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Abstract

RNA sequencing (RNA-Seq) is a technique that utilises the capabilities of next-
generation sequencing to study cellular transcriptome i.e., to determine the amount
of RNA at a given time for a given biological sample. The advancement of
RNA-Seq technology has resulted in a large volume of gene expression data for
analysis. In this study, we have used a gene expression dataset pertaining to
patients diagnosed with colorectal cancer towards predicting the vital status of
a given patient. We further show that our computational model (built on top of
TabNet), which is pretrained with a self-supervised learning objective function,
outperforms popular classic machine learning algorithms such as XGBoost and
Decision Trees. To the best of our knowledge, TabNet, which is first pretrained
on an unlabelled dataset of multiple types of adenomas and adenocarcinomas, and
later fine-tuned on the labelled dataset, shows state-of-the-art results in the context
of the estimation of the vital status of colorectal cancer patients. We conclude
this study with an understanding of the genes that are important to the prediction
task through interpreting the model and corroborate our results with pathological
evidence that exists in current literature.

1 Introduction

Recent advancements in sequencing techniques in bio-informatics have gained traction and have
given rise to studies pertaining to the identification of cancer bio-markers and quicker diagnosis of
the disease. However, not as much research has been done on estimating the vital status of patients
diagnosed with cancer. In this study, we analyse the gene expression dataset obtained from the TCGA
website, to estimate the vital status of patients in the context of colorectal cancer [1]. The vital
status property is a binary variable which indicates whether the patient survived the cancer. A vital
status value of O represents a patient that survived; a vital status value of 1 represents a patient that
succumbed to the cancer. The outcome of this study could not only help determine a suitable course
of treatment but also help in a better understanding of the disease through a study of the bio-markers
that are identified as important predictors by the computational models.

Due to the tabular nature of the gene expression dataset, applications of self-supervised learning
techniques on gene expression have not made it to the limelight as much as they have in the domains
of Computer Vision and Natural Language Processing. This is primarily because tabular models must
be able to accommodate features from different discrete and continuous distributions and uncover
correlations without relying on positional information.

So why is self-supervised learning worth exploring in the context of gene expression data? Apart from
the increase in performance that comes with deep learning models, it also enables fusion with multiple
modalities (say gene expression and clinical data) — eliminating the need for feature engineering,
representation learning and end-to-end compositional multi-task models.
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Our work can be summarised as follows:

* We have used feature selection techniques to mitigate the effects of the curse of dimensionality
observed due to the high dimensionality of the data. The features chosen are used to train classical
machine learning models (such as XGBoost) without the self-supervised learning objective.

* This is followed by filtering the same set of genes obtained from the feature selection technique in
the unlabelled dataset and pretraining the TabNet model with a masked feature reconstruction loss
as a self-supervised learning objective function.

* The pretrained model is then fine-tuned on the labelled dataset whose performance is compared
with those models trained without the self-supervised learning objective function.

* This is concluded by demonstrating the explainability of the TabNet model by plotting its feature
importance mapping and providing pathological evidence for the same.

2 Related work

The earliest work on the estimation of vital status using RNA-seq data can be traced to [2], which
serves as a solid baseline model. They use a LASSO model and two variants of neural networks to
infer that simplistic models like LASSO are computationally less expensive and outperform neural
networks for this problem. Further, ensemble learning through the random forest algorithm to avoid
the inherent bias present in decision tree classification demonstrated promising success [3]. Given the
curse of dimensionality inherent in the data, there is a useful analysis of feature selection techniques
for this problem [4]. On the self-supervised learning front, SSL methods have predominantly been
focused on natural language processing [5, 6] and computer vision [7, 8, 9], where the concept
of correlation between sequential features is at the fore. Recently, these self-supervised learning
approaches have been introduced to work with tabular data using attention-based mechanisms [10]
and random feature corruption [11], with these methods performing better than common industry
favourite supervised learning methods such as XGBoost [12] and LightGBM [13]. [14] proposes a
new self-supervised learning model called TabNet that works on tabular data and is heavily referred

to in this paper.
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Figure 1: Workflow used for the self supervised approaches in this study.

