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Abstract

An energy-based model (EBM) is a popular generative framework that offers both
explicit density and architectural flexibility, but training them is difficult since it is
often unstable and time-consuming. In recent years, various training techniques
have been developed, e.g., better divergence measures or stabilization in MCMC
sampling, but there often exists a large gap between EBMs and other generative
frameworks like GANs in terms of generation quality. In this paper, we propose a
novel and effective framework for improving EBMs via contrastive representation
learning (CRL). To be specific, we consider representations learned by contrastive
methods as the true underlying latent variable. This contrastive latent variable
could guide EBMs to understand the data structure better, so it can improve and
accelerate EBM training significantly. To enable the joint training of EBM and CRL,
we also design a new class of latent-variable EBMs for learning the joint density
of data and the contrastive latent variable. Our experimental results demonstrate
that our scheme achieves lower FID scores, compared to prior-art EBM methods
(e.g., additionally using variational autoencoders or diffusion techniques), even
with significantly faster and more memory-efficient training.

1 Introduction

Energy-based models (EBMs) [1, 2], whose density is proportional to the exponential negative energy,
i.e., pθ(x) ∝ exp(−Eθ(x)), have recently gained much attention due to their attractive properties:
EBMs can naturally provide the explicit (unnormalized) density unlike GANs [3], and, they are
much less restrictive in architectural designs than other explicit density models such as autoregressive
[4, 5] and flow-based models [6, 7]. Despite the attractive properties, training EBMs has remained
challenging; e.g., it often suffers from the training instability due to the intractable sampling and the
absence of the normalizing constant. There have recently developed various techniques for improving
the stability [8–12]. To further improve EBMs, there are several recent attempts to incorporate other
generative models into EBM training, e.g., VAEs [13], flow-based models [14, 15], or diffusion
techniques [16]. However, they often require a high computational cost for training such an extra
generative model, or there still exists a large gap between EBMs and state-of-the-art generative
frameworks like GANs [17] or score-based models [18].

Instead of utilizing extra expensive generative models, in this paper, we ask whether EBMs can
be improved by other unsupervised techniques of low cost. To this end, we are inspired by recent
advances in unsupervised representation learning literature [19–21], especially by the fact that the
discriminative representations can be obtained much easier than generative modeling. In particular,
we primarily focus on contrastive representation learning [22, 19, 23] since it can learn instance
discriminability, which has been shown to be effective in not only representation learning, but also
training GANs [24, 17] and out-of-distribution detection [25].
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Figure 1: Illustration of the proposed Contrastive Latent-guided Energy Learning (CLEL) framework.
(a) Our spherical latent-variable EBM (fθ, gθ) learns the joint data distribution pdata(x, z) generated
by our contrastive latent encoder hϕ. (b) The encoder hϕ is trained by contrastive learning with
additional negative variables z̃ ∼ pθ(z̃).

In this paper, we propose Contrastive Latent-guided Energy Learning (CLEL), a simple yet effective
framework for improving EBMs via contrastive representation learning (CRL). Our CLEL consists
of two components, which are illustrated in Figure 1.

• Contrastive latent encoder. Our key idea is to consider representations learned by CRL as an
underlying latent variable distribution pdata(z|x). Specifically, we train an encoder hϕ via CRL,
and treat the encoded representation z := hϕ(x) as the true latent variable given data x, i.e.,
z ∼ pdata(·|x). This latent variable could guide EBMs to understand the underlying data structure
more quickly and accelerate training since the latent variable contains semantic information of the
data thanks to CRL. Here, we assume the latent variables are spherical, i.e., ∥z∥2 = 1, since recent
CRL methods [23, 19] use the cosine distance on the latent space.

