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Abstract

In this work, we observe that many existing self-supervised learning algorithms
can be both unified and generalized when seen through the lens of equivariant rep-
resentations. Specifically, we introduce a general framework we call Homomorphic
Self-Supervised Learning, and theoretically show how it may subsume the use of
input-augmentations provided an augmentation-homomorphic feature extractor.
We validate this theory experimentally for simple augmentations, demonstrate how
the framework fails when representational structure is removed, and further empiri-
cally explore how the parameters of this framework relate to those of traditional
augmentation-based self-supervised learning. We conclude with a discussion of
the potential benefits afforded by this new perspective on self-supervised learning.

1 Introduction

Many self-supervised learning (SSL) techniques can be colloquially defined as representation
learning algorithms which extract approximate supervision signals directly from the input
data itself [23]. In practice, this supervision signal is often obtained by performing symmetry
transformations of the input with respect to task-relevant information, meaning the transformations
leave task-relevant information unchanged, while altering task-irrelevant information. Numerous
theoretical and empirical works have shown that by combining such symmetry transformations
with contrastive objectives, powerful lower dimensional representations can be learned which
support linear-separability, identifiability of generative factors, and reduced sample complexity
[1, 5, 6, 12, 15, 17, 24, 34, 36–38, 40, 42]. One rapidly developing domain of deep learning research
which is specifically focused on the structured and accurate representation of the input with respect
to symmetry transformations is that of equivariant neural networks [7, 8, 13, 14, 44–46]. In this work,
we study the properties of SSL algorithms when equivariant neural networks are used as backbone
feature extractors. Interestingly, we find a convergence of existing loss functions from the literature,
and ultimately generalize these with the framework of Homomorphic Self-Supervised Learning.

Figure 1: Overview of Homomorphic-SSL (left) and its relation to traditional Augmentation-based
SSL (right). Positive pairs extracted from the lifted dimension (θ) of a rotation equivariant network
(G-conv) are equivalent to pairs extracted from the separate representations of two rotated images.
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2 Background

Equivariance The map f : X → Z is said to be equivariant with respect to the group G = (G, ·) if
∃Γg such that f(Tg[x]) = Γg[f(x)] ∀g ∈ G , (1)

where G is the set of all group elements, · is the group operation, Tg is the representation of the
transformation g ∈ G in input space X , and Γg is the representation of the same transformation
in output space Z . If Tg and Γg are formal group representations [31] such maps f are termed
group-homomorphisms since they can be seen to preserve the structure of the group in the output
space. There are many different methods for constructing group equivariant neural networks, resulting
in different representations of the transformation in feature space Γg . In this work, we consider only
discrete groups G and networks which admit regular representations for Γ (see Appendix B for an
example). Specifically, we denote the output of our network f(x) = z ∈ RC×|G|, where C is the
number of output channels. As a simple example, a standard convolutional layer would have all height
(H) and width (W ) spatial coordinates as the set G, giving z ∈ RC×HW . A group-equivariant neural
network [8] which is equivariant with respect to the the group of all integer translations and 90-degree
rotations (p4) would thus have a feature multiplicity four times larger (z ∈ RC×4HW ), since each
spatial element is associated with the four distinct rotation elements (0o, 90o, 180o, 270o). Such a
rotation equivariant network is depicted in Figure 1 with the ‘lifted’ rotation dimension extended
along the vertical axis (θ). In both the translation and rotation cases, the regular representation Γg acts
by permuting the representation along the group dimension, leaving the feature channels unchanged.

Notation The vector of features (channels) at a specific group element g is sometimes called a
‘fiber’ [7]. In this work we use the following shorthand for indexing fibers according to their group
element g: z(g) ≡ z:,g ∈ RC . Similarly, the set of fibers corresponding to an ordered set of group
elements g can be called a ‘fiber bundle’ which we denote: z(g) = [z(g) | g ∈ g] ∈ R|g|C . Fiber
bundles can be seen in Figure 1 as the small cubes being compared (with the fibers themselves
extending into the undepicted fourth dimension). Using this notation, we can define the action of Γg

as: Γg[z(g0)] = z(g
−1 · g0). Thus Γg can be seen to move the fibers from ‘base’ locations g0 to a

new ordered set of locations g−1 · g0. We highlight that order is critical for our definition since a
transformation such as rotation may simply permute g0 while leaving the unordered set intact.

