
On the Role of Nonlinearity in Training Dynamics of
Contrastive Learning on One-layer Network

Yuandong Tian
Meta AI (FAIR)

yuandong@meta.com

Abstract

While the empirical success of self-supervised learning (SSL) heavily relies on the
usage of deep nonlinear models, existing theoretical works on SSL understanding
still focus on linear ones. In this paper, we study the role of nonlinearity in the
training dynamics of contrastive learning (CL) on 1-layer nonlinear networks with
homogeneous activation h(x) = h′(x)x, by extending recent α-CL framework [29]
and linking it to kernels [26]. We find that the presence of nonlinearity can lead to
many local optima even in 1-layer setting, each corresponding to certain patterns
from the data distribution, while with linear activation, only one major pattern can
be learned. This suggests that models with lots of parameters can be regarded as a
brute-force way to find these local optima induced by nonlinearity.

1 Introduction
Over the last few years, deep models have demonstrated impressive empirical performance in many
disciplines, not only in supervised but also in recent self-supervised setting (SSL), in which models
are trained with a surrogate loss (e.g., [8; 17; 6; 4; 16; 15; 7]) without labels.

From the theoretical perspective, understanding the roles of nonlinearity in deep neural networks
is one critical part of understanding how modern deep models work. Currently, most works focus
on linear variants of deep models [19; 2; 22; 21; 32; 33]. In this paper, we study the critical role of
nonlinearity in the training dynamics of contrastive learning (CL). Specifically, by extending the
recent α-CL framework [29] and linking it to kernels [26] in large batchsize limit, we show that even
with 1-layer nonlinear networks, nonlinearity plays a critical role by creating many local optima. As
a result, the more nonlinear nodes in 1-layer networks with different initialization, the more local
optima are likely to be collected as learned patterns in the trained weights, and the richer the resulting
representation becomes. Moreover, popular loss functions like InfoNCE tends to have more local
optima than quadratic ones. In contrast, CL with linear network is PCA under certain conditions [29],
and only the most salient pattern (i.e., the maximal eigenvector of the data covariance matrix) is
learned, while other less salient ones are discarded, regardless of the number of hidden nodes.

Related works. Previous works [34; 23; 30; 28; 1] that analyze training dynamics mostly focus on
supervised learning. Different from [27; 20] that analyzes feature learning process in linear models of
CL, we focus on the critical role played by nonlinearity. Our analysis is also more general than [23]
that assumes symmetric weight structure and data generated sparse linear models.

2 Problem Setup
Notation. In this section, we introduce our problem setup of contrastive learning. Let x0 ∼ pD(·) be
a sample drawn from the dataset, and x ∼ paug(·|x0) be a augmentation view of the sample x0. Here
both x0 and x are random variables. Let f = f(x;θ) be the output of a deep neural network that
maps input x into some representation space with parameter θ to be optimized. Given a batch of size
N , x0[i] represent i-th sample (i.e., instantiation) of corresponding random variables, and x[i] and
x[i′] are two of its augmented views. Here x[·] has 2N samples, 1 ≤ i ≤ N and N + 1 ≤ i′ ≤ 2N .

NeurIPS 2022 Workshop: Self-Supervised Learning - Theory and Practice.

Contrastive learning (CL) aims to learn the parameter θ so that the representation f are distinct from
each other: we want to maximize squared distance d2ij := ∥f [i]− f [j]∥22/2 between samples i ̸= j

and minimize d2i := ∥f [i]− f [i′]∥22/2 between two views x[i] and x[i′] from the same sample x0[i].

Many objectives in contrastive learning have been proposed to combine these two goals into one. For
example, InfoNCE [25] minimizes the following (here τ is the temperature):

Lnce :=−τ
N∑
i=1

log
exp(−d2i /τ)

ϵ exp(−d2i /τ)+
∑

j ̸=i exp(−d2ij/τ)
(1)

In this paper, we follow α-CL [29] that proposes a general CL framework that covers a broad family
of existing CL losses. α-CL maximizes an energy function Eα(θ) using gradient ascent:

θt+1 = θt + η∇θEsg(α(θt))(θ), (2)

where η is the learning rate, sg(·) is the stop gradient operator, the energy function Eα(θ) :=
trCα[f ,f] and Cα[·, ·] is the contrastive covariance [29; 21] 1:

Cα[a, b] :=
1

2N2

N∑
i,j=1

αij

[
(a[i]− a[j])(b[i]− b[j])⊤ − (a[i]− a[i′])(b[i]− b[i′])⊤

]
(3)

One important quantity is the pairwise importance α(θ) = [αij(θ)]
N
i,j=1, which are N2 weights

on pairwise pairs of N samples in a batch. Intuitively, these weights make the training focus more
on hard negative pairs, i.e., distinctive sample pairs that are similar in the representation space but
are supposed to be separated away. Many existing CL losses (InfoNCE, triplet loss, etc) are special
cases of α-CL [29] by choosing different α(θ), e.g., quadratic loss corresponds to αij := const and
InfoNCE (with ϵ = 0) corresponds to αij := exp(−d2ij/τ)/

∑
j ̸=i exp(−d2ij/τ).

In this paper, we mainly focus on how the nonlinearity affects representation learning when α is fixed,
i.e., the behavior of the gradient ascent update (Eqn. 2) of the objective maxθ trCsg(α)[f(x;θ)],
where f is a nonlinear neural network with parameters θ. Note that in Eqn. 2, the subscript sg(α)
means that while the value of α may depend on current network parameters θ, when running
optimization we treat α as an independent variable (no backpropagate gradient through α).

For brevity Cα[x] := Cα[x,x]. Since Cα is an abstract mathematical object with complicated
definitions, as the first contribution, we give its connection to regular variance V[·], if the pairwise
importance α has certain kernel structures [12; 26]:
Definition 1 (Kernel structure of pairwise importance α). There exists a (kernel) function K(·, ·)
so that αij = K(x0[i],x0[j]). Here K satisfies the decomposition K(a, b) = ϕ⊤(a)ϕ(b) =∑+∞

l=0 ϕl(a)ϕl(b) with non-negative high-dimensional mapping ϕ(·) = [ϕl(·)] ≥ 0.
Definition 2 (Adjusted PDF p̃l(x)). For l-th component ϕl of the mapping ϕ, we define the adjusted
density p̃l(x;α) :=

1
zl(α)

ϕl(x;α)pD(x), where zl(α) :=
∫
ϕl(x)pD(x)dx ≥ 0 is the normalizer.

Obviously αij ≡ 1 (uniform α corresponding to quadratic loss) satisfies Def. 1 with 1D mapping
ϕ ≡ 1. Here we show a non-trivial case, Gaussian α, whose normalized version leads to InfoNCE:
Lemma 1 (Gaussian α). For any function g(·) that is bounded below, if we use αij :=
exp(−∥g(x0[i])− g(x0[j])∥22/2τ) as the pairwise importance, then it has kernel structure (Def. 1).

Note that Gaussian α computes N2 pairwise distances using un-augmented samples x0, while
InfoNCE (and most of CL losses) uses augmented views x and x′ and normalizes along one
dimension to yield asymmetric αij . Here Gaussian α is a convenient tool for analysis. We now show
Cα is a summation of regular variances but with different probability of data, adjusted by the pairwise
importance α that has kernel structures. Please check Appendix A.1 for detailed proofs.
Lemma 2 (Relationship between Contrastive Covariance and Variance in large batch size). If α
satisfies Def. 1, then for any function g(·), Cα[g(x)] is asymptotically PSD when N → +∞:

Cα[g(x)]→
∑
l

z2l Vx0∼p̃l(·;α)
[
Ex∼paug(·|x0)[g(x)|x0]

]
(4)

Corollary 1 (No augmentation and large batchsize). With the condition of Lemma 2, if we further
assume there is no augmentation (i.e., paug(x|x0) = δ(x− x0)), then Cα[g]→

∑
l z

2
l Vp̃l

[g].
1Compared to [29], our Cα definition has an additional constant term 1/2N2 to simply the notation.

