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Abstract

Though increasingly training-expensive, most self-supervised learning (SSL) mod-
els have repeatedly been trained from scratch but not fully utilized since only a
few SOTAs are adopted for downstream tasks. In this work, we explore a sustain-
able SSL framework with two major challenges: i) learning a stronger new SSL
model based on the existing pretrained SSL model in a cost-friendly manner, ii)
allowing the training of the new model to be compatible with various base models.
We propose a Target-Enhanced Conditional (TEC) scheme, which introduces two
components to existing mask-reconstruction based SSL. Firstly, we introduce patch-
relation enhanced targets to encourage the new model to learn semantic-relation
knowledge from the base model using incomplete inputs. This hardening and
target-enhancing could help the new model surpass the base model, since they
enforce additional patch relation modeling to handle incomplete input. Secondly,
we introduce a conditional adapter that adaptively adjusts new model prediction to
align with the target of each base model. Experimental results show that our TEC
scheme can accelerate the learning speed and also improve SOTA SSL models,
e.g., MAE and iBOT, taking an explorative step towards sustainable SSL.

1 Introduction
Self-supervised learning (SSL) has achieved overwhelming success in unsupervised representation
learning, with astonishing high performance in many downstream tasks like classification [50,
51], object detection and segmentation [2, 19]. In SSL, a pretext task is first built, e.g., instance
discrimination task [20, 8] or masked image modeling (MIM) [2, 19], and then pseudo labels are
generated via the pretext task to train a network model without requiring manual labels. Though
successful, SSL is developing towards a direction of causing increasingly large training costs,
e.g., MoCo [20] trained with 200 epochs while MAE [19] with 16,00 epochs to release its potential.
However, in most cases researchers only have limited computational budgets and often cannot afford
to train large SSL models. Moreover, the pretrained non-SOTA SSL models are rarely used in practice,
since SOTA is updated frequently and a previous one quickly becomes useless, wasting huge training
resources. Thus, a sustainable SSL framework is much demanded.
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Figure 1: The Sustainable SSL.

Just like how human experience is enriched and passed from
one generation to the next in human society, we try to make an
SSL model absorb knowledge from the pretrained SSL model
to achieve superior representation quality, so as to be reusable
or “sustainable". In this way, huge training resources would
be saved compared to training a new SSL model from scratch.
This process is somewhat like Knowledge Distillation (KD)
[21, 18]. But instead of aiming at compressing knowledge
from a powerful teacher model to a compact new model in traditional KD, usually with declined
performance, the sustainable SSL is targeted at a new model that learns from the base model and
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becomes more powerful than the base model. An illustration of sustainable SSL is given in Fig. 1. For
better understanding, we call the new SSL model to be trained as the new model and the pretrained
SSL model as the base model. To surpass the base model, in sustainable SSL, the new model exploits
not only the implicit base model knowledge but also the absent knowledge in the base model. Such a
learning process follows a fully self-supervised manner, and differs from the self-training schemes
[45, 47] that requires labels for supervised learning.
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Figure 2: Self-attention visu-
alization. Different colors de-
note attentions of different heads.
Black means no attention.

This work takes an explorative step towards sustainable SSL by
learning from existing pretrained SSL models and surpassing them
in an efficient manner. Intuitively, to achieve this challenging goal,
the new model should learn not only knowledge of the base model
but also more semantic-related new knowledge so as to beat the
base model. We therefore choose a mask-reconstruction [19]
SSL scheme for the pretraining of the new model, in which the
base model generates reconstruction targets from the full input
images and the new model tries to predict base model targets from
random masked image input. With this pretext task, the new model
is forced to learn the semantic of the full input and also its patch relations so that new model can
reason the desired full information from an absent input. In Fig. 2, the attention of iBOT [50] misses
many semantics, e.g., ears, while TEC with iBOT as base model captures all semantics and also
well distinguish all different components of an input image. Because of its almost comprehensive
semantic capturing ability, TEC can flexibly select related semantics for a downstream task.

However, different SSL base models could have various properties due to their various targets and
training strategies, e.g., iBOT models with more category semantics while MAE models with more
image details [19]. So it is important to build high-qualified and compatible reconstruction targets
from the base model so that new model learns these targets in a complementary manner. A good
model target should reveal the semantic relations among patches, e.g., relation between car wheels and
car body, so that new model can learn this general relation patterns and adapts to downstream tasks.
To this end, we propose to enhance the target quality of the base models by using two complementary
reconstruction targets: a) the patch-dim normalization which normalizes base model targets along
patch dimension to enhance the relations among input patches, and b) patch attention maps with
rich semantics to filter out possible background noise and thus to establish the correlation between
the whole input semantic and the patch semantic. For target compatibility, we introduce conditional
adapters into new model so that new model prediction can be adaptable to various base models with
different properties. Given a base model target, the adapters conditionally active and adjust the new
model mid-level features to predict the target more effectively. These adapters are discarded after
pretraining, but can serve parameter-efficient finetuning [24, 6] if kept.