Augmentation-based SSL (A-SSL) Many state of the art SSL approaches rely on input aug-
mentations in order to selectively extract task-relevant information. One prominent framework,
SimCLR [5], trains a backbone feature extractor f(·) to minimize a contrastive loss applied to the
representations of two augmented versions of an image. Specifically, given a batch of N input images
X = {x1,x2, . . . ,xN}, a similarity function sim(a, b) = aT b

||a||·||b|| , and a non-linear ‘projection
head’ h : Z → Y , the SimCLR loss is given as:

LA-SSL(X) = − 1

N

N∑
i

Eg1,g2∼G log
exp

(
sim

(
h(f(Tg1 [xi])), h(f(Tg2 [xi]))

)
/τ

)
∑N

k ̸=i

∑2
j,l exp

(
sim

(
h(f(Tgj [xi])), h(f(Tgl [xk]))

)
/τ

) , (2)

where G is the set of all augmentations, Tg[x] denotes the action of the sampled augmentation g
on the input, and τ is the ‘temperature’ of the softmax. In this work, we will focus on the SimCLR
objective for simplicity, but our analysis also applies to non-contrastive frameworks such as BYOL
[15] and SimSiam [6], provided the backbone is equivariant (i.e. augmentation-homomorphic).

3 Homomorphic Self-Supervised Learning

In this section we introduce Homomorphic Self-Supervised Learning (H-SSL) as a general framework
for SSL with homomorphic encoders, and further show how many existing SSL algorithms can be
both unified and generalized. To begin, consider an A-SSL objective such as Equation 2 when
f is equivariant with respect to the input augmentation. By the definition of equivariant maps in
Equation 1, the augmentation commutes with the feature extractor: h(f(Tg[x])) = h(Γg[f(x)]).
Thus, replacing f(xi) with its output zi = z(g0), and applying the definition of the operator, we get:

LH-SSL(X) = − 1

N

N∑
i

Eg1,g2∼G log
exp

(
sim

(
h(zi(g

−1
1 · g0)), h(zi(g

−1
2 · g0))

)
/τ

)
∑N

k ̸=i

∑2
j,l exp

(
sim

(
h(zi(g

−1
j · g0)), h(zk(g

−1
k · g0))

)
/τ

) . (3)
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Ultimately, we see that LH-SSL subsumes the use of input augmentations by defining the ‘positive pairs’
in the numerator as two fiber bundles from the same representation zi, simply indexed using two
differently transformed base spaces g−1

1 ·g0 and g−1
2 ·g0 (depicted in Figure 1). Interestingly, this loss

highlights the base space g0 as a parameter choice previously unexplored in the A-SSL frameworks.

A second interesting consequence of this derivation is the striking similarity of the LH-SSL objective
and other existing SSL objectives which operate without explicit input augmentations to generate
multiple views. Specifically, when applied to images, Greedy InfoMax (GIM) [26] and Contrastive
Predictive Coding (CPC) [27]1 use a similar InfoNCE-inspired loss (as in SimCLR) but between
different spatial locations of a convolutional filter stack for a single image. Similarly, the ‘local’ term
in the Deep InfoMax objective (DIM(L)) [16] operates entirely within convolutional feature maps.
Consequently, these losses are contained in our framework where G is set to the 2D translation group,
and g0 is a small subset of the spatial coordinates. Since LH-SSL is also derived directly from LA-SSL
(when f is equivariant), we see that it provides a means to unify these previously distinct sets of
SSL objectives. In Section 4 we validate this theoretical equivalence empirically. Furthermore, since
LH-SSL is defined for transformation groups beyond translation, it can be seen to generalize these
augmentation-free objectives in a way that we have not previously seen exploited in the literature. In
Section 4 we include a preliminary exploration this generalization to scale and rotation groups.

4 Experiments

We now empirically validate the derived equivalence of A-SSL and H-SSL in practice, and further
reinforce our stated assumptions by demonstrating how H-SSL objectives are ineffective when repre-
sentational structure is removed. We study how the parameters of H-SSL (topographic distance) relate
to those traditionally used in A-SSL (augmentation strength), and finally explore how new parameter
generalizations afforded by our framework (such as choices of g0 and G) impact performance.

