.

DATASET
NUMBER OF

TRAIN FRAMES
NUMBER OF

TEST FRAMES

UNIQUE
HUMAN

SUBJECTS

FRAMES PER
SECOND

RECORDING
DEVICE

NTU RGB+D 60∗⋄ [20] 3,328,560 (8%) 1,456,493 (92%) 40 (22%) 30 Depth Camera
NTU RGB+D 120∗ [14] 4,324,668 (11%) – 66 (37%) 30 Depth Camera
TRINITY SPEECH-GESTURE∗ [10] 4,579,806 (11%) – 1 (1%) 120 MoCap System
TALKING WITH HANDS∗ [12] 25,680,106 (64%) – 50 (28%) 90 MoCap System
DANCEDB∗ [16] 1,679,209 (4%) – 17 (9%) 120 MoCap System
HDM05⋄ [17] 492,340 (1%) 123,085 (8%) 5 (3%) 120 MoCap System

TOTAL 40,084,689 1,579,578 179 –

We pre-train the skeleton representation by feeding two augmented views of a 50-frame skeleton
sequence into a graph encoder (ST-GCN [23]) which outputs a vector of 128 elements. The rep-
resentation is then projected through a 3-layer multi-layer perceptron (MLP). Lastly, we use the
NT-Xent loss [3] to attract projections from the same skeleton sequences and repel projections from
different inputs. We pre-train SimCLR for 500 epochs with the datsets described above and then
keep only the trained encoder for downstream tasks. We experimented with a larger number of
epochs for pre-training, but found no improvement in downstream task performance. Pre-training
and training hyperparameters are fixed across all experiments and are detailed in Appendix B.

To obtain the different views of our skeleton sequences, we use eight augmentations from two cat-
egories: spatial augmentations (joint dropout, joint jitter, axis mirroring, random scaling, frame
dropout), and temporal augmentations (speed-up, slow-down). We describe the augmentations in
detail in Appendix A. The purpose of these augmentations is to learn a skeleton representation in-
variant to noise in the skeleton joints and the actual speed of the human movements.

4 Ablations on Skeleton Representations

We analyse the effect of different algorithmic decisions on the quality of the learned representations
by measuring the impact of these changes on the performance of the following downstream tasks:

Skeleton Reconstruction: The input is a sequence of skeleton frames from which 80% of randomly
selected frames have been dropped. The target is the uncorrupted skeleton sequence. We use a 3-
layer MLP decoder, a mean-squared error (MSE) loss, and evaluate against the NTU-60 and HDM05
datasets. We report the test mean absolute joint error (MAE) in millimetres for a two-metre tall
normalised skeleton. We introduce the MAE metric to have a consistent measure across test datasets.

Motion Prediction: The target is to predict the next 50 frames of motion given the representation of
the previous 50 frames of data. As above, we use the 3-layer MLP, MSE loss, evaluate on NTU-60
and HDM05, and report the test MAE in millimetres. We use MAE for consistency reasons (e.g.
[23] and [6]).

Activity Classification: We use NTU-60 [20] labels, a linear classifier, and cross-entropy loss to
classify motion segments. We use 50 frames from one skeleton to train the linear classifier rather
than the standard 300 frames from two skeletons commonly used in the literature. Moroever, some
of the activities in NTU-60 require joints not present in our representation, making it challenging to
draw comparisons against existing approaches which take advantage of all the joints.

The results of our ablations are presented in Table 2. Note that we report the performance from the
final epoch. Our baseline models, which consist of a linear classifier/decoder trained for 200 epochs
on top of the frozen representation, achieve an MAE of between 50mm and 60mm in most skeleton
reconstruction and motion prediction tasks (except in motion prediction for HDM05 where the MAE
is 23.4mm) and 45.8% accuracy in the 60-class activity classifier task 3.

We remark that while fine-tuning the representation yields an improvement in activity classification,
it actually hurts performance on skeleton reconstruction and motion prediction. This is due to the
training sets needing more samples to fully fine-tune the downstream tasks models. Our results also

3For context, [23] and [6] achieve 81.5% and 90% accuracy respectively. Still, a direct comparison cannot
be made due to the reduced joint space and temporal receptive field of our models
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Table 2: Effect of various ablations for training skeleton representations with SimCLR on down-
stream tasks. Each cell denotes mean performance and standard deviation across 3 different random
seeds. For each row in the table, we pre-train 3 different encoder networks/linear classifiers using
SimCLR and train each network on the downstream task with a frozen backbone. Baseline configu-
ration has all augmentations (except random rotation), is trained with the full training set size, and
was pre-trained with all five skeleton datasets. We highlighted changes over 8% in bold.