We call the above method for sustainable SSL as Target-Enhanced Conditional (TEC) scheme. on
ImageNet, TEC without any extra training data improves the SSL base model by a remarkable margin,
e.g., MAE [19] and iBOT [50]. Moreover, we also find that TEC can significantly accelerate the SSL
learning process and saves training cost. We hope our initial effort towards sustainable SSL will
inspire more works in the future to sustainably improve SSL in a cost-friendly manner.

2 Method
2.1 Overall framework
An overall framework of the proposed target-enhanced conditional (TEC) mask-reconstruction
method is illustrated in Fig. 3. TEC follows [19, 2], and uses Vision Transformer (ViT) [14] for
implementation. Under the mask-reconstruction [19] framework, TEC consists of a randomly
initialized new ViT encoder to be pretrained, conditional adapters for conditional pretraining, and a
multi-target decoder for reconstruction targets prediction, an SSL pretrained ViT encoder as the base
model and an target-enhancing module to generate patch-relation enhanced reconstruction base model
targets. Specifically, base model ViT encoder is a SSL pretrained encoder (e.g., in MAE [19]), and is
used to generate latent representation of a full image. Then target-enhancing module enhances the
latent representation to generate two complementary reconstruction targets for new model. The new
ViT encoder together with adapters take in masked image and generate adapted latent representation
which is then fed into the multi-target decoder to predict the base model targets. After pretraining, the
new ViT encoder is kept for downstream tasks while other parts are removed. At below, we explain
the conditional pretraining aided by adapters in Section 2.2 to help new model effectively predict

2



Encoder adapter

CAT

Multi-targets 
decoder Attention maps

Feature maps

Q

K

Patch selection

Patches

Attention Selection

Conditional Adapter Target-Enhancing Module
Base

VIT encoder

ViT blocks

CAT

Encoder adapter …

New VIT encoder

…

…

Pred.

Class token Patch-dim norm
SUM

Input adapter

Ze

A
′
c Zk

Zq
Z

′
q

As

YfZf

Za

Figure 3: The overall framework of the proposed TEC.
base model targets, and then introduce the target-enhancing module to generate high-qualified base
model targets in Section 2.3.

2.2 Conditional Pretraining
As aforementioned, different base models often have different properties, e.g., more category
semantic in iBOT while more local semantic in MAE. So the prediction of the new model should be
compatible to any given base model. To resolve a similar issue on RGB image reconstruction, the
works [37, 13, 16] manually select certain features from the mid-level layers of the encoder to better
align with the RGB image target. However, it is almost impossible to manually select certain encoder
features which are compatible to different base models with various properties. Therefore, to improve
the learning performance, the new model should have the conditional adaptation ability regarding a
given SSL base model.

Given a fixed pretrained model, the parameter-efficient fine-tuning scheme introduces trainable
extra modules with a small number of parameters into this pretrained model for adapting it to
downstream tasks in both vision [24, 6] and NLP [22, 27, 33] domains. For example, the prompting
scheme [27, 33, 24] concatenates learnable input tokens, e.g., class token, with patch tokens to
activate certain semantic features of a fixed ViT model that are suitable for specific downstream task.
Also, inserting lightweight adapter modules (e.g., MLP [22, 6] and residual blocks [28]) into a fixed
model can activate and modulate mid-level features of the model to predict features required by the
downstream task. Inspired by these parameter-efficient fine-tuning schemes, we apply the adaptation
scheme in the pretraining stage by introducing conditional adapters into the new model to handle the
diversities of base models. Our adapters are only used for pretraining and will be removed during
finetuning. So they do not increase extra inference cost. Actually, Tab. 8 shows that keeping these
adapters in the inference phase would enhance the parameter-efficient finetuning ability of the model.
We now introduce how to apply adapters, i.e., input and encoder adapters, into the new model.
Input adapter. For ViT networks, one often concatenate a class token with the input patch tokens
to learn the global semantic of the whole input. Since the prompting scheme shows the adaption
ability of the class token, we propose to further enhance the feature adaption ability of class token by
adding an input adapter. The input adapter, composed of a small two-layer MLP layer, as shown in
Fig. 4, enhances the representation ability the class token so that the class token can better activate
features in the new model according to the base model targets supervision. For inference, since input
adapter is shared by all input samples, one can compute it in advance to save inference cost. The
implementation details of input adapter is shown in Appendix.
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Figure 4: The input adapter
and encoder adapter.