Empirical Validation For perfectly equivariant networks f , and sets of transformations which
exactly satisfy the group axioms, the equivalence between Equations 2 and 3 is exact. However, in
practice, due to discretization, boundary effects, and sampling artifacts, even for simple transforma-
tions such as translation, equivariance has been shown to not be strictly satisfied [48]. In Table 1
we empirically validate our proposed theoretical equivalence between LA-SSL and LH-SSL, showing a
tight correspondence between the downstream accuracy of linear classifiers trained on representations
learned via the two frameworks. Precisely, for each transformation (Rotation, Translation, Scale),
we use a backbone network which is equivariant specifically with respect to that transformation (e.g.
rotation equivariant CNNs, regular CNNs, and Scale Equivariant Steerable Networks (SESN) [33]).
In all settings, we take z from the final possible layer and set g0 to be a single fiber of dimension 128.

Table 1: MNIST [22], CIFAR10 [20] and Tiny ImageNet [21] top-1 test accuracy (mean ± std.
over 3 runs) of a detached classifier trained on the representations from SSL methods with different
backbones. We compare LA-SSL and LH-SSL with random frozen and fully supervised backbones.
We see equivalence between A-SSL and H-SSL as desired from the first two columns, and often
a significant improvement in performance for H-SSL methods when moving from Translation to
generalized groups such as Scale. Full experiment details can be found in Appendix B.

Dataset Transformation Backbone A-SSL H-SSL Frozen Supervised

MNIST
Rotation Rot-Eq. 68.2 ± 2.5 70.3 ± 5.4 87.2 ± 0.8 99.4 ± 0.1

Translation CNN 95.9 ± 0.3 96.0 ± 1.3 94.1 ± 0.3 99.2 ± 0.1
Scale SESN 98.6 ± 0.1 98.3 ± 0.2 94.7 ± 0.6 99.3 ± 0.1

CIFAR10
Rotation Rot-Eq. 46.1 ± 0.6 48.3 ± 0.5 38.4 ± 0.1 73.0 ± 1.1

Translation CNN 39.2 ± 0.5 36.3 ± 1.1 40.4 ± 0.2 76.2 ± 1.4
Scale SESN 59.4 ± 0.2 56.7 ± 0.4 41.1 ± 0.6 78.0 ± 0.2

Tiny ImageNet Rotation Rot-Eq. 14.9 ± 0.3 13.5 ± 0.5 6.1 ± 0.2 22.5 ± 0.1
Scale SESN 16.2 ± 0.4 14.0 ± 1.3 6.4 ± 0.2 23.7 ± 0.2

1In CPC, the authors use an autoregressive encoder to encode one element of the positive pairs. In GIM,
they find that in the visual domain, this autoregressive encoder is not necessary, and thus the loss reduces to a
standard contrastive loss between the representations from raw spatial patches, as defined here.

3



H-SSL Without Structure To validate our assertion that LH-SSL requires a homomorphism, in
Table 2 we show the same models from Table 1 without equivariant backbones. We observe LH-SSL
models perform significantly below their input-augmentation counterparts, and similarly to a ‘frozen’
randomly initialized backbone baseline – indicating the learning algorithm is no longer effective.

Table 2: An extension of Table 1 with non-equivariant backbones. We see that the H-SSL methods
perform similar to, or worse than, the frozen baseline when equivariance is removed, as expected.

Dataset Transformation Backbone A-SSL H-SSL Frozen Supervised

MNIST Translation MLP 87.6 ± 0.2 58.2 ± 0.5 83.0 ± 0.8 98.6 ± 0.1
Scale CNN (6× CHW ) 95.2 ± 0.1 87.2 ± 2.4 87.2 ± 0.6 99.3 ± 0.1

