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Abstract

Understanding self-supervised learning is challenging. Previous theoretical works
study the role of pretraining losses, and view neural networks as general black
boxes. However, the recent work of Saunshi et al. [2020] argues that the model
architecture also has significant influences on the downstream performance of
self-supervised learning. In this work, we provide the first theoretical analysis of
self-supervised learning that incorporates the effect of inductive biases originating
from the model class. In particular, we focus on contrastive learning — a popular
self-supervised learning method that is widely used in the vision domain. We show
that when the model has limited capacity, contrastive representations would recover
certain special clustering structures that are compatible with the model architecture,
but ignore many other clustering structures in the data distribution. As a result, our
theory can capture the more realistic setting where contrastive representations have
much lower dimensionality than the number of clusters in the data distribution.

1 introduction

Recent years have witnessed the effectiveness of pre-trained representations, which are learned
on unlabeled data with self-supervised losses and then adapted to a wide range of downstream
tasks [Chen et al., 2020a,b, He et al., 2020, Caron et al., 2020, Chen et al., 2020c, Gao et al., 2021, Su
et al., 2021, Chen and He, 2020, Brown et al., 2020, Radford et al., 2019]. However, understanding
the empirical success of this emergent pre-training paradigm is still challenging. It requires novel
mathematical frameworks and analyses beyond the classical statistical learning theory. The prevalent
use of deep neural networks in self-supervised learning also adds to the mystery.

Many theoretical works focus on isolating the roles of self-supervised losses, showing that they
encourage the representations to capture certain structures of the unlabeled data that are helpful for
downstream tasks [Arora et al., 2019, HaoChen et al., 2021, 2022, Wei et al., 2021, Xie et al., 2021,
Saunshi et al., 2020]. However, these works oftentimes operate in the sufficient pre-training data
(polynomial in the dimensionality) or even infinite pre-training data regime, and view the neural
network as a black box. The only relevant property of neural networks in these works is that they
form a parameterized model class with finite complexity measure (e.g., Rademacher complexity).

Recently, Saunshi et al. [2022] argue that the pre-training loss is not the only contributor to the
performance of self-supervised learning, and that previous works which view neural networks as
a black box cannot tell apart the differences in downstream performance between architectures
(e.g., ResNet [He et al., 2015] vs vision transformers [Dosovitskiy et al., 2020]). Furthermore,
self-supervised learning with an appropriate architecture can possibly work under more general
conditions and/or with fewer pre-training data than predicted by these results on general architecture.
Therefore, a more comprehensive and realistic theory needs to take into consideration the inductive
biases of architecture.
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Figure 1: A simple example where the linear function class learns the correct feature and
ignores the spurious feature. A simplified version of the synthetic example proposed in Saunshi
et al. [2022]. The orange points are the original data and blue points are augmented data (obtained
by adding noise in the spurious dimension). The dimension invariant to augmentation is desired.
Edges represent positive pairs that are constructed from augmentation. We say a real-valued function
implements a cluster if it outputs constant 1 on the cluster and outputs 0 on all other data. The
figure above shows two possible ways to partition the data into two clusters, but only the one on the
left-hand side (which captures the invariant dimension) is implementable by a linear function. Note
that linear model is not composed with a threshold function. The partition on the right hand side is
not implementable because any linear model that outputs constant 1 on the upper-left small cluster
would also output 1 on the bottom-left small cluster due to linear extrapolation.

This paper provides the first theoretical analyses of the inductive biases of nonlinear architectures in
self-supervised learning. Our theory follows the setup of the recent work by HaoChen et al. [2021]
on contrastive learning and can be seen as a refinement of their results by further characterizing the
model architecture’s impact on the learned representations.

We recall that HaoChen et al. [2021] shows that contrastive learning, with sufficient data and a
parameterized model class of finite complexity, is equivalent to spectral clustering on a so-called
population positive-pair graph, where nodes are augmented images and an edge between the nodes
x and x′ is weighted according to the probability of encountering (x, x′) as a positive pair. They
essentially assume that the positive-pair graph contains several major semantically-meaningful
clusters, and prove that contrastive representations exhibit a corresponding clustering structure in the
Euclidean space, that is, images with relatively small graph distance have nearby representations.

Their results highly rely on the clustering property of the graph—the representation dimensionality
and pre-training sample complexity both scale in the number of clusters. The important recent work
of Saunshi et al. [2022], however, demonstrates with a synthetic setting that contrastive learning can
provably work with linear model architectures even if the number of clusters is huge (e.g., exponential
in the dimensionality). Beyond the simple synthetic example discussed in their paper, there has been
no previous work that formally characterizes this effect in a general setting.

In this work, we develop a general theory that leverages the inductive bias to avoid the dependency
on the potentially huge number of clusters: although there exists a large number of clusters in the
positive-pair graph, the number of clusters implementable by the model (which we call minimal
implementable clusters) could be much smaller, even exponentially. Figure 1 shows an example
where a linear function can only implement one clustering structure but not the other, despite both
being valid clusters in the positive-pair graph. It’s possible that a minimal implementable cluster
consists of multiple well-separated sub-clusters but none of these sub-clusters can be implemented by
the model class.

