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Abstract

Self-supervised learning (SSL) learns useful representations from unlabelled data
by training networks to be invariant to pairs of augmented versions of the same
input. Non-contrastive methods avoid collapse either by directly regularizing the
covariance matrix of network outputs or through asymmetric loss architectures,
two seemingly unrelated approaches. Here, by building on DirectPred [1], we lay
out a theoretical framework that reconciles these two views. We derive analytical
expressions for the representational learning dynamics in linear networks. By
expressing them in the eigenspace of the embedding covariance matrix, where the
solutions decouple, we reveal the mechanism and conditions that provide implicit
variance regularization. These insights allow us to formulate a new isotropic loss
function that equalizes eigenvalue contribution and renders learning more robust.
Finally, we show empirically that our findings translate in nonlinear networks
trained on CIFAR-10 and STL-10.

1 Introduction and background

SSL in Siamese architectures allows learning good representations without any labeled data [2–7].
These methods learn representations that are predictive across randomized transformations, i.e, the
network’s objective is to “pull” together its outputs for two differently augmented versions of the
same input. In order to avoid “representational collapse”, the trivial solution whereby network output
becomes constant, SSL methods use either a contrastive objective to “push” apart representations
of unrelated images [4, 5], explicit regularization of the representational covariance matrix [6, 7],
or Siamese networks with an asymmetric loss[2, 3]. The latter strategy is used in the BYOL and
SimSiam models. It is intriguing because it relies on a simple manipulation of the architecture and
the flow of gradients in the network without any additional objective or regularization. Symmetry
between the Siamese branches is broken by passing one of the representations through an additional
predictor network and blocking gradients from flowing through the other “target” branch. The
learning dynamics induced by such asymmetric loss Siamese architectures are surprisingly intricate
[1, 8, 9] but not fully understood. A critical insight was provided by Tian et al. [1] for the case
of linear feedforward and predictor networks. They showed that throughout training with the
SimSiam loss, the eigenspace of the predictor weights aligns with that of the correlation matrix of the
representations. Motivated by this insight, they proposed DirectPred, a simple strategy to directly
set the predictor as a function of the estimated correlation matrix instead of learning it via gradient
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descent. Crucially, DirectPred and the further developed DirectCopy approach [8] remain effective at
scale and outperform equivalent architectures with a linear learned predictor network.

In this work, we consider the linear network setting used previously in the theoretical analysis of
non-contrastive SSL in [1, 8], and provide a straightforward analysis of how the learning dynamics
in DirectPred and DirectCopy prevent representational collapse. Specifically, we show that these
methods optimize an implicit loss function in the eigenspace of the representation correlation
matrix that ensures the learning dynamics always converge to non-collapsed solutions. Furthermore,
our analysis details out a clear connection to the covariance-regularization-based non-contrastive
methods such as VICReg [7]. DirectPred and DirectCopy similarly regularize the variance of the
representations, the only difference being that they do this in eigenspace instead of directly in the
representation space as in VICReg. Finally, our analysis reveals that DirectPred may suffer from slow
learning rates for components with associated small eigenvalues which is also a possible reason for
why these approaches require an exponentially moving average (EMA) target network. Based on our
analysis we propose an alternative isotropic loss function that mitigates this problem and is robust to
removing the EMA.

2 Analysis of representational learning dynamics in Siamese networks

To gain analytical insight into how predictor networks and asymmetric loss configurations jointly
prevent collapse, we consider a Siamese neural network z = f (x;θ) with z ∈ RM , the input
x ∈ RN , and the parameters θ. We further assume a linear predictor network WP ∈ RM×M and
use the same parameters for the online and target branches as in SimSiam [3]. We consider pairs of
embeddings z(1/2) corresponding to two inputs x(1/2) related through augmentation. Further we
define z = z(1) and the correlation matrix of network outputs Ex

[
zz⊤] where the expectation is

taken over the data distribution. Since the correlation matrix is a real symmetric matrix, we can
diagonalize it as Ex

[
zz⊤] = UDU⊤ where U is the orthogonal matrix whose columns are the

eigenvectors of Ex

[
zz⊤] and D the diagonal matrix containing the eigenvalues λm with m ∈ [1,M ].