2

ℂ![𝒙]

𝜙!

ℂ![%𝒙𝒘]

𝜙!(𝒘)

(b) Linear (c) Non-linear(a) 1-layer network

𝒙

𝒘

ℎ(𝒘"𝒙)

U U

0 1 2 3
#Iteration

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

Ite
ra

tio
n

di
sc

re
pa

nc
y

Power Iteration

Figure 1: Left: Summary of Sec. 3. (a) We analyze the dynamics of one-layer network h(w⊤x) under CL loss
(Eqn. 2). (b) With linear activation h(x) = x, then there is only one fixed point (PCA direction). (c) Non-linear
activation h(x) creates many critical points and a proper choice of pairwise importance α can make them
local optima, enabling learning of diverse features. Right: Convergence patterns (iteration t versus iteration
discrepancy ∥w(t+1)−w(t)∥2) of Power Iteration (Eqn. 94) in latent summation models, when ∥U⊤U − I∥2
is small but non-zero. In this case, Theorem 3 tells there still exist local optima close to each um.

3 One-layer case
Now let us first consider 1-layer network with K hidden nodes: f(x;θ) = h(Wx), where W =
[w1, . . . ,wK]⊤ ∈ RK×d and h(x) is the activation. The k-th row of W is a weight wk and its output
is fk := h(w⊤

k x). In this case, trCα[f] =
∑K

k=1 Cα[fk]. For convenience, we consider per-filter
normalization ∥wk∥2 = 1, which can be achieved by imposing BatchNorm [18] at each node k [29].
In this case, optimization with each filter wk can be considered separately:

max
∥wk∥2=1,1≤k≤K

trCα[f] =

K∑
k=1

max
∥wk∥2=1

Cα[h(w
⊤
k x)] (5)

Now let’s think about, which parameters wk maximizes the summation? For the linear case, since
Cα[h(w

⊤x)] = Cα[w
⊤x] = w⊤Cα[x]w, all wk converge to the maximal eigenvector of Cα[x] (a

constant matrix), regardless of how they are initialized and what the distribution of x is.

Therefore, the linear case will only learn the most salient single pattern. All other patterns will be
neglected due to the (overly-smooth) landscape of the objective function. This is the winner-take-all
effect and will miss many patterns in the data.

In contrast, nonlinearity can change the landscape and create more local optima in Cα[h(w
⊤x)],

each capturing one pattern. In this paper, we consider a general category of nonlinearity activations:
Assumption 1 (Homogeneity [9]/Reversibility [31]). The activation satisfies h(x) = h′(x)x.

Many activations satisfy this assumption, including linear, ReLU, LeakyReLU and monomial activa-
tions like h(x) = xp (with an additional global constant). In this case we have:

h(w⊤x) = w⊤h′(w⊤x)x = w⊤x̃w, (6)

where x̃w := x · h′(w⊤x) is the input data after nonlinear gating. When there is no ambiguity, we
just write x̃w as x̃ and omit the weight superscript. One property is Cα[h(w

⊤x)] = w⊤Cα[x̃
w]w.

Now let A(w) := Cα[x̃
w]. With the constraint ∥w∥2 = 1, the learning dynamics is:

Lemma 3 (Training dynamics of 1-layer network with homogeneous activation in contrastive learn-
ing). The gradient dynamics of Eqn. 5 is (note that α is treated as an independent fixed variable):

ẇk = P⊥
wk

A(wk)wk (7)

Here P⊥
wk

:= I −wkw
⊤
k projects a vector into the complementary subspace spanned by wk.

See Appendix B.3 for derivations. Now the question is that: what is the critical point of the dynamics
and whether they are attractive (i.e., local optima). In linear case, the maximal eigenvector is the one
fixed point; in nonlinear case, we are looking for locally maximal eigenvectors, called LME.
Definition 3 (Locally maximal eigenvector (LME)). w∗ is a locally maximal eigenvector of A(w), if
A(w∗)w∗ = λ∗w∗, where λ∗ = λmax(A(w∗)) is the distinct maximal eigenvalue of A(w∗).

It is easy to see each LME is a critical point: P⊥
w∗

A(w∗)w∗ = λP⊥
w∗

w∗ = 0. Appendix B.1 gives
two concrete examples that show Eqn. 7 has multiple critical points with ReLU activations.

3

3.1 Relate LMEs to Local Optima

Once LMEs are identified, the next step is to check whether they are attractive, or stable critical
points, or local optima. That is, whether the weights converge into them and stay there during training.
For this, some notations are introduced below.

Notations. Let λi(w) be the i-th largest eigenvalue of A(w), and ϕi(w) the corresponding unit
eigenvector, λgap(w) := λ1(w) − λ2(w) the eigenvalue gap. Let ρ(w) be the local roughness
measure: ρ(w) is the smallest scalar to satisfy ∥(A(v)−A(w))w∥2 ≤ ρ(w)∥v−w∥2+O(∥v−w∥22)
in a local neighborhood of w. The following theorem gives a sufficient condition for stability of w∗:

Theorem 1 (Stability of w∗). If w∗ is a LME of A(w∗) and λgap(w∗) > ρ(w∗), then w∗ is stable.

This shows that lowering roughness measure ρ(w∗) at critical point w∗ could lead to more local
optima and more patterns to be learned. To characterize such a behavior, we bound ρ(w∗):

Theorem 2 (Bound of local roughness ρ(w) in ReLU setting). If input ∥x∥2 ≤ C0 is bounded, α
has kernel structure (Def. 1) and batchsize N → +∞, then ρ(w∗) ≤ C3

0vol(C0)
π r(w∗, α), where

r(w, α) :=
∑+∞

l=0 z2l (α)maxw⊤x=0 p̃l(x;α).

From Thm. 2, the bound critically depends on r(α) that contains the adjusted density p̃l(x;α) (Def. 2)
at the plane w⊤

∗ x = 0. This is because a local perturbation of w∗ leads to data inclusion/exclusion
close to the plane, and thus changes ρ(w∗). Different α leads to different p̃l(x;α), and thus different
upper bound of ρ(w∗), creating fewer or more local optima (i.e., patterns) to learn. Here is an
example that shows Gaussian α (see Lemma 1), whose normalized version is used in InfoNCE, can
lead to more local optima than uniform α, by lowering roughness bound characterized by r(w∗, α):

Corollary 2 (Effect of different α). For uniform αu (αij := 1) and 1-D Gaussian αg (αij :=
exp(−∥h(w⊤x0[i])−h(w⊤x0[j])∥22/2τ)), we have r(w∗, αg) = z0(αg)r(w∗, αu) with z0(αg) :=∫
exp(−h2(w⊤

∗ x)/2τ)pD(x)dx ≤ 1. As a result, z0(αg)≪ 1 leads to r(w∗, αg)≪ r(w∗, αu).

In practice, z0(αg) can be exponentially small (e.g., when most data appear on the positive side of the
weight w∗) and the roughness with Gaussian α can be much smaller than that of uniform α, which is
presumably the reason why InfoNCE outperforms quadratic CL loss [29].

Possible relationship to empirical observations. Since there exist many local optima in the
dynamics (Eqn. 7), even if objective involving wk are identical (Eqn. 5), each wk may still converge
to different local optima due to initialization. We suspect that this can be a tentative explanation
why larger model performs better: more local optima are collected and some can be useful. Other
empirical observations like lottery ticket hypothesis (LTH) [11; 24; 30; 35], recently also verified in
CL [5], may also be explained similarly. In LTH, first a large network is trained and pruned to be
a small subnetwork S, then retraining S using its original initialization yields comparable or even
better performance, while retraining S with a different initialization performs much worse. For LTH,
our explanation is that S contains weights that are initialized luckily, i.e., close to useful local optima
and converge to them during training. We leave a thorough empirical study to justify this line of
thought for future work.