SKELETON RECONSTRUCTION MOTION PREDICTION ACTIVITY CLASS.
MEAN ABSOLUTE ERROR (mm) MEAN ABSOLUTE ERROR (mm) ACCURACY (%)

Lower is better Lower is better Higher is better

NTU-60 HDM05 NTU-60 HDM05 NTU-60

BASELINE 62.0 (± 2.3) 49.7 (± 1.5) 52.1 (± 0.6) 23.4 (± 1.0) 45.8 (± 1.0)
FINETUNING 65.7 (± 1.7), ∆+3.7 55.0 (± 2.9), ∆+5.3 56.5 (± 1.2), ∆+4.4 44.7 (± 3.2), ∆+21.3 64.7 (± 1.0), ∆+18.9

30 FPS 60.8 (± 0.7), ∆-1.2 53.8 (± 1.6), ∆+4.1 52.8 (± 0.6), ∆+0.7 37.1 (± 0.6), ∆+13.7 45.1 (± 0.1), ∆-0.7
MLP BACKBONE 64.6 (± 2.3), ∆+2.6 58.8 (± 3.3), ∆+9.1 59.0 (± 2.3), ∆+6.9 29.7 (± 1.5), ∆+6.3 29.3 (± 0.9), ∆-16.5

DOWNSTREAM TASK TRAINING SET SIZE

15% 59.5 (± 0.9), ∆-2.5 52.0 (± 0.8), ∆+2.3 58.3 (± 1.0), ∆+6.2 23.7 (± 0.9), ∆+0.3 39.1 (± 1.7), ∆-6.7
10% 58.2 (± 0.6), ∆-3.8 52.6 (± 1.2), ∆+2.9 59.4 (± 0.7), ∆+7.3 54.3 (± 2.3), ∆+30.9 37.1 (± 1.0), ∆-8.7

5% 57.9 (± 0.5), ∆-4.1 73.1 (± 1.3), ∆+23.4 76.7 (± 4.0), ∆+24.6 73.5 (± 6.6), ∆+50.1 33.3 (± 0.4), ∆-12.5

SIMCLR PRE-TRAINING DATASETS

W/O TRINITY 60.4 (± 0.4), ∆-1.6 49.6 (± 0.9), ∆-0.1 51.9 (± 0.6), ∆-0.2 23.6 (± 0.8), ∆+0.2 44.5 (± 1.5), ∆-1.3
W/O TWH 60.0 (± 0.2), ∆-2.0 50.3 (± 0.7), ∆+0.6 52.4 (± 0.4), ∆+0.3 23.3 (± 0.4), ∆-0.1 44.9 (± 0.5), ∆-0.9

W/O DANCEDB 61.3 (± 0.6), ∆-0.7 51.2 (± 0.8), ∆+1.5 54.0 (± 1.7), ∆+1.9 24.5 (± 0.8), ∆+1.1 45.5 (± 1.4), ∆-0.3
W/O NTU-60 & 120 64.2 (± 0.3), ∆+2.2 50.9 (± 0.6), ∆+1.2 54.9 (± 0.5), ∆+2.8 24.7 (± 0.5), ∆+1.3 40.5 (± 0.2), ∆-5.3

NTU-60 ONLY 62.4 (± 0.7), ∆+0.4 53.2 (± 0.6), ∆+3.5 53.3 (± 0.3), ∆+1.2 26.4 (± 0.9), ∆+3.0 39.2 (± 0.2), ∆-6.6

AUGMENTATIONS

W/O AXIS MIRRORING 59.8 (± 1.2), ∆-2.2 48.2 (± 1.0), ∆-1.5 51.5 (± 0.9), ∆-0.6 22.9 (± 0.4), ∆-0.5 44.5 (± 0.5), ∆-1.3
W/O RANDOM SCALING 62.3 (± 0.5), ∆+0.3 51.8 (± 0.5), ∆+2.1 53.8 (± 0.2), ∆+1.7 26.9 (± 0.3), ∆+3.5 36.5 (± 0.5), ∆-9.3

W/O JOINT JITTER 62.1 (± 1.1), ∆+0.1 51.4 (± 0.7), ∆+1.7 52.9 (± 1.1), ∆+0.8 24.1 (± 0.9), ∆+0.7 43.4 (± 0.9), ∆-2.4
W/O SLOW DOWN 61.9 (± 0.4), ∆-0.1 51.5 (± 1.3), ∆+1.8 53.3 (± 0.5), ∆+1.2 25.6 (± 1.5), ∆+2.2 43.3 (± 0.6), ∆-2.5

W/O SPEED UP 60.9 (± 0.5), ∆-1.1 50.2 (± 0.6), ∆+0.5 52.2 (± 0.4), ∆+0.1 23.5 (± 0.7), ∆+0.1 44.1 (± 1.5), ∆-1.7
W/O FRAME DROPOUT 60.6 (± 0.6), ∆-1.4 49.6 (± 0.6), ∆-0.1 51.9 (± 1.4), ∆-0.2 23.7 (± 0.8), ∆+0.3 44.9 (± 0.7), ∆-0.9