Finally, instead of gradient-based optimization, we directly set the predictor network as a simple
function of this correlation matrix as suggested in DirectPred [1]. Specifically,

WP = fα
(
Ex

[
zz⊤]) = UDαU⊤, (1)

where α is a positive constant. We now consider the SimSiam loss LSimSiam for a single pair of
embeddings z(1) and z(2) and re-write it in the eigenbasis of Wp:

LSimSiam = 1
2∥WPz

(1) − SG(z(2))∥2

= 1
2∥UDαU⊤z(1) − SG(UU⊤z(2))∥2

= 1
2∥D

αẑ(1) − SG(ẑ(2))∥2

= 1
2

M∑
m

|λα
mẑ(1)m − SG(ẑ(2)m )|2 (2)

where we used the fact that U is orthogonal and therefore does not change the Euclidean norm. This
transformation decouples the SimSiam loss into a sum of per-component losses over the eigenmodes.

We want to gain a theoretical understanding of representational changes during learning in the
eigenbasis of WP. To that end, we consider the continuous time gradient descent dynamics of
LSimSiam in the transformed space:

˙̂z = ∇θẑθ̇ = −ηΘ̂t(x,X )∇ẐL = −ηΘ̂t(x,X )
(
Dα

t Ẑ
(1)
t − Ẑ(2)

t

)
Dα

t , (3)

where we introduced the the empirical neural tangent kernel (NTK) [10] Θ̂t(X ,X ) = ∇θẐ∇θẐ⊤

with the transformed representations Ẑ = ẑt(X ) = U⊤zt(X ) of the whole dataset X .

While Θ̂t changes over time and is generally intractable in finite-width networks it is always positive
semidefinite. This property guarantees that the cosine angle between the representational training dy-
namics ˙̂Z ∝ −Θ̂t∇ẐL and the hypothetical dynamics that result from optimizing the representations

2



Figure 1: Top and middle rows show the neural updates in different settings, in dimension M = 2
for visualization. Bottom row shows the evolution of the eigenvalues of WP upon training in the
settings corresponding to the top row, but in dimensions N = 15 and M = 10. a) Omitting the stop
grad leads to representational collapse. b) Applying the Stop grad on the wrong side also leads to
collapse with potentially diverging eigenmodes. c) Optimizing the SimSiam loss leads to isotropic
representations. d) Optimizing the isotropic loss has the same effect, but uniform for all eigenvalues.

directly ˙̂Z ∝ −∇ẐL is always positive:〈
−∇ẐL,

˙̂Z
〉
= η

〈
∇ẐL, Θ̂t∇ẐL

〉
> 0. (4)

Further, in the special case of linear networks with i.i.d Gaussian inputs, the NTK reduces to the
identity resulting in perfect alignment (see Appendix A.1 for a proof). Despite the lack of perfect
alignment in nonlinear networks, it served as our rationale to study representational dynamics in the
idealized setting ˙̂Z ∝ −∇ẐL. In the idealized setting, representational updates decreasing Eq. (2)

decouple ˙̂z
(1)
m = −η ∂L

∂ẑ
(1)
m

= ηλα
m

(
ẑ
(2)
m − λα

mẑ
(1)
m

)
with learning rate η and in consequence each

eigenmode evolves independently in expectation value:

˙̂̄z(1)m = ˙̂zm = ηλα
m

(
¯̂z(2)m − λα

m
¯̂z(1)m

)
= ηλα

m (1− λα
m) ẑm. (5)

where we have omitted the time subscript t in ẑm and λm, and (̄) is the expectation taken over many
random augmentations so that ¯̂z(1)m = ¯̂z

(2)
m = ẑm. From this expression, we appreciate that ˙̂zm has

the same sign as ẑm whenever λm < 1 and the opposite sign whenever λm > 1, which would
subsequently drive the eigenvalue towards one, thereby preventing collapse of the representation.