Encoder adapter. To modulate mid-level features in the new model so
that it can adapt to the base model targets, we apply a simple MLP with
residual connection [6] as our encoder adapter in the pretraining phase.
As we want to remove adapters after pretraining to save inference
cost, we need to keep the encoder network topology unchanged after
removing adapters. So we put the input of adapters in the middle of the
encoder and merge all adapter outputs at the end of the encoder. The
adapted features are then sent to the multi-target decoder to predict
base model targets, which will be introduced in Section 2.3. The implementation details of encoder
adapter is shown in Appendix.

2.3 Patch-relation enhanced Reconstruction Targets
To better exploit the knowledge of base models in sustainable SSL, in the target-enhancing module,
we construct two complementary targets with enhanced patch-relations: 1) feature-level targets with
patch dimension normalization to strengthen the relations between patches; 2) semantic-related
attention maps to learn relations between semantic-related patches and other patches. The feature
targets reveal semantics of certain patches, while attention maps focus more on feature relations. The
multi-target deocder for predicting these targets is introduced in Appendix.
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Table 1: Semantic segmentation on
ADE20k using Upernet and ViT-B.

Method Epoch mIoU

BEiT [2] 800 47.1
PeCo [12] 800 48.5
GE2-AE [31] 800 48.9
CAE [7] 1600 50.2
CMAE [23] 1600 50.1
MAE [19] 1600 48.1
TECMAE 800 49.9
iBOT 1600 50.0
TECiBOT 800 51.0

Table 2: Comparison with existing SSL methods under
ImageNet-1k fully finetuning using ViT.

Model Method Epoch Guidance Top1 acc.

ViT-Base

MAE [19] 1600 RGB 83.6
TEC 300 MAE 84.7+1.1
TEC 800 MAE 84.8+1.2
iBOT-ImageNet-22K - Momentum 84.4
iBOT [50] 1600 Momentum 84.1
TEC 300 iBOT 84.8+0.7
TEC 800 iBOT 85.1+1.0

ViT-Large MAE [19] 1600 RGB 85.9
TEC 300 MAE 86.5+0.6

Table 3: Parameter-efficient finetuning on ImageNet-1k.
Method Epoch Settings Top 1 acc.

MAE 1600 Linear probing 68.0

TECMAE 800
Linear probing 69.8

+Input adapter FT 72.6
+Encoder adapter FT 79.9

Table 4: TEC accelerates MAE training.
Guide Epoch Top1 acc.

MAE300ep 300 82.9
MAE1600ep 1600 83.6
TEC MAE300ep 100 83.9+1.0
TEC MAE300ep 300 84.3+1.4
TEC MAE1600ep 300 84.7+1.1

Patch-dim normalized feature-level targets. Given a base model, we propose to normalize its target
along the patch dimension to enhance the spatial patch-relations. The implementation is shown in
Appendix. For MIM, this patch-dim normalization can better enhance the spatial relations among
tokens than the widely used feature normalization [41, 39, 1] along channel dimension. This is
because the base model features might have large variances, e.g., a few values are much larger than
other values. Normalization along channel dimension would lead to a degenerated case that only
a few feature values are large while other features have very small values. Thus, patches within
one channel might have very similar values, impair their spatial relations. In contrast, patch-dim
normalization would relieve this issue, and still enhance the inherent spatial relations among patches.
Semantic attention-level targets. Self-attention in pretrained ViT models has a powerful capability of
capturing semantic relations among patch tokens [4, 29]. We then propose to utilize the self-attention
maps as a type of reconstruction targets for MIM to further enhance the semantic relation modeling
capability of the new model. According to previous investigations on effects of self-attention maps in
KD [42, 38], not all attention maps contain useful semantic relations, and severe noisy attentions even
hinder student learning. Accordingly, it is necessary to select parts of attention maps for reducing
the possible severe noise and also helping reduce training cost. Here we utilize the base model class
token which contains sufficient global semantics to select the attention maps of top similar patch
tokens which filters out the possible noises. The implementation details is shown in Appendix.