CIFAR10 Scale CNN (6× CHW ) 53.6 ± 0.2 37.5 ± 0.1 43.6 ± 0.3 67.9 ± 2.1

Parameters of H-SSL As discussed, The H-SSL framework highlights new parameter choices
such as the base space g0. In Figure 2 (left) we plot the %-change in top-1 accuracy on CIFAR-10 as
we increase the total size of g0 from 1 (akin to DIM(L) losses) to |G| − 1 (akin to SimCLR). We see
a minor increase in performance as we increase the size, but note relative stability, again suggesting
greater unity between A-SSL and H-SSL. In Figure 2 (right), we explore how the traditional notion of
augmentation ‘strength’ can be equated with the ‘topographic distance’ between g1 and g2 and their
associated fiber bundles. Here we approximate topographic distance as euclidean distance between
group elements for simplicity (||g1 − g2||22), where a more correct measure would be computed
using the topology of the group. We see, in alignment with prior work [35], that the strength of
augmentation (and specifically translation distance) is an important parameter for effective self
supervised learning, likely relating to the mutual information between fibers as a function of distance.

Figure 2: Study of the impact of new H-SSL parameters top-1 test accuracy. (Left) Test accuracy
marginally increases as we increase total base space size g0. (Right) Test accuracy is constant or
decreases as we increase the maximum distance between fiber bundles considered positive pairs.

5 Discussion

In this work we have studied the impact of combining augmentation-homomorphic feature extractors
with augmentation-based SSL objectives. In doing so, we have introduced a new framework which
we call Homomorphic-SSL which illustrates an equivalence between previously distinct SSL methods
when the homomorphism constraint is satisfied. Since it is not currently known how to construct neu-
ral networks which are analytically equivariant with respect to all input augmentations used in modern
SSL, this constraint is precisely the greatest current limitation of this framework, and we expand on
this limitation in Appendix A. We therefore propose this work not as an improvment to the state of
the art, but rather as a new perspective on SSL which provides a bridge to previously distant literature.
Specifically, one field of research which appears particularly promising for future work is the integra-
tion of learned homomorphisms [9, 11, 18, 19, 28] with H-SSL. In the H-SSL framework, a learned
homomorphism can be seen as equivalent to a learned augmentation, providing a potential new avenue
for approaching the extremely challenging [3] but fruitful [32] goal of learned image augmentations.

We additionally present this work as an attempt to renew interest in SSL objectives which operate
without multiple inferences of a transformed image, such as Deep InfoMax [16] and Greedy InfoMax
[26], by allowing them to exploit the theoretical foundations developed for multi-view SSL [1, 12, 36–
38, 40]. Although DIM-like methods have to-date not yielded the same performance as their A-SSL
counterparts, we believe the coupling between objective and network architecture is likely to yield
more parallelizable algorithms which are therefore more scalable and biologically plausible [26].
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proprietary.
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Appendix A Limitations

Despite the demonstrated unification of existing methods, and benefits from generalization, we note
that this approach is still significantly limited. Specifically, the equivalence between LA-SSL and
LH-SSL, and benefits afforded by this equivalence, can only be realized if it is possible to analytically
construct a neural network which is equivariant with respect to transformations of interest. Although
the field of equivariant deep learning has made significant progress in recent years, state of the art
techniques are still restricted to E(n) and continuous compact and connected Lie Groups [4, 13, 14, 43].
We believe in this regard, our analysis sheds some light on the success of methods which perform data
augmentation over those which operate directly in feature space in recent literature – it is simply too
challenging with current methods to construct models with structured representations for the diversity
of transformations needed to induce a sufficient set of invariances for linear separability of classes.

In light of this, we believe that our framework specifically suggests a novel path forward via learned
homomorphisms, [9, 11, 18, 19, 28], as mentioned in the Discussion Section 5. Specifically, if new
methods can learn symmetries from the data unsupervised, or minimally supervised, our framework
yields a natural avenue by which existing SSL advances can be extended to feature-space methods.
As a potential interim solution, recent work [2] has additionally shown that it is possible to train
‘hybrid’ models that leverage both A-SSL and H-SSL objectives simultaneously, suggesting that
this limitation may be circumvented by applying H-SSL losses only where beneficial, and otherwise
supplementing with input space augmentation.