In contrast, ˙̂zm always has the opposite sign as ẑm for a loss without the StopGrad function:

LnoSG := 1
2∥WPz

(1) − z(2)∥2 ⇒ ˙̂zm = −η (1− λα
m)

2
ẑm , (6)

which is notorious for causing collapse [3].

Finally, the decoupled loss formulation also predicts the representational behavior when using
StopGradient operation on the “wrong” side, i.e, on the online branch instead of the target branch.
This manipulation is possible for DirectPred because the predictor needs no optimizing through
gradient descent. In this case, the representational dynamics are governed by the following equations:

Lws :=
1
2∥SG(WPz

(1))− z(2)∥2 ⇒ ˙̂zm = η (λα
m − 1) ẑm , (7)

which leads to collapse for components with λm < 1 and divergence when λm > 1 (Fig. 1b)).

To verify these findings numerically, we simulated a small linear Siamese neural network with
input dimension N = 6 and representation dimension M = 2. We fed the network with isotropic
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Gaussian inputs, and pairs of augmentations were generated using isotropic Gaussian perturbations
of standard deviation σ = 0.1. We then trained the linear encoder with the three different loss
functions detailed above. Training the network with Lcollapse from Eq. (6) resulted in collapse
with exponentially decaying eigenvalues as predicted (Fig. 1a)). Optimizing Lws indeed resulted in
diverging components with initial λm > 1 and collapse along other dimensions for which λm < 1 at
initialization (Fig. 1b)) as predicted by our model. Finally, optimizing LSimSiam, the representations
become increasingly isotropic with all the eigenvalues λm converging to one (Fig. 1c)), as predicted
by Eq. (5). Importantly, these findings were qualitatively similar in nonlinear networks (see Fig. 2 in
the Appendix).

In summary, our eigenspace analysis gives essential insights into the underlying mechanisms of
representation learning in Siamese networks with predictor networks and sensible positioning of
stop gradients in their loss formulation. First, it illustrates that representational dynamics implicitly
drive the eigenvalues of the covariance matrix towards one thereby preventing complete collapse.
Second, because collapse is prevented independently for all eigenvalues, the learning dynamics also
effectively prevent dimensional collapse [9]. Together, these findings uncover a surprising link to
covariance-regularization strategies, which enforce finite output variance and decorrelation [6, 7].

3 Isotropic loss functions speed up and stabilize self-supervised learning

We noted that the current eigenvalues act as effective learning rate modifiers in Eq. (5), meaning
that large eigenvalues converge faster than smaller ones, reminiscent of previous theoretical work
[11]. We speculated that this effect could lead to slow convergence for small eigenvalue components.
However, using our framework it is straightforward to craft alternative “isotropic loss functions” that
equalize relaxation dynamics for all eigenmodes. One such loss function is the following:

Liso = 1
2∥z

(1) − SG(z(2) + z(1) −WPz
(1))∥2 (8)

with associated learning dynamics ˙̂zm = η (1− λα
m) ẑm. When optimizing Liso it resulted in similar

convergence properties as the SimSiam loss, but all eigenmodes converged at more similar rates
(Fig. 1d)) in agreement with our analysis.

Isotropic losses allow dispensing with moving average parameters in the target network. Pre-
vious work by Tian et al. [1] underscored the importance of boosting small eigenvalues and suggested
that evolving the weights in the target network using EMA serves as an automatic curriculum for
small eigenvalues. We speculated that the EMA may no longer be necessary when training with
isotropic losses. To test this idea we trained a deep Siamese network on CIFAR-10 and STL-10
[12] using either the standard SimSiam loss or the isotropic loss introduced in Eq. (8). For these
simulations, we used a VGG11 [13] backbone with a one-hidden-layer projection MLP, and SimCLR
augmentations [4] using PyTorch Lightning [14, 15].