3 Experiments
We evaluate our TEC on ImageNet-1k [10] with ViT-B/L-16×16 [14] and 224×224 image resolution.
Fully finetuning on ImageNet-1k. We compare the fully finetuning performance of ViT-B on
ImageNet-1k in Tab. 2. It is observed that our TEC outperforms the iBOT/MAE base models with
clear gaps when trained from random initialization. To the best of our knowledge, TEC achieves new
SOTA on ViT-B when solely using ImageNet-1k training data, showing the potential of sustainable
SSL learning. We also verify the scaling ability of our TEC by using the ViT-L model, and find that
TEC surpasses the MAE base model by 0.6% with 300 epochs pretraining from random initialization.
Parameter-efficient finetuning on ImageNet-1k. We test effectiveness of our TEC with parameter-
efficient finetuning for classification on ImageNet-1k using ViT-B, with results shown in Tab. 3.
Under the linear probing setting, TEC outperforms the MAE base model with 1.8%.Finetuning with
input and encoder adapters for pretraining brings considerable gains of 4.6%/11.9% over MAE.
Therefore, adapters used for pretraining can greatly benefit parameter-efficient finetuning.
Accelerating the training of base models. We use a 300-epoch unconverged MAE pretrained ViT-B
model as the base model and train TEC with 100/300 epochs from random initialization. Tab. 4
shows TEC achieves 84.3%/83.9% with 300/100 epochs surpassing the 300-epoch MAE base models
with 1.4%/1.0%. Notably, TEC even outperforms the 1600-epoch pretrained MAE by 0.3% with only
100 epoch training, showing TEC can significantly accelerate the training of the base model.
Transfer learning on semantic segmentation. We show the ADE20k [49] results using Upernet [43]
with ViT-B on Tab. 1. TEC surpasses the iBOT/MAE base models with clear gain, showing greater
transfer learning abilities on semantic segmentation compared to their base models. TEC shows clear
advantages over strong competitors with fewer pretraining epochs, achieving new SOTA.
More results. We show more results and analysis in the Appendix.
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A Method Implementation Details
Implementation of input encoder. The class token T ∈ RC of the ViT is processed by the MLP
layer to obtain an enhanced class token T

′ ∈ RC :

T
′
= MLP(T ),

where C is the embedding dimension. During pretraining, MLP(T ) is appended to the patch tokens.
MLP enhances the representation ability of T and enables the new model to better predict base
model targets with stronger adaptability. MLP(T ) is merged into a class token T

′
by applying the

reparameterization trick [11] for inference without extra inference cost.
Implementation of encoder adapter. Given features X = {Xi, i = 1, . . . , D} from each block of
the new model encoder where D is the number of encoder blocks, we first uniformly divide them
into N groups, in which each group contains 3 blocks by default. Within the nth group, we merge
features from adjacent blocks to obtain feature Zn which can save computational cost:

Zn = FC(Concat(Xi, ..., Xj)). (1)
Then we further feed the feature Zn into an adapter and obtain feature Ze:

Z
′

n = Zn +MLP(Zn), Ze =
∑N

n=1
Z

′

n, (2)

where is MLP is small MLP with 2 layers.
Implementation of patch-dim normalized feature-level targets. Specifically, for an input, assume
its base model target is Y ∈ RL×C where L and C respectively denote patch number and channel
dimension C. Then we normalize Y along patch dimension:

Yf = (Y − µL)/σL, (3)
where µL and σL are mean and variance along the patch dimension. Indeed, Tab. 11(a) shows that
such simple modification significantly improves the new model performance. After normalization,
following [19], new model uses an fully-connected layer followed by the decoder to generate Zf for
predicting the base model target Yf on masked patches:

Lfea = ∥M ◦ (Yf − Zf )∥22, (4)
where M is the mask matrix and ◦ denotes the element-wise product.
Implementation of semantic attention-level targets. Given the attention maps Ac ∈ RH×L between
class token and patch tokens from the last ViT block in base model where L and H respectively
denote patch number and head number, we average the attention map Ac along head dimension
to obtain A

′

c ∈ R1×L. Then, we select top-k patches with the largest values in A
′

c, and further
compute the attention map Ap ∈ RH×k×L among the top-k patches and all patch tokens. Consider
the importance of class token, we further concatenate attention maps between itself and selected
Ap to obtain our final reconstruction targets, i.e., As ∈ RH×(k+1)×L. Note, when we compute As,
a temperature τ is added before the Softmax operation to adjust the attention sharpness. For the
new model, we respectively use two fully-connected layers to project its decoder output into two
predictions Zq ∈ RL×C and Zk ∈ RL×C . We select the same patches as in As from Zq to form
Z

′

q ∈ R(k+1)×C . Then we concatenate the class token cls in new model with Z ′
q and compute the