Given this intuition, it is tempting to study the probability of finding a specific local minimum, with
randomly initialized weights. For this, we need to study the volume of attractive basin defined
as Basin(w∗) := {w : w(0) = w, limt→+∞ w(t) = w∗} for each local optimum w∗ of Eqn. 7.
While Sec. B.5 in the Appendix gives hints, we leave this very challenging problem for future work.

References
[1] Zeyuan Allen-Zhu and Yuanzhi Li. Backward feature correction: How deep learning performs

deep learning. arXiv preprint arXiv:2001.04413, 2020.

[2] Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. A convergence analysis of
gradient descent for deep linear neural networks. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=SkMQg3C5K7.

[3] Mary L Boas and Philip Peters. Mathematical methods in the physical sciences, 1984.

4

https://openreview.net/forum?id=SkMQg3C5K7

[4] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. In NeurIPS, 2020.

[5] Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin, and
Zhangyang Wang. The lottery tickets hypothesis for supervised and self-supervised pre-training
in computer vision models. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 16306–16316, 2021.

[6] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In International conference on machine
learning, pp. 1597–1607. PMLR, 2020.

[7] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In CVPR,
2020.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[9] Simon S Du, Wei Hu, and Jason D Lee. Algorithmic regularization in learning deep ho-
mogeneous models: Layers are automatically balanced. arXiv preprint arXiv:1806.00900,
2018.

[10] Francisco M Fernández. Introduction to perturbation theory in quantum mechanics. CRC press,
2000.

[11] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=rJl-b3RcF7.

[12] Benyamin Ghojogh, Ali Ghodsi, Fakhri Karray, and Mark Crowley. Reproducing kernel hilbert
space, mercer’s theorem, eigenfunctions, nystr\” om method, and use of kernels in machine
learning: Tutorial and survey. arXiv preprint arXiv:2106.08443, 2021.

[13] Mike B Giles. Collected matrix derivative results for forward and reverse mode algorithmic
differentiation. In Advances in Automatic Differentiation, pp. 35–44. Springer, 2008.

[14] Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.

[15] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi
Azar, et al. Bootstrap your own latent: A new approach to self-supervised learning. NeurIPS,
2020.

[16] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729–9738, 2020.

[17] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. arXiv preprint arXiv:2111.06377, 2021.

[18] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
PMLR, 2015.

[19] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural information processing systems, 31,
2018.

[20] Wenlong Ji, Zhun Deng, Ryumei Nakada, James Zou, and Linjun Zhang. The power of contrast
for feature learning: A theoretical analysis. arXiv preprint arXiv:2110.02473, 2021.

[21] Li Jing, Pascal Vincent, Yann LeCun, and Yuandong Tian. Understanding dimensional collapse
in contrastive self-supervised learning. ICLR, 2022.

5

https://openreview.net/forum?id=rJl-b3RcF7

[22] Kenji Kawaguchi. Deep learning without poor local minima. NeurIPS, 2016.

[23] Yuanzhi Li and Yang Yuan. Convergence analysis of two-layer neural networks with relu
activation. Advances in neural information processing systems, 30, 2017.

[24] Ari Morcos, Haonan Yu, Michela Paganini, and Yuandong Tian. One ticket to win them all:
generalizing lottery ticket initializations across datasets and optimizers. Advances in neural
information processing systems, 32, 2019.

[25] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[26] Vern I Paulsen and Mrinal Raghupathi. An introduction to the theory of reproducing kernel
Hilbert spaces, volume 152. Cambridge university press, 2016.

[27] Nikunj Saunshi, Jordan Ash, Surbhi Goel, Dipendra Misra, Cyril Zhang, Sanjeev Arora, Sham
Kakade, and Akshay Krishnamurthy. Understanding contrastive learning requires incorporating
inductive biases. arXiv preprint arXiv:2202.14037, 2022.

[28] Yuandong Tian. An analytical formula of population gradient for two-layered relu network
and its applications in convergence and critical point analysis. In International Conference on
Machine Learning, pp. 3404–3413. PMLR, 2017.

[29] Yuandong Tian. Understanding deep contrastive learning via coordinate-wise optimization.
NeurIPS, 2022.

[30] Yuandong Tian, Tina Jiang, Qucheng Gong, and Ari Morcos. Luck matters: Understanding
training dynamics of deep relu networks. arXiv preprint arXiv:1905.13405, 2019.

[31] Yuandong Tian, Lantao Yu, Xinlei Chen, and Surya Ganguli. Understanding self-supervised
learning with dual deep networks. arXiv preprint arXiv:2010.00578, 2020.

[32] Yuandong Tian, Xinlei Chen, and Surya Ganguli. Understanding self-supervised learning
dynamics without contrastive pairs. In International Conference on Machine Learning, pp.
10268–10278. PMLR, 2021.

[33] Xiang Wang, Xinlei Chen, Simon S Du, and Yuandong Tian. Towards demystifying repre-
sentation learning with non-contrastive self-supervision. arXiv preprint arXiv:2110.04947,
2021.

[34] Charles L Wilson, James L Blue, and Omid M Omidvar. Training dynamics and neural network
performance. Neural Networks, 10(5):907–923, 1997.

[35] Haonan Yu, Sergey Edunov, Yuandong Tian, and Ari S. Morcos. Playing the lottery with
rewards and multiple languages: lottery tickets in rl and nlp. In International Conference on
Learning Representations, 2020. URL https://openreview.net/forum?id=S1xnXRVFwH.

6

https://openreview.net/forum?id=S1xnXRVFwH

A Proofs

A.1 Problem Setup (Sec. 2)

Lemma 1 (Gaussian α). For any function g(·) that is bounded below, if we use αij :=
exp(−∥g(x0[i])− g(x0[j])∥22/2τ) as the pairwise importance, then it has kernel structure (Def. 1).

Proof. Since g(·) is bounded below, there exists a vector v so that each component of g(x)− v is
always nonnegative for any x. Let y[i] := g(x0[i])− v ∈ Rd, then y[i] ≥ 0 and we have:

αij = exp

(
−∥y[i]− y[j]∥22

2τ

)
(8)

= exp

(
−∥y[i]∥

2
2

2τ

)
exp

(
−∥y[j]∥

2
2

2τ

)
exp

(
y⊤[i]y[j]

τ

)
(9)

And using Taylor expansion, we have

exp

(
y⊤[i]y[j]

τ

)
= 1 +

y⊤[i]y[j]

τ
+

1

2

(
y⊤[i]y[j]

τ

)2

+ . . .+
1

k!

(
y⊤[i]y[j]

τ

)k

+ . . . (10)

Let

ϕ̃(y) :=

1
τ−1/2y

1√
2!
AllChoose(τ−1/2y, 2)

. . .
1√
k!
AllChoose(τ−1/2y, k)

. . .

 ≥ 0 (11)

be an infinite dimensional vector, where AllChoose(y, k) is a dk-dimensional column vector that
enumerates all possible dk products yi1yi2 . . . yik , where 1 ≤ ik ≤ d and yi is the i-th component of
y. Then it is clear that exp(y⊤[i]y[j]/τ) = ϕ̃⊤(y[i])ϕ̃(y[j]) and thus

αij = ϕ⊤(x0[i])ϕ(x0[j]) =

+∞∑
l=0

ϕl(x0[i])ϕl(x0[j]) (12)

which satisfies Def. 1. Here

ϕ(x) := exp

(
−∥y∥

2
2

2τ

)
ϕ̃(y) = exp

(
−∥g(x)− v∥22

2τ

)
ϕ̃(g(x)− v) (13)

is the infinite dimensional feature mapping for input x, and ϕl(x) is its l-th component.