• Spherical latent-variable EBM. We introduce a new class of latent-variable EBMs pθ(x, z) for
modeling the joint distribution pdata(x, z) generated by the contrastive latent encoder. Since the
latent variables are spherical, we separate the output vector f := fθ(x) into its norm ∥f∥2 and
direction f/∥f∥2 for modeling pθ(x) and pθ(z|x), respectively. We found that this separation
technique reduces the conflict between pθ(x) and pθ(z|x) optimizations, which makes training
stable. In addition, we treat the latent variables drawn from our EBM, z̃ ∼ pθ(z), as additional
negatives in CRL, which further improves our CLEL. Namely, CRL guides EBM and vice versa.

We demonstrate the effectiveness of the proposed framework through extensive experiments. For
example, our EBM achieves 8.61 FID under unconditional CIFAR-10 generation, which is lower
than those of existing EBM models. Here, we remark that utilizing CRL into our EMB training
increases training time by only 10% in our experiments (e.g., 38→41 GPU hours). This enables us
to achieve the lower FID score even with significantly less computational resources than the prior
EBMs that utilize VAEs [13] or diffusion-based recovery likelihood [16]. We remark that our idea is
not limited to contrastive representation learning and we show EBMs can be also improved by other
representation learning methods like BYOL [20] or MAE [21].

2 Method

Our goal is to learn an energy-based model (EBM) pθ(x) ∝ exp(−Eθ(x)) to approximate a complex
underlying data distribution pdata(x). In this work, we propose Contrastive Latent-guided Energy
Learning (CLEL), a simple yet effective framework for improving EBMs via contrastive representa-
tion learning. Our main intuition is that directly incorporating with meaningful semantic information
of data could improve EBMs. To this end, we consider the (random) representation z ∼ pdata(z|x) of
x, generated by contrastive learning, as the true underlying latent variable. Namely, we model the
joint distribution pdata(x, z) = pdata(x)pdata(z|x) via a latent-variable EBM pθ(x, z). We first briefly
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describe the concepts of EBMs and CRL in Section 2.1, and then introduce our framework in Section
2.2. Our framework is illustrated in Figure 1.

2.1 Background

An energy-based models (EBM) is a probability distribution on Rdx , defined as follows: for data
x ∈ Rdx , pθ(x) = exp(−Eθ(x))/Zθ where Zθ =

∫
Rdx

exp(−Eθ(x))dx denotes the normalizing
constant, called the partition function. An important application of EBMs is to find a parameter θ
such that pθ is close to pdata. A popular method for finding such θ is to minimize Kullback–Leibler
(KL) divergence between pdata and pθ via gradient descent:

∇θDKL(pdata∥pθ) = Ex∼pdata [∇θEθ(x)]− Ex̃∼pθ
[∇θEθ(x̃)]. (1)

Since this gradient computation (1) is NP-hard in general [26], it is often approximated via Markov
chain Monte Carlo (MCMC) methods. In this work, we use the stochastic gradient Langevin dynamics
(SGLD) [27], a gradient-based MCMC method for approximate sampling.

Contrastive representation learning (CRL) aims to learn a meaningful representation by minimizing
distance between similar (i.e., positive) samples, and maximizing distance between dissimilar (i.e.,
negative) samples on the representation space. To this end, we use the following objective [19]:

LNT-Xent(z, z+, {z−}; τ) = − log
exp(sim(z, z+)/τ)

exp(sim(z, z+)/τ) +
∑

z−
exp(sim(z, z−)/τ)

, (2)

where z = hϕ(x) is the representation, hϕ : Rdx → Rdz be a ϕ-parameterized encoder, sim(u,v) is
the cosine similarity, and (x,x+) and (x,x−) are positive and negative pairs, respectively.

2.2 CLEL: Contrastive Latent-guided Energy Learning

Contrastive latent encoder. To construct a meaningful latent distribution pdata(z|x) for improving
EBMs, we use a latent encoder hϕ trained by contrastive learning. Formally, we define pdata(z|x) by
pdata(z|x) := Pt∼T (z = hϕ(t(x))/∥hϕ(t(x))∥2) where T is a random augmentation distribution.