Appendix B Experiment Details

Model Architectures All models presented in this paper were built using the convolutional layers
from the SESN [33] library for consistency and comparability (https://github.com/ISosnovik/
sesn). For scale equivariant models, we used the set of 6 scales [1.0, 1.25, 1.33, 1.5, 1.66, 1.75]. To
construct the rotation equivariant backbones, we use only a single scale of [1.0] and augment the
basis set with four 90-degree rotated copies of the basis functions at [0o, 90o, 180o, 270o]. These
rotated copies thus defined the group dimension. This technique of basis or filter-augmentation for
implementing equivariance is known from prior work and has been shown to be equivalent to other
methods of constructing group-equivariant neural networks [25]. For translation models, we perform
no basis-augmentation, and again define the set of scales used in the basis to a single scale [1.0],
thereby leaving only the spatial coordinates of the final feature maps to define the output group.

On MNIST [22], we used a backbone network f composed of three SESN convolutional layers with
# channels (32, 64, 128), kernel sizes (11, 7, 7), effective sizes (11, 3, 3), strides (1, 2, 2), padding
(5, 3, 3), no biases, basis type ‘A’, BatchNorm layers after each convolution, and ReLU activations
after each BatchNorm. The output of this final ReLU was then considered our z for contrastive
learning (with LA−SSL and LH−SSL) and was of shape (128, S ×R, 8, 8) where S was the number
of scales for the experiment (either 1 or 6), and R was the number of rotation angles (either 1 or
4). For experiments where the transformation studied was not translation, we average pool over the
spatial dimensions before applying the projection head h to achieve a consistent dimensionality of
128. For classification, an additional SESN convolutional layer was placed on top with kernel size 7,
effective size 3, stride 2, and no padding, thereby reducing the spatial dimensions to 1, and the total
dimensionality of the input to the final linear classifier to 128.

On CIFAR10 we used a ResNet20 model composed of an initial SESN lifting layer with kernel
size 7, effective size 7, stride 1, padding 3, no bias, basis type ‘A’, and 9 output channels. This
lifted representation was then processed by a following SESN convolutional layer of kernel size 7,
effective size 3, stride 1, padding 3, no bias, basis type ‘A’, and 64 output channels. This initial
layer was followed by a BatchNorm and ReLU before being processed by three ResNet blocks
of output sizes (128, 256, 512) and initial strides of (1, 2, 2). Each ResNet block is composed of
3 SESN Basic blocks as defined here (https://github.com/ISosnovik/sesn/blob/master/
models/stl_ses.py#L19). The output of the third ResNet block was taken as our z for contrastive
learning (again for LA−SSL and LH−SSL) of shape (512, S × R, 7, 7). Again, as for MNIST, for
experiments where the transformation studied was not translation, we average pool over the spatial
dimensions before applying the projection head h to achieve a consistent dimensionality of 512. For
classification, the vector z was first max-pooled along the scale/rotation group-axis (S×R), followed
by a BatchNorm, a ReLU, and average pooling over the remaining 7× 7 spatial dimensions. Finally,
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we apply BatchNorm to this 512-dimensional vector before applying the non-linear projection head
h.

On Tiny ImageNet we use a Resnet20 model which has virtually the same structure as the CIFAR10
model, but instead uses 4 ResNet blocks of output sizes (64, 128, 256, 512) and strides (1, 2, 2,
2). Furthermore, each ResNet block is composed of only 2 BasicBlocks for TIN instead of 3 for
CIFAR10. Overall this results in a z of shape (512, S ×R, 4, 4), and a final vector for classification
of size 512. We note that we do not include Translation results in Table 1 for Tiny ImageNet precisely
because the spatial dimensions of the feature map with this architecture are too small to allow for
effective H-SSL training in the settings we used for other methods.

All models used a detached linear classifier for computing the reported downstream classification
accuracies, while the Supervised baselines used an attached linear layer (implying gradients with
respect to the classification loss back-propagated though the whole network). All models additionally
used an attached non-linear projection head h constructed as an MLP with three linear layers. For
MNIST these layers have of output sizes (128, 128, 128), while for CIFAR10 and TIN they have
sizes (512, 2048, 512). There is a BatchNorm after each layer, and ReLU activations between the
middle layers (not at the last layer).