Lemma 2 (Relationship between Contrastive Covariance and Variance in large batch size). If α
satisfies Def. 1, then for any function g(·), Cα[g(x)] is asymptotically PSD when N → +∞:

Cα[g(x)]→
∑
l

z2l Vx0∼p̃l(·;α)
[
Ex∼paug(·|x0)[g(x)|x0]

]
(4)

Proof. First let

Cinter
α [a, b] :=

1

2N2

N∑
i=1

∑
j ̸=i

αij(a[i]− a[j])(b[i]− b[j])⊤ (14)

Cintra
α [a, b] :=

1

2N

N∑
i=1

 1

N

∑
j ̸=i

αij

 (a[i]− a[i′])(b[i]− b[i′])⊤ (15)

and Cinter
α [a] := Cinter

α [a,a], Cintra
α [a] := Cinter

α [a,a]. Then we have

Cα[g] = Cinter
α [g]− Cintra

α [g]. (16)

7

With the condition, for the first term Cinter
α [g], we have

Cinter
α [g] =

1

2N2

∑
ij

K(x0[i],x0[j])(g(x[i])− g(x[j]))(g(x[i])− g(x[j]))⊤ (17)

When N → +∞, we have:

Cinter
α [g] → 1

2

∫
K(x0,y0)(g(x)− g(y))(g(x)− g(y))⊤P(x,x0)P(y,y0)dxdydx0dy0

We integrate over x0 and y0 first:∫
(g(x)− g(y))(g(x)− g(y))⊤P(x|x0)P(y|y0)dxdy (18)

= E·|x0
[gg⊤] + E·|y0

[gg⊤]− E·|x0
[g]E·|y0

[g⊤]− E·|y0
[g]E·|x0

[g⊤] (19)
We now compute the four terms separately. With the condition that K(x0,y0) =

∑
l ϕl(x0)ϕl(y0),

and the definition of adjusted probability p̃l(x) :=
1
zl
ϕl(x)P(x) where zl :=

∫
ϕl(x)P(x)dx, for

the first term, we have: ∫
ϕl(x0)ϕl(y0)E·|x0

[gg⊤]P(x0)P(y0)dx0dy0

= z2l

∫
E·|x0

[gg⊤]p̃l(x0)dx0 (20)

= z2l Ex0∼p̃l
E·|x0

[gg⊤] (21)
So we have:

Cinter
α [g] →

∑
l

z2l
(
Ex0∼p̃l

E·|x0
[gg⊤]− Ex0∼p̃l

E·|x0
[g]Ex0∼p̃l

E·|x0
[g⊤]

)
(22)

=
∑
l

z2l Vx0∼p̃l,x∼paug(·|x0)[g] (23)

On the other hand, for Cintra
α [g], when N → +∞, we have:

1

N

∑
j ̸=i

αij =
1

N

∑
j ̸=i

K(x0[i],x0[j])→
∫
K(x0,y0)P(y0)dy0 (24)

=
∑
l

ϕl(x0)

∫
ϕl(y0)P(y0)dy0 =

∑
l

zlϕl(x0) (25)

Therefore, we have:

Cintra
α [g]→ 1

2

∑
l

zl

∫
ϕl(x0)(g(x)− g(x′))(g(x)− g(x′))⊤P(x,x′|x0)P(x0)dxdx

′dx0 (26)

Similarly, ∫
(g(x)− g(x′))(g(x)− g(x′))⊤P(x,x′|x0)dxdx

′ (27)

= 2

∫
g(x)g⊤(x)P(x|x0)dx− 2

∫
g(x)P(x|x0)dx

∫
g⊤(x′)P(x′|x0)dx

′ (28)

= 2Ex∼paug(·|x0)[gg
⊤]− 2Ex∼paug(·|x0)[g]Ex∼paug(·|x0)[g

⊤] (29)

= 2Vx∼paug(·|x0)[g] (30)
So we have:

Cintra
α [g] → 1

2

∑
l

zl

∫
ϕl(x0)2Vx∼paug(·|x0)[g]P(x0)dx0 (31)

=
∑
l

z2l Ex0∼p̃l
Vx∼paug(·|x0)[g] (32)

Using the law of total variation, finally we have:

Cα[g]→
∑
l

z2l Vx0∼p̃l
Ex∼paug(·|x0)[g] (33)

8

B One-layer model (Sec. 3)

B.1 Computation of the two example models

To make the examples simple and clear, we assume the condition of Corollary 1 (no augmentation
and large batchsize), and let αij ≡ 1. Notice that x̃w is a deterministic function of x, therefore
A(w) := Cα[x̃

w] = V[x̃w].

We use ReLU activation h(x) = max(x, 0). Note that we consider h′(0) = 0. Therefore, for any
sample x, if w⊤x = 0, then we don’t consider it to be included in the active region of ReLU, i.e.,
x̃w = x · h′(w⊤x) = 0.

Let U = [u1, . . . ,uM] be orthonormal bases (u⊤
mum′ = I(m = m′)). Here are two examples:

Latent categorical model. Suppose y is a categorical random variable taking M possible values,
P[x|y = m] = δ(x− um). Then we have (see Sec. B.2 for detailed steps):

A(w)
∣∣
w=um

:= Cα[x̃
w] = V[x̃w] = P[y = m](1− P[y = m])umu⊤

m (34)

Now it is clear that w = um is an LME for any m.

Latent summation model. Suppose there is a latent variable y so that x = Uy, where
y := [y1, y2, . . . , yM]. Each ym is a standardized Bernoulli random variable: E[ym] = 0

and E[y2m] = 1. This means that ym = y+m :=
√
(1− qm)/qm with probability qm and

ym = y−m := −
√
qm/(1− qm) with probability 1 − qm. For m1 ̸= m2, ym1

and ym2
are in-

dependent. Then we have:

A(w)
∣∣
w=um

:= Cα[x̃
w] = V [x̃] = (1− qm)2umu⊤

m + qm(I − umu⊤
m) (35)

which has a maximal and distinct eigenvector of um with a unique eigenvalue (1 − qm)2, when
qm < 1

2 (3−
√
5) ≈ 0.382. Therefore, different w leads to different LMEs.

In both cases, the presence of ReLU removes the “redundant energy” so that A(w) can focus on
specific directions, creating multiple LMEs that correspond to multiple learnable patterns. The two
examples can be computed analytically due to our specific choices on nonlinearity h and α.

B.2 Detailed computation of the two examples

Let z be a hidden binary variable and we could compute A(w) (here p0 := P[z = 0] and p1 :=
P[z = 1]):

V[x̃w] = Vz[E[x̃w|z]] + Ez[V[x̃w|z]] = p0p1∆(w)∆⊤(w) + p0Σ0(w) + p1Σ1(w) (36)

where ∆(w) := E[x̃|z = 1]− E[x̃|z = 0] and Σz(w) := V[x̃|z].
Latent categorical model. If w = um, let z := I(y = m). This leads to Σ1(um) = Σ0(um) = 0
and ∆(um) = um. Therefore, we have:

A(w)
∣∣
w=um

:= Cα[x̃
w] = V[x̃w] = P[y = m] (1− P[y = m])umu⊤

m (37)

Latent summation model. If w = um, first notice that due to orthogonal constraints we have
w⊤x =

∑
m′ ym′u⊤

m′w = ym. Let z := I(ym > 0), then we can compute ∆(um) = y+mum,
Σ1(um) = I − umu⊤

m and Σ0(um) = 0. Therefore, we have:

A(w)
∣∣
w=um

:= Cα[x̃
w] = V [x̃] = (1− qm)2umu⊤

m + qm(I − umu⊤
m) (38)

B.3 Derivation of training dynamics

Lemma 3 (Training dynamics of 1-layer network with homogeneous activation in contrastive learn-
ing). The gradient dynamics of Eqn. 5 is (note that α is treated as an independent fixed variable):

ẇk = P⊥
wk

A(wk)wk (7)

Here P⊥
wk

:= I −wkw
⊤
k projects a vector into the complementary subspace spanned by wk.

9

Proof. First of all, it is clear that from Eqn. 5, each wk evolves independently. Therefore, we omit
the subscript k and derive the dynamics of one node w.

To compute the training dynamics, we only need to compute the differential of Cα[h(w
⊤
k x)]. We use

matrix differential form [13] to make the derivation easier to understand.