Spherical latent-variable energy-based models. We use a DNN fθ : Rdx → Rdz parameterized
by θ for modeling pθ(x, z). Following that the latent variable z ∼ pdata(z|x) is on the unit sphere,
we utilize the directional information fθ(x)/∥fθ(x)∥2 for modeling pθ(z|x), while the remaining
information ∥fθ(x)∥2 is used for modeling pθ(x).1 Overall, we define the joint energy Eθ(x, z) by

Eθ(x, z) :=
1
2∥fθ(x)∥22 − βgθ

(
fθ(x)

∥fθ(x)∥2

)⊤
z where β ≥ 0 is a hyperparameter and gθ : Sdz−1 →

Sdz−1 is a directional projection MLP. Note that the marginal energy Eθ(x) only depends on ∥fθ(x)∥2
since

∫
Sd−1 exp(βgθ (fθ(x)/∥fθ(x)∥2)⊤ z)dz is independent of x due to the symmetry.

Training. Let {x(i)}ni=1 be a random mini-batch of training samples. We first generate n samples
{x̃(i)}ni=1 ∼ pθ(x) using the current EBM Eθ via SGLD. We then draw latent variables from pdata and
pθ, i.e., z(i) ∼ pdata(z|x(i)) and z̃(i) ∼ pθ(z|x̃(i)) for all i. For the latter case, we simply use the mode
of pθ(z|x(i)) instead of sampling, namely, z̃(i) := gθ(fθ(x)/∥fθ(x)∥2). Let B := {(x(i), z(i))}ni=1

and B̃ := {(x̃(i), z̃(i))}ni=1 be real and generated mini-batches, respectively. We optimize θ and ϕ via
minimizing KL divergence (1) and contrastive learning (2), respectively. Formally, we minimize the
following losses simultaneously (see Appendix A for CLEL training pseudocode):2

LEBM(B, B̃; θ, α, β) = 1

n

n∑
i=1

Eθ(x
(i), z(i))− Eθ(x̃

(i)) + α · (Eθ(x
(i))2 + Eθ(x̃

(i))2), (3)

LLE(B, B̃;ϕ, τ) =
1

2n

n∑
i=1

∑
j=1,2

LNT-Xent

(
z
(i)
j , z

(i)
3−j , {z

(k)
l }k ̸=i,l∈{1,2} ∪ {z̃(i)}ni=1; τ

)
, (4)

where z(i)j = hϕ(t
(i)
j (x(i))) is the representation for contrastive learning with augmentations t(i)j ∼ T ,

and α is a hyperparameter for energy regularization to prevent divergence [8]. Remark that we here
utilize {z̃(i)}ni=1 as additional negative latent variables for contrastive learning.

1We empirically found that this norm-direction separation stabilizes the latent-variable EBM training.
2Here, z̃ is unnecessary for DKL(pdata∥pθ) since Ez̃∼pθ(z̃|x̃)[∇θEθ(x̃, z̃)] = ∇θEθ(x̃).
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Table 1: (a,b) unconditional generation and (c) out-of-distribution (OOD) detection results. † denotes
EBMs that utilize auxiliary generators, and ‡ denotes hybrid discriminative-generative models. The
training time and GPU memory footprint are based on single RTX3090 GPU of 24G memory.
Underline is based on our estimation.

(a) FID scores
Method FID

CIFAR-10

Short-run EBM [9] 44.50
JEM‡ [28] 38.40
IGEBM [8] 38.20
FlowCE† [14] 37.30
VERA†‡ [29] 27.50
Improved CD [10] 25.10
BiDVL [30] 20.75
GEBM† [31] 19.31
CF-EBM [32] 16.71
CoopFlow† [15] 15.80
CLEL-Base (Ours) 15.27
VAEBM† [13] 12.19
EBM-Diffusion [16] 9.58
CLEL-Large (Ours) 8.61

ImageNet 32×32

IGEBM [8] 62.23
PixelCNN [4] 40.51
Improved CD [10] 32.48
CF-EBM [32] 26.31
CLEL-Base (Ours) 22.16