3 Methodology

The workflow shown in Figure 1. consists of data collation, feature selection, pretraining and
finetuning of the TabNet model followed by interpreting the model, outlined in the sections below'.

3.1 Procurement of data

The data used is obtained from TCGA [1]. The labelled dataset is from the COAD project focusing
on Colon Adenocarcinoma. This data was downloaded from the GDC data portal, with filters set
to obtain the vital status annotation. We obtained 519 samples, each having gene expression data
for > 60,000 genes. The raw gene expression data from the labs has been pre-normalised by the
experimental team accounting for sequencing depth and gene length. Additionally, an unlabelled
dataset consisting of the same gene IDs, with a total size of 4801 samples from various types of
adenomas and adenocarcinomas is also procured by the same means for self-supervised learning
purposes.

'The code pertaining to this paper can be found at https://bit.1y/3S1jHSO0 for reproducibility purposes


https://bit.ly/3SljHS0

3.2 Feature selection

A filter of protein-coding genes (obtained from BioMart) is first used to reduce this to 19559 genes
from the provided 60000 genes. We then propose different feature selection techniques, namely,
PCA [15], T-test [16] and Lasso [17] for further downstream analysis. Other statistical-based feature
selection techniques such as Laplacian score and UMAP [18] were used but none of these methods
performed as well as the above-mentioned ones.

3.3 TabNet pretraining and fine-tuning

The TabNet architecture [14] has an encoder and decoder module wherein the former is inspired by
top-down attention using sparse instance-wise feature selection constructed on top of a sequential
multi-step architecture. For the self-supervised learning objective, a decoder architecture has been
proposed for reconstructing the masked features from the encoded representation. To do this a binary
mask S has been chosen as S € {0, 1}5*? wherein the fully connected layer and feature transformers
have to predict the masked feature at each decision step based on the reconstruction loss as follows:

2
B D

(fo; — fo.i) - Sb
ZZ sJ sJ »J
b=1j=1 \/Zle(fbg —1/BY 1 foj)?

Here fp ; and fb7 4 correspond to the feature importance score and the expected feature importance
score of the j" feature in the b** sample.
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The same feature set that has been chosen by the corresponding feature selection method has been
used in the unlabelled dataset for pretraining purpose. Once the embedding space has been learnt via
pretraining, the model is then fine tuned on the labelled dataset.

4 Experiments and results

In line with the theme of this study, that is, showing the performance gain using a self-supervised
learning approach for vital status prediction, the results can be seen in Table 1. Despite trying a host
of computational models, we have only enlisted those that show the highest scores. With respect to
the TabNet model, the Adam [19] optimiser with a ReduceLROnPlateau scheduler was used. The
metrics reported in this study pertain to the average AUC Score of the model’s performance on a
5-fold cross-validation performed on the labelled (TCGA-COAD) dataset 2.

A pretrained TabNet model with the employment of T-test as a feature selection technique shows
the highest score of 0.8132. Optuna [20] was used to tune hyperparameters such as weight decay,
learning rate, patience (for early stopping) and gamma (feature reuse in masks). A set of 5 trials is
performed by Optuna to find the best set of hyperparameters that maximise the model’s AUC Score.
All mentioned experiments were carried out in Google Colab using a NVIDIA Tesla K80 GPU.

5 Interpretability and conclusion

The TabNet architecture, which consists of an encoder (composed of attentive transformer, feature
transformer and feature masking) and the decoder (which consists of the feature transformer only),
employs sparse feature selection at each decision step. Unlike SHap [21] which relies on cooperative
game theory that averages the marginal contribution of a feature instance over all coalitions, TabNet
quantifies the aggregate feature importance at each decision step in the following way:
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Here, M, ;[i] corresponds to feature importance of f;, ; and n [i] weighs the aggregate contribution
of the i*" decision step via a ReLU activation function [22].