Let J(w) := 1
2Cα[h(w

⊤x)] = 1
2Cα[h(w

⊤x), h(w⊤x)] be the objective function to be maximized.
Using the fact that

• Cα[x,y] is a bilinear form (linear w.r.t x and y) given fixed α,

• for any vector a and b, we have a⊤Cα[x,y]b = Cα[a
⊤x, b⊤y],

• for scalar x and y, Cα[x, y] = Cα[y, x],

and by the product rule d(x · y) = dx · y + x · dy, we have:

dJ =
1

2
Cα[h(w

⊤x), h′(w⊤x)dw⊤x] +
1

2
Cα[h

′(w⊤x)dw⊤x, h(w⊤x)]

= Cα[h(w
⊤x), h′(w⊤x)x]dw (39)

Now use the homogeneous condition (Assumption 1) for activation h: h(x) = h′(x)x, which gives
h(w⊤x) = h′(w⊤x)w⊤x, therefore, we have:

dJ = w⊤Cα[h
′(w⊤x)x, h′(w⊤x)x]dw = w⊤A(w)dw (40)

where A(w) := Cα[h
′(w⊤x)x, h′(w⊤x)x] = Cα[x̃

w, x̃w]. Therefore, by checking the coefficient
associated with the differential form dw, we know ∂J

∂w = A(w)w. By gradient ascent, we have ẇ =

A(w)w. Since w has the additional constraint ∥w∥2 = 1, the final dynamics is ẇ = P⊥
wA(w)w

where P⊥
w := I −ww⊤ is a projection matrix that projects a vector into the orthogonal complement

subspace of the subspace spanned by w.

Remarks. Note that an alternative route is to use homogeneous condition first: Cα[h(w
⊤x)] =

w⊤A(x)w, then taking the differential. This involves an additional term 1
2w

⊤(dA)w. In the
following we will show it is zero. For this we first compute dA:

dA = dCα[h
′(w⊤x)] (41)

= Cα[h
′′(w⊤x)(dw⊤x)x, h′(w⊤x)x] + Cα[h

′(w⊤x)x, h′′(w⊤x)(dw⊤x)x] (42)

Therefore, since a⊤Cα[x,y]b = Cα[a
⊤x, b⊤y], we have:

w⊤(dA)w = Cα[(dw
⊤x)h′′(w⊤x)w⊤x, h(w⊤x)] + Cα[h(w

⊤x), h′′(w⊤x)(dw⊤x)w⊤x]

= 2Cα[(dw
⊤x)h′′(w⊤x)w⊤x, h(w⊤x)] (43)

Note that we now see the term h′′(w⊤x)w⊤x. For ReLU activation, its second derivative h′′(x) =
δ(x), where δ(x) is Direct delta function [3]. From the property of delta function, we have xh′′(x) =
xδ(x) = 0 even evaluated at x = 0. Therefore, h′′(w⊤x)w⊤x = 0 and w⊤(dA)w = 0. This is
similar for LeakyReLU as well.

B.4 Local stability

Theorem 1 (Stability of w∗). If w∗ is a LME of A(w∗) and λgap(w∗) > ρ(w∗), then w∗ is stable.

Proof. For any unit direction ∥u∥2 = 1 so that u⊤w∗ = 0, consider the perturbation v =√
1− ϵ2w∗ + ϵu. Since ∥w∗∥2 = 1 we have ∥v∥2 = 1.

Now let’s compute P⊥
v A(v)v. First, we have:

P⊥
v = I − vv⊤ = I −

(√
1− ϵ2w∗ + ϵu

)(√
1− ϵ2w∗ + ϵu

)⊤
(44)

= I −w∗w
⊤
∗ − ϵ(uw⊤

∗ +w∗u
⊤) +O(ϵ2) (45)

= P⊥
w∗
− ϵ(uw⊤

∗ +w∗u
⊤) +O(ϵ2) (46)

10

So we have:

P⊥
v A(w∗)v = P⊥

w∗
A(w∗)v − ϵ(uw⊤

∗ +w∗u
⊤)A(w∗)v +O(ϵ2) (47)

= P⊥
w∗

A(w∗)ϵu− ϵλ∗u+O(ϵ2) (48)

= P⊥
w∗

(A(w∗)− λ∗I)ϵu+O(ϵ2) (49)

The previous derivation is due to the fact that P⊥
w∗

A(w∗)w∗ = 0, u⊤A(w∗)w∗ = 0 and P⊥
w∗

u = u.
Therefore, for P⊥

v A(v)v, we can decompose it to two parts:

P⊥
v A(v)v = P⊥

v A(w∗)v + P⊥
v (A(v)−A(w∗))v (50)

= P⊥
w∗

(A(w∗)− λ∗I)ϵu+ P⊥
v (A(v)−A(w∗))v +O(ϵ2) (51)

Therefore, since u⊤w∗ = 0, we have:

u⊤P⊥
w∗

(A(w∗)− λ∗I)ϵu = u⊤(I −w∗w
⊤
∗)(A(w∗)− λ∗I)ϵu (52)

= ϵu⊤(A(w∗)− λ∗I)u ≤ −λgap(w∗)ϵ+O(ϵ2) (53)

and since ∥u∥2 = ∥v∥2 = 1 and ∥P⊥
v ∥2 = 1, we have:

|u⊤P⊥
v (A(v)−A(w∗))v| ≤ ∥(A(v)−A(w∗))v∥2 (54)

By the definition of local roughness measure ρ(w∗), we have:

∥(A(v)−A(w∗))w∗∥2 ≤ ρ(w∗)∥v −w∗∥2 +O(∥v −w∗∥22) = ρ(w∗)ϵ+O(ϵ2) (55)

This leads to

∥(A(v)−A(w∗))v∥2 ≤ ∥(A(v)−A(w∗))w∗∥2 + ∥(A(v)−A(w∗))(v −w∗)∥2 (56)

≤ ρ(w∗)ϵ+O(ϵ2) (57)

Therefore, we have:

u⊤P⊥
v A(v)v ≤ −(λgap(w∗)− ρ(w∗))ϵ+O(ϵ2) (58)

When λgap(w∗) > ρ(w∗) and we have u⊤P⊥
v A(v)v < 0 for any u ⊥ w∗ and sufficiently small ϵ.

Therefore, the critical point w∗ is stable.

Theorem 2 (Bound of local roughness ρ(w) in ReLU setting). If input ∥x∥2 ≤ C0 is bounded, α
has kernel structure (Def. 1) and batchsize N → +∞, then ρ(w∗) ≤ C3

0vol(C0)
π r(w∗, α), where

r(w, α) :=
∑+∞

l=0 z2l (α)maxw⊤x=0 p̃l(x;α).

Proof. Suppose w∗ and its local perturbationw are on the unit sphere ∥w∥2 = ∥w∗∥2 = 1. Since w
is a local perturbation, we have w⊤w∗ ≥ 1− ϵ for ϵ≪ 1.

In the following we will check how we bound ∥(A(w)−A(w∗))w∗∥2 in terms of ∥w −w∗∥2 and
then we can get the upper bound of local roughness metric ρ(w∗).

Let the function g(x) := x̃w, apply Corollary 1 with no augmentation and the large batch limits, we
have

A(w) := Cα[x̃
w] =

∑
l

z2l Vp̃l
[x̃w]. (59)

where p̃l(x) =
1
zl
P(x)ϕl(x) is the probability distribution of the input x, adjusted by the mapping

of the kernel function determined by the pairwise importance αij (Def. 1). zl is its normalization
constant.

To study (A(w)−A(w∗))w∗, we will study each component (Vp̃l
[x̃w]− Vp̃l

[x̃w∗])w∗.