(b) FID improvements via different configurations (CIFAR-10)
Method Params (M) Time Memory FID
Baseline w/o CLEL 6.96 38h 6G 23.50
+ CLEL (Base) 6.96 41h 7G 15.27
+ multi-scale architecture 19.29 74h 8G 12.46
+ CRL with a batch size of 256 19.29 76h 10G 11.65
+ more channels (Large) 30.70 133h 11G 8.61
EBM-Diffusion (N = 2 blocks) 9.06 163h 10G 17.34
EBM-Diffusion (N = 8 blocks) 34.83 652h 40G 9.58
VAEBM 135.88 414h 129G 12.19

(c) Out-of-distribution detection (CIFAR-10 → OOD data)
Method SVHN Textures CIFAR10 Interp. CIFAR100 CelebA
PixelCNN++ [33] 0.32 0.33 0.71 0.63 -
GLOW [34] 0.24 0.27 0.51 0.55 0.57
NVAE [35] 0.42 - 0.64 0.56 0.68
IGEBM [8] 0.63 0.48 0.70 0.50 0.70
VAEBM [13] 0.83 - 0.70 0.62 0.77
Improved CD [10] 0.91 0.88 0.65 0.83 -
CLEL-Base (Ours) 0.9848 0.9437 0.7248 0.7161 0.7717

JEM‡ [28] 0.67 0.60 0.65 0.67 0.75
VERA†‡ [29] 0.83 - 0.86 0.73 0.33

3 Experiments

Training details. We provide all the implementation details are described in Appendidx B.

Unconditional image generation. An important application of EBMs is to generate images using the
energy function Eθ(x). To this end, we train our CLEL framework on CIFAR-10 [36] and ImageNet
32×32 [37, 38] under the unsupervised setting. Table 1a shows the FID scores of our CLEL and
other EBMs for unconditional generation on CIFAR-10 and ImageNet 32×32, respectively. The
unconditionally generated samples are provided in Appendix C. We first find that CLEL outperforms
previous EBMs under both CIFAR-10 and ImageNet 32×32 datasets. As shown in Table 1b, our
method can benefit from a multi-scale architecture as Du et al. [10] did, contrastive representation
learning (CRL) with a larger batch, more channels at lower layers in our EBM fθ. As a result, we
achieve 8.61 FID on CIFAR-10, which is lower than that of the prior-art EBM based on diffusion
recovery likelihood, EBM-Diffusion [16], even with 5× faster and 4×more memory-efficient training
(when using the similar number of parameters for EBMs). Then, we narrow the gap between EBMs
and state-of-the-art frameworks like GANs without help from other generative models.

Out-of-distribution detection. EBMs can be also used for detecting out-of-distribution (OOD)
samples. For the OOD sample detection, previous EBM-based approaches often use the (marginal)
unnormalized likelihood pθ(x) ∝ exp(−Eθ(x)). In contrast, our CLEL is capable of modeling the
joint density pθ(x, z) ∝ Eθ(x, z). Using this capability, we propose an energy-based OOD detection
score: given x,

s(x) :=
1

2
∥fθ(x)∥22 − βgθ

(
fθ(x)

∥fθ(x)∥2

)⊤
hϕ(x)

∥hϕ(x)∥2
. (5)

We found that the second term in (5) helps to detect the semantic difference between in- and out-of-
distribution samples. Table 1c shows our CLEL’s superiority over other explicit density models in
OOD detection, especially when OOD samples are drawn from different domains, e.g., SVHN [39]
and Texture [40] datasets.

Conditional generation using pθ(x|z). Even without explicit conditional training, our latent-variable
EBMs naturally can provide the latent-conditional density pθ(x|z). We verify its effectiveness under
conditional sampling (Appendix D), and compositional sampling (Appendix E).

Analysis. We conduct ablation experiments to validate the contributions of CLEL’s components and
compatibility with other representation learning methods instead of contrastive one (Appendix F).
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A Training procedure of CLEL

Algorithm 1 Contrastive Latent-guided Energy Learning (CLEL)

Require: a latent-variable EBM (fθ, gθ), a latent encoder hϕ, an augmentation distribution T ,
hyperparameters α, β, τ > 0, and the stop-gradient operation sg(·).