We first checked that training with IsoLoss Liso did not impair training accuracy in settings using an
EMA target network. In fact, we found that IsoLoss resulted in slightly better accuracy on STL-10
compared to the regular SimSiam loss. Next we trained the same setup without EMA target network
and found that IsoLoss outperformed the SimSiam loss by a large margin.

Table 1: Linear readout validation accuracies ± stddev over four random seeds.

CIFAR-10 (800 epochs) STL-10 (100 epochs)
EMA no EMA EMA no EMA

SimSiam loss 74.0 ± 0.6 59.9 ± 2.1 63.8 ± 1.2 33.0 ± 1.9
IsoLoss 72.5 ± 0.4 73.5 ± 0.5 67.1 ± 0.4 65.7 ± 0.8

4 Discussion

Building on DirectPred [1], we presented an eigenspace formulation that illustrates how repre-
sentational collapse is avoided in Siamese SSL approaches with asymmetric loss configurations.
Specifically, we showed that these architectures induce an implicit loss that regularizes the variance
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and prevents dimensional collapse. Further, we showed that this formulation allows easily crafting
new types of losses, such as IsoLoss that yield faster and more stable learning dynamics, thereby
allowing to dispense with EMA target networks. Finally, the eigenspace view laid out in this article
builds a conceptual bridge to other SSL approaches that explicitly regularize representational vari-
ance through additional loss terms [6, 7] and lays the foundation for better understanding modular
architecture choices in terms of their equivalent objective functions.
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A Appendix

A.1 The NTK reduces to the identity for a linear network with high-dimensional i.i.d
Gaussian inputs

For a linear network with feedforward weights W , we first note that:

ẑ = U⊤f(x) = U⊤Wx

=⇒ ∇θẑ = ∇W ẑ = ∇W

(
U⊤Wx

)
= x⊤ ⊗ U⊤, (9)

where ⊗ is the Kronecker product, resulting from the fact that every input component appears in the
update once for each output component. Now, we begin our analysis with the gradient flow equation
from Eq. (3):

˙̂z = ∇θẑθ̇ = −ηΘ̂t(x,X )∇ẐL (10)

where Θ̂t(x,X ) = ∇θẑ∇θẐ⊤ is the (M ×M |D|) block row of the full (M |D| ×M |D|) empirical
NTK Θ̂t(X ,X ) that corresponds to a single data sample x. The diagonal blocks in Θ̂t(X ,X )
correspond to single samples and the off-diagonal blocks are cross-terms between samples from the
full dataset. We can develop a generic expression for each block Θ̂t(xi,xj) corresponding to the
interactions between samples i and j as:

Θ̂t(xi,xj) = ∇W ẑi∇W ẑ⊤
j

=
(
x⊤
i ⊗ U⊤) (x⊤

j ⊗ U⊤)⊤
=

(
x⊤
i ⊗ U⊤) (xj ⊗ U)

=
(
x⊤
i xj

)
⊗

(
U⊤U

)
=

(
x⊤
i xj

)
⊗ IM

=
(
x⊤
i xj

)
IM. (11)

where we have used the fact that (A⊗B)⊤ = A⊤ ⊗B⊤ and (A⊗B)(C ⊗D) = AC ⊗BD. Here,
IM is the identity matrix of size M . We note here that Eq. (11) constitutes a general result that the
NTK for a linear network is invariant under orthogonal transformations of the network output.

We now calculate the average interaction between samples drawn from an i.i.d standard Gaussian
distribution. In this case, for high-dimensional inputs x we have x⊤

i xj ≈ δij . Finally, we see that:

˙̂zi = −ηΘ̂t(xi,X )∇ẐL

= −ηΘ̂t(xi,xi)∇ẑi
L − η

∑
j ̸=i

Θ̂t(xi,xj)∇ẑj
L

= −η
(
x⊤
i xi

)
∇ẑi

L − η
∑
j ̸=i

(
x⊤
i xj

)
∇ẑj

L

= −η∇ẑi
L (12)
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Figure 2: Same as Fig. 1, but for a nonlinear network using rectified linear units.
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