Note that since x̃w := xI(w⊤x ≥ 0), we have Vp̃l
[x̃w] = Ep̃l

[xx⊤I(w⊤x ≥ 0)]−Ep̃l
[xI(w⊤x ≥

0)]Ep̃l
[x⊤I(w⊤x ≥ 0)]. Let

e :=

∫
w⊤x≥0

xp̃l(x)dx, e∗ :=

∫
w⊤

∗ x≥0

xp̃l(x)dx (60)

E :=

∫
w⊤x≥0

xx⊤p̃l(x)dx, E∗ :=

∫
w⊤

∗ x≥0

xx⊤p̃l(x)dx (61)

11

So we can write
Vp̃l

[x̃w] = E − ee⊤, Vp̃l
[x̃w∗] = E∗ − e∗e

⊤
∗ (62)

and Vp̃l
[x̃w]− Vp̃l

[x̃w∗] = (E − E∗) + (e∗e
⊤
∗ − ee⊤).

Define the following regions

Ω+ := {x : w⊤
∗ x ≥ 0,w⊤x ≤ 0} (63)

Ω− := {x : w⊤
∗ x ≤ 0,w⊤x ≥ 0} (64)

Ω := Ω+ ∪ Ω− (65)

Now let’s bound (E − E∗)w∗ and (e∗e
⊤
∗ − ee⊤)w∗.

Bound (E − E∗)w∗. We have:

E − E∗ =

∫
Ω−

xx⊤p̃l(x)dx−
∫
Ω+

xx⊤p̃l(x)dx (66)

and thus

(E − E∗)w∗ =

∫
Ω−

xx⊤w∗p̃l(x)dx−
∫
Ω+

xx⊤w∗p̃l(x)dx (67)

For any x ∈ Ω+, we have:

0 ≤ w⊤
∗ x = w⊤x+ (w∗ −w)⊤x ≤ (w∗ −w)⊤x ≤ C0∥w∗ −w∥2 (68)

Therefore, |w⊤
∗ x| ≤M∥w∗ −w∥2 and we have∥∥∥∥∥

∫
Ω+

xx⊤w∗p̃l(x)dx

∥∥∥∥∥
2

≤
∫
Ω+

|w⊤
∗ x|∥x∥2p̃l(x)dx (69)

≤ C2
0∥w∗ −w∥2 max

x∈Ω+

p̃l(x)

∫
Ω+,∥x∥2≤C0

dx (70)

= C3
0∥w∗ −w∥2 max

x∈Ω+

p̃l(x)
vol(C0)

2π
arccosw⊤w∗ (71)

where vol(C0) is the volume of the d-dimensional ball of radius C0. Similarly for x ∈ Ω−, we have

0 ≥ w⊤
∗ x = w⊤x+ (w∗ −w)⊤x ≥ (w∗ −w)⊤x ≥ −C0∥w∗ −w∥2 (72)

hence |w⊤
∗ x| ≤ C0∥w∗ −w∥2 and overall we have:

∥(E − E∗)w∗∥2 ≤
C3

0vol(C0)

π
∥w∗ −w∥2 max

x∈Ω
p̃l(x) arccosw

⊤w∗ (73)

Since for x ∈ (0, 1], arcsin
√
1− x2 ≤

√
1−x2

x , we have:

arccosw⊤w∗ = arcsin
√

1− (w⊤w∗)2 ≤
√

1− (w⊤w∗)2

w⊤w∗
(74)

=

√
1 +w⊤w∗

√
1−w⊤w∗)

w⊤w∗
≤
√

2(1−w⊤w∗)

w⊤w∗
(75)

=
1

1− ϵ
∥w −w∗∥2 (76)

we have:

∥(E − E∗)w∗∥2 ≤
C3

0vol(C0)

π

1

1− ϵ
∥w∗ −w∥22 max

x∈Ω
p̃l(x) (77)

Therefore, ∥(E − E∗)w∗∥2 is a second-order term w.r.t. ∥w −w∗∥2.

Bound (e∗e
⊤
∗ − ee⊤)w∗. On the other hand:

ee⊤ − e∗e
⊤
∗ = e(e− e∗)

⊤ + (e− e∗)e
⊤
∗ (78)

12

We have ∥e∥2, ∥e∗∥2 bounded and

e− e∗ =

∫
Ω−

xp̃l(x)dx−
∫
Ω+

xp̃l(x)dx (79)

Using similar derivation, we conclude that ∥e(e− e∗)
⊤w∗∥2 is also a second-order term. The only

first-order term is ∥(e− e∗)e
⊤
∗ w∗∥2:

∥(e− e∗)e
⊤
∗ w∗∥2 ≤ Ep̃l

[h(w⊤x)]

∫
Ω

∥x∥2p̃l(x)dx (80)

≤ C2
0

∫
Ω

p̃l(x)dx ≤ C2
0 max

x∈Ω
p̃l(x)

∫
Ω:∥x∥2≤C0

dx (81)

≤ C3
0vol(C0)

π
arccosw⊤w∗ max

x∈Ω
p̃l(x) (82)

≤ C3
0vol(C0)

π

1

1− ϵ
∥w −w∗∥2 max

x∈Ω
p̃l(x) (83)

Overall we have:

∥(A(w)−A(w∗))w∗∥2 ≤
∑
l

z2l ∥ (Vp̃l
[x̃w]− Vp̃l

[x̃w∗])w∗∥2 (84)

≤ C3
0vol(C0)

π

1

1− ϵ

(∑
l

z2l max
x∈Ω

p̃l(x)

)
∥w −w∗∥2 +O(∥w −w∗∥22) (85)

Since ρ(w∗) is the smallest scalar that makes the local roughness metric hold and ϵ is arbitrarily
small, we have:

ρ(w∗) ≤
C3

0vol(C0)

π
r(w∗, α) (86)

where r(w, α) :=
∑

l z
2
l maxw⊤x=0 p̃l(x;α).

Corollary 2 (Effect of different α). For uniform αu (αij := 1) and 1-D Gaussian αg (αij :=
exp(−∥h(w⊤x0[i])−h(w⊤x0[j])∥22/2τ)), we have r(w∗, αg) = z0(αg)r(w∗, αu) with z0(αg) :=∫
exp(−h2(w⊤

∗ x)/2τ)pD(x)dx ≤ 1. As a result, z0(αg)≪ 1 leads to r(w∗, αg)≪ r(w∗, αu).

Proof. For uniform αu, it is clear that the mapping ϕu(x) ≡ 1 is 1-dimensional. Therefore,
p̃0(x;αu) := 1

z0(αu)
ϕu0(x)pD(x) = pD(x) with z0(αu) =

∫
ϕu0(x)pD(x)dx = 1. This means

that

r(w∗, αu) :=

+∞∑
l=0

z2l (αu) max
w⊤

∗ x=0
p̃l(x;αu) (87)

= z20(αu) max
w⊤

∗ x=0
p̃0(x;αu) = max

w⊤
∗ x=0

pD(x) (88)

For Gaussian αg, from Lemma 1 we know that its infinite-dimensional mapping ϕg(x) has the
following form for w = w∗:

ϕg(x) = e−
h2(w⊤

∗ x)

2τ

1
τ−1/2h(w⊤

∗ x)
1

τ2/2
√
2!
h2(w⊤

∗ x)

. . .
1

τk/2
√
k!
hk(w⊤

∗ x)

. . .

 (89)

When l ≥ 1, z2l p̃l(x;αg) = zlϕgl(x)pD(x) = 0 for any x on the plane w⊤
∗ x = 0, since ϕgl(x) = 0

on the plane. On the other hand, ϕg0(x) = e−
h2(w⊤

∗ x)

2τ . On the plane, ϕg0(x) = 1 and is a constant.

13

Therefore, we have:

r(w∗, αg) :=

+∞∑
l=0

z2l max
w⊤

∗ x=0
p̃l(x;αg) = z20(αg) max

w⊤
∗ x=0

p̃0(x;αg) (90)

= z0(αg) max
w⊤

∗ x=0
ϕg0(x)pD(x) (91)

= z0(αg) max
w⊤

∗ x=0
pD(x) = z0(αg)r(w∗, αu) (92)

Here
z0(αg) :=

∫
ϕg0(x)pD(x)dx =

∫
e−

h2(w⊤
∗ x)

2τ pD(x)dx ≤ 1 (93)

B.5 Finding critical points with initial guess

In the following, we focus on how can we find an LME, when A(w) does not have analytic form. We
show that if there is an “approximate eigenvector” of A(w) := Cα[x̃

w], then a real one is nearby.