1: for # training iterations do
2: // Construct batches B and B̃
3: Sample {x(i)}ni=1 ∼ pdata(x)
4: Sample {x̃(i)}ni=1 ∼ pθ(x) using stochastic gradient Langevin dynamics (SGLD)
5: z(i) ← sg

(
hϕ(t

(i)(x(i)))/∥hϕ(t
(i)(x(i)))∥2

)
, t(i) ∼ T

6: z̃(i) ← sg
(
gθ(fθ(x̃

(i))/∥fθ(x̃(i))∥2)
)

7: // Compute the EBM loss, LEBM

8: LEBM ← 1
n

∑n
i=1 Eθ(x

(i), z(i))− Eθ(x̃
(i)) + α · (Eθ(x

(i))2 + Eθ(x̃
(i))2)

9: // Compute the encoder loss, LLE

10: z
(i)
j ← hϕ(t

(i)
j (x(i))), t(i)j ∼ T

11: LLE ← 1
2n

∑n
i=1

∑
j=1,2 LNT-Xent

(
z
(i)
j , z

(i)
3−j , {z

(k)
l }k ̸=i,l∈{1,2} ∪ {z̃(i)}ni=1; τ

)
12: Update θ and ϕ to minimize LEBM + LLE
13: end for

B Training details

Architectures. For the spherical latent-variable energy-based model (EBM) fθ, we use the 8-block
ResNet [41] architectures following Du and Mordatch [8]. The details of the (a) small, (b) base, and
(c) large ResNets are described in Table 2. We append a 2-layer MLP with a output dimension of 128
to the ResNet, i.e., fθ : R3×32×32 → R128. Note that we use the small model for ablation experiments
in Appendix F. To stabilize training, we apply spectral normalization [42] to all convolutional layers.
For the projection gθ, we use a 2-layer MLP with a output dimension of 128, the leaky-ReLU
activation, and no bias, i.e., gθ(u) = W2σ(W1u) ∈ R128. For the latent encoder hϕ, we simpy use
the CIFAR variant of ResNet-18 [41], followed by a 2-layer MLP with a output dimension of 128.

Table 2: Our EBM fθ architectures. For our large model, we build three independent ResNets and
resize an input image x ∈ R3×32×32 to three resolutions: 32 × 32, 16 × 16, and 8 × 8. We use
each ResNet for each resolution image, concatenate their output features, and then compute the final
output feature fθ(x) ∈ R128 using single MLP.

Small Base Large

Input (3, 32, 32) (3, 32, 32) (3, 32, 32), (3, 16, 16), (3, 8, 8)

EBM fθ(x)

Conv(3× 3, 64)
ResBlock(64) ×1
AvgPool(2× 2)
ResBlock(64) ×1
AvgPool(2× 2)
ResBlock(128) ×1
AvgPool(2× 2)
ResBlock(128) ×1
GlobalAvgPool

MLP(128, 2048, 128)

Conv(3× 3, 128)
ResBlock(128) ×2
AvgPool(2× 2)
ResBlock(128) ×2
AvgPool(2× 2)
ResBlock(256) ×2
AvgPool(2× 2)
ResBlock(256) ×2
GlobalAvgPool

MLP(256, 2048, 128)



Conv(3× 3, 256)
ResBlock(256) ×2
AvgPool(2× 2)
ResBlock(256) ×2
AvgPool(2× 2)
ResBlock(256) ×2
AvgPool(2× 2)
ResBlock(256) ×2
GlobalAvgPool


× 3

Concat→ MLP(768, 2048, 128)

Training. For the EBM parameter θ, we use Adam optimizer [43] with β1 = 0, β2 = 0.999, and a
learning rate of 10−4. We use the linear learning rate warmup for the first 2k training iterations. For
the encoder parameter ϕ, we use SGD optimizer with a learning rate of 3× 10−2, a weight decay of
5× 10−4, and a momentum of 0.9 as described in Chen and He [44]. For all experiments, we train
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our models 100k iterations with a batch size of 64, unless otherwise stated. For data augmentation
T , we follow Chen et al. [19], i.e., T includes random cropping, flipping, color jittering, and color
dropping. For hyperparameters, we use α = 1 following Du and Mordatch [8], and β = 0.01 (see
Appendix F for β-sensitivity experiments). For our large model, we use a large batch size of 256 only
for learning the contrastive encoder hϕ. After training, we utilize exponential moving average (EMA)
models for evaluation.