KQ attention map Za = Softmax([Z
′

q, cls]⊤Zk) ∈ RH×(k+1)×L. Finally, we compute the prediction
loss between the prediction Za and the teacher target As via the entropy loss:

Latt = −As logZa. (5)
Implementation of multi-target decoder. Due to the different property of the two reconstruction
targets, namely feature target and attention target, one decoder in new model for prediction is not
sufficient to handle them at the same time and often tends to results in prediction conflict. But using
separate decoders for each target would increase the trainable parameters and thus training cost. To
solve this problem, we use a simple decoder adaptation scheme which constructs target-specific inputs
and then feed them into a shared decoder. Specifically, we feed the output feature Ze (see Eqn. 2) of
new model encoder into a fully-connected layer and then fill the masked tokens by a learnable mask
token to obtain Z

′

f . Then similarly, given Ze, we can also use a fully-connected layer and a learnable
mask token to obtain Z

′

m. Next, we respectively feed Z
′

f and Z
′

m into a shared transformer-based
decoder for predicting the feature and attention map targets of base model. Unlike the large semantic
gap between encoder output and vanilla image in MAE, the base model target have similar semantics
to the new model predictions. So a shallow 2-layer decoder is enough and is indeed better than the
8-layer decoder used in MAE. This also greatly reduces the training cost.
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Table 5: Comparison with existing SSL methods under ImageNet-1k fully finetuning using ViT. †and
gray color mean trained with implicit /explicit extra data.

Model Method Epoch Guidance Top1 acc.

ViT-Base

DINO [4] 300 NA 82.8
MoCov3 [8] 300 NA 83.2
MixMIM [32] 300 RGB 83.2
MFM [44] 300 Frequency 83.1
BEiT [2] 800 DALLE† 83.2
SplitMask [15] 300 NA 83.6
ConMIM [48] 800 Momentum 83.7
SimMIM [46] 800 RGB 83.8
SIM [36] 1600 Momentum 83.8
CAE [7] 1600 DALLE† 83.9
MaskFeat [39] 1600 HOG 84.0
LoMaR [5] 1600 RGB 84.1
BootMAE [13] 800 RGB+Momentum 84.2
data2vec [1] 800 Momentum 84.2
Mugs [51] 1600 NA 84.3
MVP [40] 300 CLIP† 84.4
PeCo [12] 800 Perceptual codebook 84.5
CMAE [23] 1600 RGB 84.7
Ge2-AE [31] 800 RGB+Frequency 84.8
FD-CLIP [41] 300 CLIP† 84.9
MAE [19] 1600 RGB 83.6
FD-MAE [41] 300 MAE 83.8+0.2

TEC 300 MAE 84.7+1.1

TEC 800 MAE 84.8+1.2

iBOT-ImageNet-22K - Momentum 84.4
iBOT [50] 1600 Momentum 84.1
SemMAE [26] 800 iBOT 84.5+0.4

TEC 300 iBOT 84.8+0.7

TEC 800 iBOT 85.1+1.0

ViT-Large MAE [19] 1600 RGB 85.9
TEC 300 MAE 86.5+0.6

Table 6: Semantic segmentation on ADE20k us-
ing Upernet and ViT-B.

Method Epoch mIoU

BEiT 800 47.1
PeCo 800 48.5
GE2-AE 800 48.9
CAE 1600 50.2
CMAE 1600 50.1

MAE 1600 48.1
TECMAE 800 49.9
iBOT 1600 50.0
TECiBOT 800 51.0

Table 7: Instance segmentation on COCO using
Cascade MaskRCNN and ViT-B.

Method APbbox APmask

Implementation from [50]
iBOT 51.2 44.2
TECiBOT 52.7 45.4

Implementation from [28]
MAE 54.0 46.7
TECMAE 54.4 47.1

B More Experiments

We evaluate our TEC on ImageNet-1k [10] and use it to train ViT [14] with a 16×16 patch size
and 224×224 image resolution. For all experiments, we randomly initialize the models and pretrain
for 300/800 epochs via AdamW [34] of 4,096 batchsize [19]. To make sure the gain is from our
sustainable SSL method instead of extra data or stronger base model , explicit/implicit extra training
data or stronger base models than new models [35] are not used. So we use iBOT [50] and MAE [19]
pretrained ViT models on ImageNet-1k as our base models. We apply the same masking strategy as
in MAE, e.g., 75% masked ratio. See more training details in Section C.

B.1 Performance comparison

B.1.1 Comparison on the ImageNet dataset
Fully finetuning on ImageNet-1k. We compare the fully finetuning performance of ViT-B on
ImageNet-1k in Tab. 5. It is observed that our TEC outperforms the iBOT base model with 0.7%
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Table 8: Top1 accuracy on the ImageNet-1k
dataset under parameter-efficient finetuning.