The best performing models were also trained and tested on a dataset of kidney cancers (KIPAN) to
ensure that no overfitting occured, and produced consistent results, code for which is available at https:
//bit.1y/3S1jHSO
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Table 1: ROC AUC Score as per feature reduction and Training approach

Model Training Approach  Feature Reduction AUC
Logistic Regression  Supervised Lasso 0.624 = 0.060
Logistic Regression  Supervised PCA 0.592 £ 0.052
Logistic Regression  Supervised T-Test 0.495 £ 0.061
Neural Network Supervised Lasso 0.544 £ 0.1
Neural Network Supervised PCA 0.509 £ 0.09
Neural Network Supervised T-Test 0.662 £+ 0.07
XGBoost Supervised Lasso 0.571 +0.08
XGBoost Supervised PCA 0.519 +£0.08
XGBoost Supervised T-Test 0.721 + 0.061
TabNet Self Supervised Lasso 0.762 £ 0.018
TabNet Self Supervised PCA 0.680 £ 0.040
TabNet Self Supervised T-Test 0.813 + 0.042

EMNSGO0000149182

EN5G00000112511

ENSGO0000198018

ENSGO0000104635

ENSGO0000183395

ENSGO0000186364

ENSG00000107816

ENSG00000089820

ENSGO0000198791

ENSGO0000102317

D.IO D.I]. D.IE D.I3 D.I4 D.IS

Figure 2: List of features and their Importance as per TabNet

The top contributing genes have been shown in Figure 2. We also surveyed existing literature to
see if the top contributing genes in the TabNet model had any links to pathological evidence. We
observed that the 4 out of the top 5 genes that contribute to the model’s performance have scientific
evidences which links it to the prognosis of colorectal cancer. The gene ID ENSG00000102317
(which contributes the highest towards the TabNet model prediction) corresponds to gene RBM3.
[23]’s work shows the effect of over-expression of RBM3 and its subsequent effects on epithelial
proliferation and stemness in colorectal cancer. Interestingly enough, NUDT17 has not been shown to
be marker for colorectal cancer prognosis, but has been reported to show favourable cancer specificity
to renal cancer [24]. Therefore, the findings of this paper may perhaps spark an interest in researching
the contribution of this gene to the prognosis of colorectal cancer.

A summary of the findings can be found in Table 2. [25] provides factual pathological evidence that
corroborates the findings of the top genes provided by the TabNet model (under the self-supervised
learning setting) which contribute the most for vital status prediction in colorectal cancer. As a
concluding remark, our work shows the state of the art results achieved for vital status prediction and
contrasts the same between self supervised learning algorithms and supervised learning algorithms.

Table 2: Gene ID and its pathological evidence towards Colon Cancer

Gene ID Gene Name Pathological evidence [25]
ENSG00000102317 RBM3 Yes[23]
ENSG00000198791 CNOT7 Yes[26]
ENSG00000089820 ARHGAP4  Yes[27]
ENSG00000107816 LZTS2 Yes[25]

ENSGO00000186364 NUDT17 No Evidence Found
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Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] One of the main limitations of
this study is that it is still a proof-of-concept with promising results that paves way for
a better understanding of the factors that underlie the disease. But to be useful as a
clinical decision support system, the model would have to be trained and tested on a
larger volume of data, that is currently not available in the public domain.

(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A ]
3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] The results shown
here are in whole or part based upon data generated by the TCGA Research Network:
https://www.cancer.gov/tcga

(b) Did you mention the license of the assets? [IN/A]

(c) Did you include any new assets either in the supplemental material or as a URL?

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? TCGA curates data from thousands of patients after obtaining
informed consent from each one; we do not feel it necessary to further detail this, as
the process is made transparent via the TCGA website.

(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? Due to data being obtained from TCGA, a
government effort, all personally identifiable details are obscuted as per standard
procedure.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A ]
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