SGLD sampling. For each training iteration, we use 60 SGLD steps with a step size of 100 for
sampling x̃ ∼ pθ. Following Du et al. [10], we apply a random augmentation t ∼ T for every 60
steps. We also use a replay buffer with a size of 10000 and a resampling rate of 0.1% for maintaining
diverse samples [8]. For evaluation, we generate 50k images by running 600 and 1200 SGLD steps
from uniform noises for our base and large models, respectively, and then we evaluate their qualities
using Fréchet Inception Distance (FID) scores [45, 46].

C Unconditionally generated samples

(a) CIFAR-10 (b) ImageNet 32×32

Figure 2: Unconditional generated samples from our EBMs on CIFAR-10 and ImageNet 32×32.
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D Conditional sampling

Query Instance-conditioned Samples
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Figure 3: (a, b) Instance- and class-conditionally generated samples using our CLEL in CIFAR-10.
(c) Confusion matrix for the class-conditionally generated samples computed by an external classifier.

One advantage of latent-variable EBMs is that they can offer the latent-conditional density pθ(x|z) ∝
exp(−Eθ(x, z)). Hence, our EBMs can enjoy the advantage even though CLEL does not explicitly
train conditional models. To verify this, we first test instance-conditional sampling: given a real
sample x, we draw the underlying latent variable z ∼ pdata(z|x) using our latent encoder hϕ, and
then perform SGLD sampling using our joint energy Eθ(x, z) defined in Section 2.2. We here use
our CIFAR-10 model. As shown in Figure 3a, the instance-conditionally generated samples contain
similar information (e.g., color, shape, and background) to the given instance.

This successful result motivates us to extend the sampling procedure: given a set of instances {x(i)},
can we generate samples that contain the shared information in {x(i)}? To this end, we first draw
latent variables z(i) ∼ pdata(·|x(i)) for all i, and then aggregate them by summation and normalization:
z̄ :=

∑
i z

(i)/∥∑i z
(i)∥2. To demonstrate that samples generated from pθ(x|z̄) contains the shared

information in {x(i)}, we collect the set of instances {x(i)
y } for each label y in CIFAR-10, and check

whether x̃y ∼ pθ(·|z̄y) has the same label y. Figure 3b shows the class-conditionally generated
samples {x̃y} and Figure 3c presents the confusion matrix of predictions for {x̃y} computed by an
external classifier c. Formally, each (i, j)-th entry is equal to Px̃i

(c(x̃i) = j). We found that x̃y

is likely to be predicted as the label y, except the case when y is dog: the generated dog images
sometimes look like a semantically similar class, cat. These results verify that our EBM can generate
samples conditioning on a instance or class label, even without explicit conditional training.
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E Compositionality via latent variables

Female SmilingYoung

✓✓

✓ ✓

✓

✓

Multi-attribute-conditioned Samples

(a) Multi-attribute-conditional sampling

Female SmilingYoung

(b) Attribute predictions

Figure 4: Compositional generation results in CelebA. (a) Samples are generated by conditioning on
checked attributes. (b) Attribute predictions of generated samples computed by an external classifier.