Method Epoch Settings Top 1 acc.

MAE 1600 Linear probing 68.0

TECMAE 800
Linear probing 69.8

+Input adapter FT 72.6
+Encoder adapter FT 79.9

Table 9: Semi-supervised semantic segmentation
on the ImageNet-S dataset.

Pretrain Method Epoch mIoUval

SSL
MAE 1600 38.3

TECMAE 800 42.9

SSL+FT
MAE 1600+100 61.0

TECMAE 800+100 62.0

when trained with 300 epochs from random initialization. When trained with 800 epochs, the gain
is enlarged to 1.0%, showing TEC benefits from longer training. Similarly, TEC brings gains of
1.1% and 1.2% over the MAE base model with 300/800 epochs pretraining. Though MAE and
iBOT are both strong MIM-based methods, TEC can still further improve them with the proposed
target-enhanced conditional MIM scheme, verifying its effectiveness. With the help of SSL base
models, TEC outperforms other SSL methods with similar or less training cost, including methods
trained with implicitly extra data, e.g., MVP [40] and FD-CLIP [41]. Compared to iBOT trained
with large-scale ImageNet-22k dataset, TEC has the gain of 0.7% with only ImageNet-1k data,
indicating TEC is more effective than enlarging the training cost of the base model. To the best of
our knowledge, TEC achieves new SOTA on ViT-B when solely using ImageNet-1k training data,
showing the potential of sustainable SSL learning. We also verify the scaling ability of our TEC by
using the ViT-L model, and find that TEC surpasses the MAE base model by 0.6% with 300 epochs
pretraining from random initialization.
Parameter-efficient finetuning on ImageNet-1k. Parameter-efficient finetuning methods, e.g., linear
probing, enable finetuning a small number of parameters on the downstream task. Here we test
effectiveness of our TEC with parameter-efficient finetuning for classification on ImageNet-1k using
ViT-B, with results shown in Tab. 8. Under the linear probing setting, TEC outperforms the MAE
base model with 1.8%, indicating the learnt new model contains more category-related semantic
information. The input and encoder adapters for pretraining can also be used for parameter-efficient
finetuning. Finetuning with the input adapter, i.e., prompting, brings a considerable gain of 4.6%.
When finetuned with input and encoder adapters, the performance gain with MAE is enlarged to
11.9%. Therefore, adapters used for pretraining can greatly benefit parameter-efficient finetuning.
Semantic segmentation on ImageNet-S. To test the pixel-level representation ability of TEC
pretrained models, we conduct semantic segmentation finetuning on ImageNet-S [17] that has pixel-
level training labels. We use ViT-B as the segmentation model without extra segmentation head, since
the pretraining and finetuning data have no domain shift. Tab. 9 shows that when finetuning with SSL
pretrained models, TECMAE improves MAE base model by 4.6% mIoU. When using supervised
ImageNet fully-finetuned pretraining, TECMAE achieves a gain of 1.0% over MAE.

B.1.2 Transfer learning on downstream tasks

Here we investigate the transfer learning ability of TEC models on downstream tasks.
Semantic segmentation. For semantic segmentation on the ADE20k [49] dataset, we use Uper-
net [43] with ViT-B as the segmentation model. Tab. 6 shows TECiBOT surpasses the iBOT base
model by 1.0% mIoU, and TECMAE achieves a 1.8% gain over its MAE base model. It can be
seen that TEC pretrained models show greater transfer learning abilities on semantic segmentation
compared to their base models. Also, TEC shows clear advantages over strong competitors with
fewer pretraining epochs. For example, it outperforms MAE, CAE [7], and CMAE [23] by 2.9%,
0.8% and 0.9%, achieving new SOTA.
Instance segmentation. For instance segmentation on the COCO [30] dataset, to make fair compar-
isons and save reproduce costs, we apply the Cascade MaskRCNN [3] implemented by iBOT [50] and
ViTDet [28] for TEC with iBOT/MAE base models. Tab. 7 shows that TEC surpasses the iBOT base
model by 1.5% on box AP and 1.2% on mask AP. Using the Cascade MaskRCNN implementation
from ViTDet, TEC still achieves a gain of 0.4% on box AP and 0.4% on mask AP, indicating stable
improvements of TEC.
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B.2 Ablation and Analysis

We give the ablation study and analysis of our proposed method. By default, models are pretrained
with 300 epochs and evaluated with the fully finetuning on ImageNet-1k.
Conditional pretraining. The conditional modules, i.e., input/encoder adapters, aid
the SSL pretraining under different base models. Tab. 12 shows adapters stably im-
prove the performance by 0.4% and 0.2% when using MAE and iBOT as base models.
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Figure 5: The average proportion of
encoder adapters contributing to the
encoder output Ze.