Training Details For training we use the LARS optimizer with an initial learning rate of 0.1, and a
batch size of 4096 for all models. We use an NCE temperature (τ ) of 0.1, half-precision training,
a learning rate warm-up of 10 epochs, a cosine lr-update schedule, and weight decay of 1× 10−4.
On MNIST we train for 500 epochs and on CIFAR10 and Tiny ImagNet (TIN) we train for 1300
epochs. On average each MNIST run took 1 hour to complete distributed across 8 GPUs, and each
CIFAR10/TIN run took 10 hours to complete distributed across 64 GPUs. In total this amounts to
roughly 85,000 GPU hours.

Empirical Validation For the experiments in Table 1, we use two different methods for data
augmentation, and similarly two different methods for selecting the representations ultimately fed to
the contrastive loss for the A-SSL and H-SSL settings.

For A-SSL we augment the input at the pixel level by: randomly translating the image by up to ±
20% of its height/width (for translation), randomly rotating the image by one of (0o, 90o, 180o, 270o)
(for rotation), or randomly downscaling the image between 0.57 and 1.0 of its original scale. For
S-SSL we use no input augmentations.

For both methods we use only a single fiber, meaning the base size |g0| is 1. For A-SSL, we
randomly select the location g0 for each example, but we use the same g0 between both branches.
For example, in translation, we compare the feature vectors for two translated images at the same
pixel location. Similarly, for scale and rotation, we pick a single scale or rotation element to compare
for both branches. For H-SSL, we randomly select the location g independently for each example
and independently for each branch, effectively mimicing the latent operator.

H-SSL Without Structure In Table 2, we use the same overall model architectures defined above
(3-layer model or ResNet20), but replace the individual layers with non-equivariant counterparts.
Specifically, for the MLP, we replace the convolutional layers with fully connected layers with
outputs (784, 1024, 2048). For the convolutional models (denoted CNN (6×CHW )), we replace the
SESN kernels with fully-parameterized, non-equivariant counterparts, otherwise keeping the output
dimensionality the same (resulting in the 6 × larger output dimension).

Furthermore, for these un-structured representations, in the H-SSL setting, we ‘emulate’ a group
dimension to sample ‘fibers’ from. Specifically, for the MLP we simply reshape the 2048 dimensional
output to (16,128), and select one of the 16 rows at each iterations. For the CNN, we similarly use
the 6 times larger feature space to sample 1

6

th of the elements as if they were scale-equivariant.

Parameters of H-SSL For Figure 2 (left), we select patches of sizes from 1 to |G| − 1 with no
padding. In each setting, we similarly increase the dimensionality of the input layer for the non-linear
projection head h to match the multiplicative increase in the dimension of the input representation
z(g). For the topographic distance experiments (right), we keep a fixed base size of |g0| = 1 and
instead vary the maximum allowed distance between randomly sampled pairs g1 & g2.
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Appendix C Extended Background

Related Work Our work is undoubtedly built upon the the large literature base from the fields
equivariant deep learning and self-supervised learning as outlined in Sections 1 and 2. Beyond this
background, our work is highly related in motivation to a number of studies specifically related to
equivariance in self-supervised learning. Most prior work, however, has focused on the undesired
invariances learned by A-SSL methods [39, 47] and on developing methods by which to avoid this
through learned approximate equivariance [10, 41]. Our work is, to the best of our knowledge, the
first to suggest and validate that the primary reason for the success of feature-space SSL objectives
such as DIM(L) [16] and GIM [26] is due to their exploitation of equivariant backbones.

Group-Convolutional Neural Networks As discussed in Section 2, we assume that the backbones
used in this work are equivariant with respect to input augmentations, and further that they admit
regular representations of those transformations in feature space. In this section we detail how such
group-equivariant convolutional neural networks may be constructed via the group-convolution [8]:
For a discrete group G, we denote the pre-activation output of a G-equivariant convolutional layer
l as zl, with a corresponding input yl. In practice these values are stored in finite arrays with a
feature multiplicity equal to the order of the group in each space. Explicitly, zl ∈ RCout×|Gout|,
and yl ∈ RCin×|Gin| where Gout and Gin are the set of group elements in the output and input
spaces respectively. We use the following shorthand for indexing zl(g) ≡ zl,:,g ∈ RCout and
yl(g) ≡ yl,:,g ∈ RCin , denoting the vector of feature channels at a specific group element (‘fiber’).
Then, the value zl,c(g) ∈ R of a single output at layer l, channel c and element g is