An intriguing property of EBMs is compositionality [47]: given two EBMs E(x|c1) and E(x|c2)
that are conditional energies on concepts c1 and c2, respectively, one can construct a new energy con-
ditioning on both concepts: pθ(x|c1 and c2) ∝ exp(−E(x|c1)− E(x|c2)). As shown in Appendix
D, our CLEL implicitly learns E(x|z), and a latent variable z can be considered as a concept, e.g.,
instance or class. Hence, in this section, we test compositionality of our model. To this end, we
additionally train our CLEL in CelebA 64×64 [48]. For compositional sampling, we first acquire
three attribute vectors z̄a for a ∈ A := {Young,Female,Smiling} as we did in Appendix D, then
generate samples from a composition of conditional energies as follows:

Eθ(x|A) :=
1

2
∥fθ(x)∥2 − β

∑
a∈A

sim(gθ(fθ(x)/∥fθ(x)∥2), z̄a), (6)

where sim(·, ·) is the cosine similarity. Figure 4a and 4b show the generated samples conditioning on
multiple attributes and their attribute prediction results computed by an external classifier, respectively.
They verify our compositionality qualitatively and quantitatively. For example, almost generated
faces conditioned by {Young,Female} look young and female (see the third row in Figure 4.)
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F Ablation study

Table 3: Component ablation experiments.
Projection gθ Negative pθ(z̃) FID↓ OOD↑

(a) Baseline (β = 0) 42.46 0.8532
(b) MLP 36.29 0.8580
(c) MLP ✓ 35.73 0.8723
(d) Identity ✓ 86.02 0.8474
(e) Linear ✓ 37.35 0.8540

Table 4: β sensitivity.
β FID↓ OOD↑
0 42.46 0.8532

0.001 37.44 0.8485
0.01 35.73 0.8723
0.1 56.39 0.7559

Table 5: Compatibility.
SSRL FID↓ OOD↑

42.46 0.8532

SimCLR 35.73 0.8723
BYOL 36.31 0.8792
MAE 37.67 0.8561

Component analysis. To verify the importance of our CLEL’s components, we conduct ablation
experiments with training a smaller ResNet [41] in CIFAR-10 [36] for 50k training iterations. Then,
we evaluate the quality of energy functions using FID and OOD detection scores. Here, we use
SVHN [39] as the OOD dataset. Table 3 demonstrates the effectiveness of CLEL’s components.
First, we observe that learning pθ(z|x) to approximate pdata(z|x) plays a crucial role for improving
generation (see (a) vs. (b)). In addition, using generated latent variables z̃ ∼ pθ(·) as negatives for
contrastive learning further improves not only generation, but also OOD detection performance (see
(b) vs. (c)). We also empirically found that using an additional projection head is critical; without
projection gθ (i.e., (d)), our EBM failed to approximate pdata(x), but an additional projection head
(i.e., (c) or (e)) makes learning feasible. Hence, we use a 2-layer MLP (c) in all experiments since
it is better than a simple linear function (e). We also test various β ∈ {0.1, 0.01, 0.001} under this
evaluation setup (see Table 4) and find β = 0.01 is the best.

Compatibility with other self-supervised representation learning methods. While we have mainly
focused on utilizing contrastive representation learning (CRL), our framework CLEL is not limited to
CRL for learning the latent encoder hϕ. To verify this compatibility, we replace SimCLR with other
self-supervised representation learning (SSRL) methods, BYOL [20] and MAE [21]. Note that these
methods have several advantages compared to SimCLR: e.g., BYOL does not require negative pairs,
and MAE does not require heavy data augmentations. Table 5 implies that any SSRL methods can be
used to improve EBMs under our framework, where the CRL method, SimCLR [19], is the best. We
provide the implementation details for BYOL and MAE below.

BYOL for CLEL. Since BYOL also learns its representations on the unit sphere, the method can be
directly incorporated with our CLEL framework.

MAE for CLEL. Since MAE’s representations do not lie on the unit sphere, we incorporate MAE
into our CLEL framework by the following procedure:

1. Pretrain a MAE framework and remove its MAE decoder. To this end, we simply use a
publicly-available checkpoint of the ViT-tiny architecture.

2. Freeze the MAE encoder parameters and construct a learnable 2-layer MLP on the top of
the encoder.

3. Train only the MLP via contrastive representation learning without data augmentations
using our objective (4) for the latent encoder.
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