W/O JOINT DROPOUT 68.8 (± 1.4), ∆+6.8 56.7 (± 2.6), ∆+7.0 51.8 (± 1.1), ∆-0.3 25.3 (± 0.8), ∆+1.9 42.1 (± 0.9), ∆-3.7
W/ RANDOM ROTATION 63.2 (± 0.6), ∆+1.2 52.7 (± 1.2), ∆+3.0 53.9 (± 0.8), ∆+1.8 24.9 (± 0.7), ∆+1.5 48.1 (± 0.3), ∆+2.3

SPATIAL ONLY 62.5 (± 0.9), ∆+0.5 51.5 (± 1.7), ∆+1.8 54.2 (± 2.0), ∆+2.1 25.2 (± 0.8), ∆+1.8 42.0 (± 0.9), ∆-3.8
TEMPORAL ONLY 71.6 (± 0.2), ∆+9.6 58.8 (± 3.4), ∆+9.1 52.8 (± 0.3), ∆+0.7 28.4 (± 2.0), ∆+5.0 23.0 (± 0.1), ∆-22.8

show that using a normalised frame-rate across all datasets of 30 fps does not improve performance.
Replacing the ST-GCN backbone with an MLP decreases the performance across most tasks, most
notably with a drop of 16.5% in activity classification.

The results confirm that task performance improves with the number of downstream training sam-
ples. Interestingly, we observed a 6.6% decrease in accuracy when pre-training only with NTU-60.
This shows the importance of high diversity in pre-training data. However, removing a single pre-
training dataset does not have a sizeable effect on downstream performance. Likewise, removing
individual augmentations does not have a particular effect, except for random scaling (e.g. the per-
formance drops by 9.3% for activity classification) and joint dropout (e.g. the MAE on skeleton
reconstruction increases by 6.8mm for NTU-60 and 7mm for HDM05). However, when we re-
move all spatial augmentations or all temporal augmentations simultaneously, we observe a drop
in performance across most tasks (e.g. with only temporal augmentations, the MAE on skeleton
reconstruction increases by 9.6mm on NTU-60 and decreases by 22.8% in accuracy for activity
classification).

5 Conclusion and Further Work

In this work, we showed that both spatial and temporal augmentations are needed to train skeleton
representations. However, the specific type of augmentation within each category is less critical.
Our results indicate that more data can help the model learn generic representations, even if the
dataset were collected for different purposes. Finally, we demonstrated that a graph-based encoder
(ST-GCN [23]) produces higher quality representations.

In the future, we would like to explore how other modalities, such as audio, can further enrich
skeleton representations.
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A Augmentations

Our version of SimCLR for skeleton representations makes use of the following augmentations:

Axis mirroring: Multiply by -1 all coordinates in the x, y or z axis.
Random scale: Randomly scale the dimension of a joint for all frames in the input.
Joint Jitter: Add gaussian noise (with mean zero and variance 0.02) to each joint and frame.
Slow down: Linearly interpolate between two frames and select random continuous subset.
Speed up: Skip 1 or 2 frames when preparing input representations. Pad with zeros.
Frame Dropout: Completely zeroing a frame on the input.
Joint Dropout: Randomly zero some joints from the input.
Random rotation: Randomly rotate the skeleton in XYZ for all frames in the input.

Visualisations of the augmentations can be seen in figure 2. The augmentations are applied to the
input with the probabilities and strengths specified in table 3. They are always applied in the order
specified above.

Figure 2: The augmentations used to train the SSL model with SimCLR. We use spatial (fig. b-g)
and temporal(fig. h-i) augmentations.

B Training hyper-parameters

Table 3: Augmentations hyper-parameters for pre-training with probabilities and strengths

Augmentation Probability Strength

Axis mirroring 0.5 -
Random Scale 0.7 µ: 0, σ2: 0.02

Joint Jitter 0.5 µ: 0, σ2: 0.02
Slow down 0.5 0.5x-0.9x
Speed up 0.5 1.2-2x

Frame Dropout 0.5 0.5
Joint Dropout 0.5 0.5

Random rotation 0.6 ±π
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Table 4: Hyper-parameter used in pretraining and downstream tasks

Pretraining Downstream Task

Batch Size 8096 1024
Training Epochs 500 200

Optimizer Lars Momentum Adam
Learning Rate 0.01 0.01
LR Warmup 10 -

LR Update Schedule cosine -
Backbone Feature Size 128 -

Head Latent Size 256 -
Head Output Size 128 -
Head Output Size 128 -

Table 5: Network Parameter used in pretraining and downstream tasks

Trainable Parameters

SimCLR
Encoder (ST-GCN) 0.968458M

Encoder (MLP) 1.351168M
Frozen

Activity Classification 0.00774M
Motion Prediction Frozen 2.905182M

Skeleton Reconstruction Frozen 2.905182M
Fine-Tune

Activity Classification 0.843206M
Motion Prediction Frozen 3.740648M

Skeleton Reconstruction Frozen 3.740648M
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