In Tab. 11(b), with MAE base model, input adapters improve
0.1% over baseline and encoder adapters further brings a gain
of 0.3%. To observe the adaptation difference to base models,
we show the average proportion of encoder adapters contribut-
ing to the encoder output Ze in Fig. 5. iBOT base model
requires adapters to provide more features from deeper layers,
while MAE base model makes adapters focus more on shallow
layers, which is constant with their properties, i.e., iBOT base
model has more high-level category semantics while MAE
model has more low-level image details.
Feature normalization on different dimensions. We normal-
ize target features on the patch dimension to stress the relative relations among patches, which differs
from existing methods that normalize on the channel dimension. In Tab. 11(a), normalizing on patch
dimension achieves 0.3% gain than channel-dim normalization. While the channel-dim normalization
has no effect compared to the unnormalized version. Channel-dim normalization emphasizes the
feature difference in channels. Instead, our patch-dim normalization stresses the relations among
patches, which is compatible to the patch-prediction in the MIM scheme. Tab. 12 shows training with
patch-dim normalized feature has the 0.6%/0.4% gain over MAE/iBOT base models, showing its
robustness over base models.
Semantic-related attention. The KQ attention maps naturally contain the semantic relations among
patches, thus are used as the targets to enhance the patch-relation property of base model targets.
Tab. 12 shows that using attention maps further improves the models trained with patch-dim normal-
ization. Tab. 11(e) compares the effects of different types of attention maps. Only using the attention
maps of the class token has no improvement, while the attention of semantic-related patches brings
0.2% gain over baseline. Therefore, it is the relation among patches that helps the MIM training.
Compared to using all attention maps, using the selected semantic-related attention maps brings
larger gain by reducing the noise.
Accelerating the training process of base models. By default, we use the fully pretrained SSL
models as base models. To verify if the proposed TEC can improve an unconverged SSL model,
we use a 300-epoch MAE pretrained ViT-B model as the base model and train TEC with 100/300
epoch from random initialization. As shown in Tab. 11(d), the 300-epoch pretrained MAE gives
the performance of 82.9%. In comparison, TECMAE300ep achieves 84.3%/83.9% with 300/100
epochs, surpassing the 300-epoch MAE base models with 1.4%/1.0%. Notably, TECMAE300ep even
outperforms the 1600-epoch pretrained MAE by 0.3% with only 100 epoch training, showing TEC
can significantly accelerate the training process of the base model. Still, the TECMAE1600ep taught
with 1600-epoch MAE base model further improves the TECMAE300ep by 0.4%, indicating our
sustainable learning scheme relies on good base models to achieve better performance.

Table 10: Towards general sus-
tainable SSL by using the TEC
as new base model.
Model Base Epoch Top1 acc.

iBOT - 1600 84.1
TECiBOT iBOT 800 85.1
TEC TECiBOT 800 85.2

Towards general sustainable SSL. To make more steps towards
sustainable SSL, we use the TEC pretrained models as the base
model for a new round of TEC pretraining. Tab. 10 shows that the
second-round TEC trained with the first-round TEC base model
achieves 85.2%. The possible reason for the smaller improvement
in the second round is caused by the limited network capacity or
two-rounds of TEC pretraining learns similar knowledge.
Initializing new model with base model weights or not. The
new models in the TEC framework are trained from random ini-
tialization. Tab. 11(c) compares the new model performance
with/without loading the pretrained weights of base models. Randomly initialized new model
outperforms the model loaded with pretrained base model weights by 0.4%. We assume that ran-
domly initialized new models avoid the local minima of the base model, and the new model learns a
different weight distribution compared to the base model.
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Table 11: Ablation study on ImageNet-1K fully finetuning setting using ViT-B.

(a) Patch-norm features.

Top1 acc.
MAE base 83.6
NA 83.9
Feature dim. 83.9
Patch dim. 84.2

(b) Effect of adapters.

Top1 acc.
MAE base 83.6
No adapter 84.2
+ input adapter 84.3
+ encoder adapter 84.6

(c) Init. with base model pretrain.

Top1 acc.

iBOT base 84.1
Load 84.4
Not load 84.8

(d) TEC accelerates MAE training.