Let L be the Lipschitz constant of A(w): ∥A(w)−A(w′)∥2 ≤ L∥w −w′∥2 for any w,w′ on the
unit sphere ∥w∥2 = 1, and the correlation function c(w) := w⊤ϕ1(w) be the inner product between
w and the maximal eigenvector of A(w). We can construct a fixed point using Power Iteration
(PI) [14], starting from initial value w = w(0):

w̃(t+ 1)← A(w(t))w(t), w(t+ 1)← w̃(t+ 1)

∥w̃(t+ 1)∥2
(94)

We show that even A(w) varies over ∥w∥2 = 1, the iteration can still converge to a fixed point w∗,
if the following quantity ω(w), called irregularity, is small enough.
Definition 4 (Irregularity ω(w) in the neighborhood of fixed points). Let µ(w) := .5(1 +

c(w))c−2(w) [1− λgap(w)/λ1(w)]
2 and ω(w) := ω(c(w), λgap(w), λ1(w), L, κ) ≥ 0 defined

as
ω(w) := µ(w) + 2κL2(1 + µ(w)c(w)) + 2Lλ−1

gap(w)
√
µ(w)(1 + µ(w)c(w)), (95)

here κ is the high-order eigenvector bound defined in Appendix (Lemma 6).

Intuitively, when w(0) is sufficiently close to any LME w∗, i.e., w(0) is an “approximate” LME, we
have ω(w(0))≪ 1. In such a case, w(0) can be used to find w∗ using power iteration (Eqn. 94).
Theorem 3 (Existence of critical points). Let c0 := c(w(0)) ̸= 0. If there exists γ < 1 so that:

sup
w∈Bγ

ω(w) ≤ γ, (96)

where Bγ :=
{
w : w⊤w(0) ≥ c0−cγ

1−cγ
, cγ :=

2
√
γ

1+γ

}
is the neighborhood of initial value w(0).

Then Power Iteration (Eqn. 94) converges to a critical point w∗ ∈ Bγ of Eqn. 7.

Proof. Note that if c0 < 0, we can always use −ϕ1(w) as the maximal eigenvector. Along the
trajectory, let ϕi(t) := ϕ1(A(w(t))) be the i-th unit eigenvector of A(w(t)) and λi(t) to be the i-th
eigenvalue. Define δw(t) := w(t+ 1)−w(t), δA(t) := A(w(t+ 1))−A(w(t)), and

ct := c(w(t)) = ϕ⊤
1 (t)w(t), dt := ϕ⊤

1 (t)w(t+ 1) (97)

Then −1 ≤ ct, dt ≤ 1 since they are inner product of two unit vectors.

First we assume A(w) is positive definite (PD) over the entire unit sphere ∥w∥2 = 1, then follow
Lemma 8, and notice that ∥w −w(0)∥2 =

√
2(1−w⊤w(0)), so

∥w −w(0)∥2 ≤
√
2(1 + γ)(1− c0)

1−√γ
⇐⇒ w⊤w(0) ≥ c0 − cγ

1− cγ
(98)

When A(w) is not PD, Theorem 3 still applies to the PD matrix Â(w) := A(w)− λmin(w)I + ϵI

with L and κ specified by Â(w), where ϵ > 0 is a small constant.

14

This transformation keeps c0 since the eigenvectors of Â(w) are the same as A(w). wwThe resulting
fixed point ŵ∗ is also the fixed point of the original problem with A(w), due to the fact that

P⊥
w Â(w)w = P⊥

wA(w)w − (λmin(w)− ϵ)P⊥
ww = P⊥

wA(w)w (99)

Remarks. Note that Lemma 8 assumes that along the trajectory {w(t)}, µt + νt ≤ γ holds. In
Theorem 3, this can not be assumed true until we prove that the entire trajectory is within Bγ .

Intuitively, with L and κ small, c0 close to 1, and λgap large, Eqn. 96 can always hold with γ < 1
and the fixed point exists. For example, for the two cases in Sec. B.1, if U = [u1, . . . ,uM] is
only approximately orthogonal (i.e., ∥U⊤U − I∥ is not zero but small), and/or the conditions of
Corollary 1 hold roughly, then Theorem 3 tells that multiple local optima close to um still exist for
each m (Fig. 1). We leave it for future work to further relax the condition.

C Other Lemmas

Lemma 4 (Bound of 1− dt). Define

µ(w) :=
1 + c(w)

2c2(w)

(
λ2(A(w(t))

λ1(A(w(t))

)2

=
1 + c(w)

2c2(w)

[
1− λgap(A(t))

λ1(A(t))

]2
≥ 0 (100)

and µt := µ(w(t)). If ct > 0 and λ1(t) > 0, then 1− dt ≤ µt(1− ct).

Proof. We could write dt:

dt =
ϕ⊤
1 (t)w̃(t+ 1)

∥w̃(t+ 1)∥2
=

λ1(t)ϕ
⊤
1 (t)w(t)√∑

i λ
2
i (t)

(
ϕ⊤
i (t)w(t)

)2 (101)

≥ λ1(t)ct√
λ2
1(t)c

2
t + λ2

2(t)(1− c2t)
=

1√
1 +

(
λ2(t)
λ1(t)

)2 (
1
c2t
− 1
) (102)

=

[
1 +

(
λ2(t)

λ1(t)

)2(
1

c2t
− 1

)]−1/2

(103)

≥ 1− 1

2

(
λ2(t)

λ1(t)

)2(
1

c2t
− 1

)
=: 1− µt(1− ct) (104)

The first inequality is due to the fact that
∑

i>1 λ
2
i (t)

(
ϕ⊤
i (t)w(t)

)2
= 1− c2t (Parseval’s identity).

The last inequality is due to the fact that for x > −1, (1 + x)α ≥ 1 + αx when α ≥ 1 or α < 0
(Bernoulli’s inequality). Therefore the conclusion holds.

Lemma 5 (Bound of weight difference). If ct > 0 and λi(t) > 0 for all i, then ∥δw(t)∥2 ≤√
2(1 + µtct)(1− ct)

Proof. First, for w⊤(t+ 1)w(t), we have (notice that λi(t) ≥ 0):

w⊤(t+ 1)w(t) =

∑
i λi(t)

(
ϕ⊤
i (t)w(t)

)2√∑
i λ

2
i (t)

(
ϕ⊤
i (t)w(t)

)2 (105)

≥ λ1(t)c
2
t√

λ2
1(t)c

2
t + λ2

2(t)(1− c2t)
≥ [1− µt(1− ct)] ct (106)

Therefore,

∥w(t+ 1)−w(t)∥2 =
√
2
√

1−w⊤(t)w(t+ 1) ≤
√
2(1 + µtct)(1− ct) (107)

15

Lemma 6. Let δA = A′ −A, then the maximal eigenvector ϕ1 := ϕ1(A) and ϕ′
1 := ϕ1(A

′) has the
following Taylor expansion:

ϕ′
1 = ϕ1 +∆ϕ1 +O(∥δA∥22) (108)

where λi is the i-th eigenvalue of A, ∆ϕ1 :=
∑

j>1

ϕ⊤
j δAϕ1

λ1−λj
ϕj is the first-order term of eigenvector

perturbation. In terms of inequality, there exist κ > 0 so that:

∥ϕ′
1 − (ϕ1 +∆ϕ1)∥2 ≤ κ∥δA∥22 (109)

Proof. See time-independent perturbation theory in Quantum Mechanics [10].