zl,c(g) ≡ [yl ⋆ψl,c](g) =
∑

h∈Gin

Cin∑
i

yl,i(h)ψl,c
i (g−1 · h) , (4)

where ψl,c
i is the filter between the ith input channel (subscript) and the cth output channel (su-

perscript), and is similarly defined (and indexed) over the set of input group elements Gin. We
highlight that the composition g−1 · h = k ∈ Gin is defined by the action of the group and yields
another group element by closure of the group. The representation Γg and can then be defined as
Γg[z

l(h)] = zl(g−1 · h) for all l > 0 when Gl
in = Gl

out = G0
out. From this definition it is straight-

forward to prove equivariance from: [Γg[y
l] ⋆ψl](h) = Γg[y

l ⋆ψl](h) = Γg[z
l](h). Furthermore,

we see that Γg is a ‘regular representation’ of the group, meaning that it acts by permuting features
along the group dimension while leaving feature channels intact. Group equivariant layers can
then be composed with pointwise non-linearities and biases to yield a fully equivariant deep neural
network (e.g. yl+1

i = ReLU(zl + b) where b ∈ RCout is a learned bias shared over the output group
dimensions). For l = 0, y0 = x, the raw input, and typically G0

in = (Z2
HW ,+), the group of all

2D integer translations up to height H and width W . G0
out is then chosen by the practitioner and is

typically a larger group which includes translation as a subgroup, e.g. the roto-translation group, or
the group of scaling & translations.

DIM(L) in H-SSL In this section we outline precisely how the Deep Infomax Local loss DIM(L)
relates to the H-SSL framework proposed in Section 3. Specifically, in Deep InfoMax (DIM(L)) the
same general form of the loss function is applied (often called InfoNCE), but the cosine similarity is
replaced with a log-bilinear model: sim(a, b) = exp

(
aTWb

)
. Additionally, and most importantly

to this work, rather than computing the similarity between two differently augmented versions on an
image, the loss is applied between different spatial locations of the representation for a single image,
again with a head h applied afterwards. If we let g ∼ Z2

HW refer to sampling a contiguous patch
from the spatial coordinates of a convolutional feature map, we can write this general Feature-Space
InfoMax loss (LFSIM) as:

LFSIM(X) = − 1

N

N∑
i

Eg1,g2∼Z2
HW

log
exp

(
sim

(
h(zi(g1)), h(zi(g2))

)
/τ

)
∑N

k ̸=i

∑2
j,l exp

(
sim

(
h(zi(gj)), h(zk(gl))

)
/τ

) . (5)

To show that this is equivalent to our LH-SSL, we see that the randomly sampled spatial patches g1, g2
can equivalently be described as a single base patch g0 shifted by randomly sampled translations g1
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and g2. Explicitly,

LFSIM(X) = − 1

N

N∑
i

Eg1,g2∼G log
exp

(
sim

(
h(zi(g

−1
1 · g0)), h(zi(g

−1
2 · g0))

)
/τ

)
∑N

k ̸=i

∑2
j,l exp

(
sim

(
h(zi(g

−1
j · g0)), h(zk(g

−1
l · g0))

)
/τ

) . (6)

Thus, we see that Feature-Space InfoMax losses are included in our framework, and can therefore be
seen to be equivalent to input-augmentation based losses with an equivariant backbone, where the
set of augmentations is limited to the translation group G ≡ Z2

HW , and the g0 base size is a single
spatial coordinate (|g0| = 1) rather than the size of the full representation (|g0| = |G|).

Appendix D Broader Impact

This work is primarily related to understanding and improving self-supervised learning – a training
method for deep neural networks which is able to leverage large amounts of unlabeled data from the
internet, making it one of the most used methods for state of the art image and text generative models
today [29, 30]. Such models have significant broader impact and potential negative consequences
which are beyond the scope of this work. We refer readers to discussions of those paper for further
information. Specifically, this work aims to improve such SSL techniques, thereby inheriting the
broader impact of these models.
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