Epoch Top1 acc.
MAE 1600 83.6
TECMAE1600ep 300 84.7+1.1

MAE 300 82.9
TECMAE300ep 100 83.9+1.0
TECMAE300ep 300 84.3+1.4

(e) Effect of semantic-related patch attention.

Top1 acc.
iBOT base 84.1
No attention 84.5
Cls token only 84.5
All attention 84.6
Attention select 84.7

Table 12: Ablation study on ImageNet-1K fully finetuning setting using ViT-B.

Patch-norm. feature Semantic attention Adapters MAE base iBOT base
Base model performance 83.6% 84.1%

✓ 84.2% 84.5%
✓ ✓ 84.3% 84.7%
✓ ✓ 84.6% 84.7%
✓ ✓ ✓ 84.7% 84.8%

C Experiment Implementation Details

Pretraining settings on ImageNet-1k. We follow the standard ViT network implemented in MAE.
We give the pretraining settings in Tab. 13, which follows the training settings in MAE. Due to
different properties of SSL teacher models, we set different parameters of semantic-related attention
for MAE and iBOT teacher models as shown in Tab. 14.

Inspired by [1], we utilize the average of the last 2 blocks of the teacher model as the target. We
measure the CKA similarity [25] of each mid-layer block to the output of the last block, and we
observe the high feature similarity of last two blocks. Therefore, average features of last 2 layers are
used.
Fully finetuning settings on ImageNet-1k. We give the fully finetuning settings on ImageNet-1k
in Tab. 15. We observe that TECs trained with different teachers may have different properties. Since
their teachers have different layer decay values, we set different layer decay values for TECs trained
with different teachers.
Parameter-efficient finetuning settings on ImageNet-1k. Following MAE, we set linear probing
settings are shown in Tab. 16. For parameter-efficient finetuning with the input adapter, we use the
same training settings as used by the liner probing in Tab. 16. When finetuning with the encoder
adapters, we use the same training settings as used by the fully finetuning in Tab. 15 due to more
parameters are contained in encoder adapters.
Semi-supervised semantic segmentation finetuning on ImageNet-S. We give the training settings
of semi-supervised semantic segmentation finetuning on ImageNet-S in Tab. 17. We set different
learning rates and layer decay weights for initializing with pretrained weights with/without fully
finetuning.
Downstream task settings. For semantic segmentation on ADE20K, we use the MMSegmentation [9]
implementation of Upernet. The training configurations are following the MAE training configuration
in MMSegmentation. For instance segmentation on COCO, we follow the training configurations of
iBOT and ViTDet for TECiBOT and TECMAE with no change.
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Table 13: Pretraining settings.

Configuration Value

Optimizer AdamW
Base learning rate 1.5e-4
Weight decay 0.05
Optimizer momentum β1, β2=0.9, 0.95
Batch size 4096
Learning rate schedule Cosine decay
Warmup epochs 40
Augmentation RandomResizedCrop

Table 14: Parameters of semantic-related attention.

Teacher τ k

MAE (ViT-base) 1.8 15
MAE (ViT-large) 1.4 15
iBOT (ViT-base) 1.0 9

Table 15: Settings of fully finetuning and parameter-efficient finetuning with encoder adapters.

Configuration Value

Optimizer AdamW
Base learning rate 1e-3
Min learning rate 1e-6 (B), 1e-5(L)
Weight decay 0.05
Optimizer momentum β1, β2=0.9, 0.999
Layer-wise lr decay 0.55 (MAE-B), 0.65 (iBOT-B), 0.65 (MAE-L)
Batch size 1024
Learning rate schedule Cosine decay
Warmup epochs 20 (B), 5 (L)
Training epochs 100 (B), 50 (L)
Augmentation RandAug (9, 0.5)
Label smoothing 0.1
Mixup 0.8
Cutmix 1.0
Drop path 0.1

Table 16: Settings of linear probing and parameter-efficient finetuning with the input adapter.

Configuration Value

Optimizer LARS
Base learning rate 0.1
Weight decay 0
Optimizer momentum 0.9
Batch size 16384
Learning rate schedule Cosine decay
Warmup epochs 10
Training epochs 90
Augmentation RandomResizedCrop
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Table 17: Settings of semantic segmentation finetuning on ImageNet-S.

Configuration Value

Optimizer AdamW
Base learning rate 5e-4 (SSL), 1e-4 (SSL+FT)
Weight decay 0.05
Optimizer momentum β1, β2=0.9, 0.999
Layer-wise lr decay 0.60 (SSL), 0.45 (SSL+FT)
Batch size 256
Learning rate schedule Cosine decay
Warmup epochs 5
Training epochs 100
Augmentation RandomResizedCrop
Drop path 0.1
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