Lemma 7. Let L be the minimal Lipschitz constant of A so that ∥A(w′)−A(w)∥2 ≤ L∥w −w′∥2
holds. If ct > 0 and λi(t) > 0 for all i, then we have:

|dt − ct+1| =
∣∣∣ (ϕ1(t)− ϕ1(t+ 1))

⊤
w(t+ 1)

∣∣∣ ≤ νt(1− ct) (110)

where

ν(w) := 2κL2(1 + µ(w)c(w)) + 2Lλ−1
gap(Aw(t))

√
µ(w)(1 + µ(w)c(w)) ≥ 0 (111)

and νt := ν(w(t)).

Proof. Using Lemma 6 and the fact that ∥w(t+ 1)∥2 = 1, we have:

|dt − ct+1| =
∣∣∣ (ϕ1(t)− ϕ1(t+ 1))

⊤
w(t+ 1)

∣∣∣ ≤ |∆ϕ⊤
1 (t)w(t+ 1)|+ κL2∥δw(t)∥22 (112)

where

∆ϕ1(t) :=
∑
j>1

ϕ⊤(t)jδA(t)ϕ1(t)

λ1(t)− λj(t)
ϕj(t) (113)

and δA(t) := A(t+ 1)−A(t). For brevity, we omit all temporal notation if the quantity is evaluated
at iteration t. E.g., δw means δw(t) and ϕ1 means ϕ1(t).

Now we bound |∆ϕ⊤
1 w(t+ 1)|. Using Cauchy–Schwarz inequality:

|∆ϕ⊤
1 w(t+ 1)| =

∣∣∣∣∣∑
j>1

(
ϕ⊤
j δAϕ1

λ1 − λj

)(
ϕ⊤
j w(t+ 1)

) ∣∣∣∣∣ (114)

≤

√√√√∑
j>1

(
ϕ⊤
j δAϕ1

λ1 − λj

)2√∑
j>1

(
ϕ⊤
j w(t+ 1)

)2
(115)

≤ 1

λgap(A)

√∑
j>1

(
ϕ⊤
j δAϕ1

)2√∑
j>1

(
ϕ⊤
j w(t+ 1)

)2
(116)

Since {ϕj} is a set of orthonormal bases, Parseval’s identity tells that for any vector v, its energy
under any orthonormal bases are preserved:

∑
j(ϕ

⊤
j v)

2 = ∥v∥22. Therefore, we have:

|∆ϕ⊤
1 w(t+ 1)| ≤ 1

λgap(A)
∥δAϕ1∥2

√
1− d2t (117)

≤ L

λgap(A)
∥δw(t)∥2

√
1− d2t (118)

Note that using −1 ≤ dt ≤ 1 and Lemma 4, we have:√
1− d2t =

√
1 + dt

√
1− dt ≤

√
2(1− dt) ≤

√
2µt(1− ct) (119)

Finally using bound of weight difference (Lemma 5), we have:

|dt − ct+1| ≤ 2κL2(1 + µtct)(1− ct) + Lλ−1
gap

√
2(1 + µtct)(1− ct)

√
1− d2t (120)

≤ νt(1− ct) (121)

Here νt := 2κL2(1 + µtct) + 2Lλ−1
gap(A(t))

√
µt(1 + µtct).

16

Lemma 8. Let c0 := c(w(0)) = w⊤(0)ϕ1(A(w(0))) > 0. Define local region Bγ:

Bγ :=

{
w : ∥w −w(0)∥2 ≤

√
2(1 + γ)(1− c0)

1−√γ

}
(122)

Define ω(w) := µ(w) + ν(w) to be the irregularity (also defined in Def. 4). If there exists γ < 1 so
that

sup
w∈Bγ

ω(w) ≤ γ, (123)

then

• The sequence {ct} increases monotonously and converges to 1;

• There exists w∗ so that limt→+∞ w(t) = w∗.

• w∗ is the maximal eigenvector of A(w∗) and thus a fixed point of gradient update (Eqn. 7);

• For any t, ∥w(t)−w(0)∥2 ≤
√

2(1+γ)(1−c0)

1−√
γ .

• ∥w∗ −w(0)∥2 ≤
√

2(1+γ)(1−c0)

1−√
γ . That is, w∗ is in the vicinity of the initial weight w(0).

Proof. We first prove by induction that the following induction arguments are true for any t:

• ct+1 ≥ ct > 0;

• 1− ct ≤ γt(1− c0);

• w(t) is not far away from its initial value w(0):

∥w(t)−w(0)∥2 ≤
√
2(1 + γ)(1− c0)

t−1∑
t′=0

γt′/2 (124)

which suggests that w(t) ∈ Bγ .

Base case (t = 1). Since 1 ≥ c0 > 0, µ(w) ≥ 0, and A(w) is PD, applying Lemma 5 to
∥w(1)−w(0)∥2, it is clear that

∥w(1)−w(0)∥2 = ∥δw(0)∥2 ≤
√
2
√

(1 + µ0c0)(1− c0) ≤
√
2(1 + γ)(1− c0) (125)

Note that the last inequality is due to µ0 ≤ γ. Note that

1− c1 = 1− d0 + d0 − c1 ≤ 1− dt + |d0 − c1| ≤ (µ0 + ν0)(1− c0) ≤ γ(1− c0) (126)

and finally we have c1 ≥ 1− γ(1− c0) ≥ c0 > 0. So the base case is satisfied.

Inductive step. Assume for t, the induction argument is true and thus w(t) ∈ Bγ . Therefore, by the
condition, we know µt + νt ≤ γ.

By Lemma 5, we know that

∥w(t+ 1)−w(t)∥2 = ∥δw(t)∥2 ≤
√

2(1 + µtct)(1− ct) ≤
√
2(1 + γ)(1− c0)γ

t/2 (127)

Therefore, we know that w(t+ 1) also satisfies Eqn. 124:

∥w(t+ 1)−w(0)∥2 ≤ ∥w(t)−w(0)∥2 + ∥δw(t)∥2 (128)

≤
√

2(1 + γ)(1− c0)

[
t−1∑
t′=0

γt′/2 + γt/2

]
(129)

=
√
2(1 + γ)(1− c0)

t∑
t′=0

γt′/2 (130)

17

Also we have:

1− ct+1 = 1− dt + dt − ct+1 ≤ 1− dt + |dt − ct+1| (131)
≤ (µt + νt)(1− ct) ≤ γ(1− ct) (132)

≤ γt+1(1− c0) (133)

and thus we have ct+1 ≥ 1− γ(1− ct) ≥ ct > 0.

Therefore, we have
1− ct ≤ γt(1− c0)→ 0 (134)

thus ct is monotonously increasing to 1. This means that:

lim
t→+∞

ct = lim
t→+∞

ϕ⊤
1 (t)w(t)→ 1 (135)

Therefore, we can show that w(t) is also convergent, by checking how fast ∥δw(t)∥2 decays:

∥δw(t)∥2 ≤
√
2(1 + µtct)(1− ct) ≤

√
2(1 + γ)(1− c0)γ

t/2 (136)

By Cauchy’s convergence test, w(t) = w(0) +
∑t−1

t′=0 δw(t′) also converges. Let

lim
t→+∞

w(t) = w∗ (137)

This means that A(w∗)w∗ = λ∗w∗ and thus P⊥
w∗

A(w∗)w∗ = 0, i.e., w∗ is a fixed point of gradient
update (Eqn. 7). Finally, we have:

∥w(t)−w(0)∥2 ≤
√

2(1 + γ)(1− c0)

t−1∑
t′=0

γt′/2 ≤
√
2(1 + γ)(1− c0)

1−√γ
(138)

Since ∥ · ∥2 is continuous, we have the conclusion.

18

	Introduction
	Problem Setup
	One-layer case
	Relate LMEs to Local Optima

	Proofs
	Problem Setup (Sec. 2)

	One-layer model (Sec. 3)
	Computation of the two example models
	Detailed computation of the two examples
	Derivation of training dynamics
	Local stability
	Finding critical points with initial guess

	Other Lemmas