We show that contrastive representations would only recover the clustering structures that are
compatible with the model class, hence low-dimensional contrastive learned representations would
work well on the downstream tasks. Concretely, suppose the number of minimal implementable
clusters is m and the number of natural clusters in the graph is m̃ (typically much larger than
m). HaoChen et al. [2021] prove the efficacy of contrastive learning assuming the representation
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dimensionality (hence also sample complexity) is larger than m̃. We develop a new theory
(Theorem 1) that makes the representation dimensionality only depend on m instead of m̃. We
also extend this result to a more complex setting where we can deal with even more structured
clusters, e.g., when there are 2s clusters with certain geometric structures, but the representation
dimensionality can scale with only s instead of 2s. See Theorem 2 and its instantiation on Example 1
for this result. In Section C we instantiate our theory on several synthetic data distributions and
show that contrastive learning with appropriate model architectures can reduce the representation
dimensionality, allowing better sample complexity. In Section D we provide experimental results to
support our theory.

2 From clusters to minimal implementable clusters

In this section, we introduce our main theoretical results regarding the role of inductive biases of
architectures in contrastive learning. Recall that contrastive learning encourages two different views
of the same input (also called a positive pair) to have similar representations, while two random
views of two different inputs (also called a negative pair) have representations that are far from each
other. Formally, we use pdata to denote the distribution of a random view of random input, use ppos to
denote the distribution of a random positive pair, and X to denote the support of pdata. For instance,
X is the set of all augmentations of all images for visual representation learning.

Following the setup of HaoChen et al. [2022], for a representation map f : X → Rk where k is the
representation dimensionality, we learn the contrastive representation by minimizing the following
generalized spectral contrastive loss:

Lλ(f) := E(x,x+)∼ppos
[
∥∥f(x)− f(x+)

∥∥2
2
] + λ ·R(f), (1)

where λ > 0 is a hyperparameter indicating the regularization strength, and the regularizer normalizes
the representation covariance towards the identity matrix:

R(f) :=
∥∥Ex∼pdata

[f(x)f(x)⊤]− I
∥∥2
F
. (2)

This loss is very similar to the popular Barlow Twins loss [Zbontar et al., 2021] and has been shown
to empirically work well [HaoChen et al., 2021]. Theoretically, the prior work proposes the notion of
positive-pair graph with X being the vertex set and an edge between the nodes x and x′ is weighted
according to the probability of encountering (x, x′) as a positive pair (i.e., ppos(x, x′)). Their
analysis shows that learning contrastive representations with the above loss is equivalent to spectral
clustering Ng et al. [2001] on this positive-pair graph, hence can learn meaningful representations
when the graph has clustering structures.

Different from the prior work, we study the representation map that minimizes the contrastive loss
within a certain function class F . Here we assume functions in F map data in X to representations
in Rk for some dimensionality k. Our key assumption involves assuming that the function class
cannot break the positive-pair graph into too many clusters, which is formalized by the notion of
minimal implementable clusters. Let {S1, S2, · · · , Sm} be a m-way partition of X , i.e., they are
disjoint non-empty subsets of X such that X = ∪i∈[m]Si. We say {S1, S2, · · · , Sm} are minimal
implementable clusters with respect to F when both the following two assumptions (Assumption 1
and Assumption 2) hold.

For any x ∈ X , let idx be the index such that x ∈ Sidx . Our first assumption requires that there is not
much connection between any two clusters, which is formalized as below.
Assumption 1 (α-separabiliity). The probability of a positive pair belonging to two different sets is
less than α:

Pr
(x,x+)∼ppos

(idx ̸= idx+) ≤ α. (3)

Our second assumption assumes that no function in the function class can break one cluster into two
well-separated sub-clusters. Let S ⊂ X be a subset of X , pSdata be the distribution pdata restricted
to set S, and pSpos be the positive pair distribution ppos conditioned on both datapoints in the pair
belonging to set S. For any function g : S → R, we define the following expansion quantity:

QS(g) :=
E(x,x+)∼pS

pos
[(g(x)− g(x+))2]

Ex∼pS
data,x

′∼pS
data

[(g(x)− g(x′))2]
. (4)
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We let QS(g) = ∞ if the denominator is 0. Here the numerator represents the discrepancy between a
random positive pair, and the denominator represents the global variance of g. Intuitively, a smaller
value QS(g) means that function g does a better job at separating the set S into disjoint sub-clusters,
and hence implements an inner-cluster connection structure that is sparse. For instance, if S contains
two disjoint sub-clusters, and g has different constant values on each of them, then QS(g) = 0. On
the other hand, if S is densely connected, then QS(g) > 0 regardless of the choice of g.

We have the following assumption for the function class F , which says that any implementable
inner-cluster connection cannot be too sparse.
Assumption 2 (F-implementable inner-cluster connection larger than β). For any function f ∈ F
and any linear head w ∈ Rk, let function g(x) = w⊤f(x). For any i ∈ [m] we have that:

QSi(g) ≥ β. (5)

We note that when the function class F contains all the functions from X to Rk, Assumption 2
recovers the standard Rayleigh quotient. In this case, Assumption 1 and Assumption 2 essentially
say that {S1, S2, · · · , Sm} are well-separated clusters in the positive-pair graph, but each of them
has large internal expansion. However, when F has limited capacity, each cluster Si can still contain
well-separated sub-clusters, but just those sub-clusters cannot be implemented by functions in F .

Assumption 2 implies that the function class cannot be too expressive. However, in order for the
learned representation map to be useful for downstream tasks, it needs to be expressive enough to
represent the useful information. Thus, we introduce the following assumption on the function class.
Assumption 3 (Implementability). Recall that idx is the index such that x ∈ Sidx . There exists a
function f ∈ F such that f(x) = eidx for all x ∈ pdata where ei ∈ Rm is the vector where the i-th
dimension is 1 and other dimensions are 0.

We also introduce the following assumption which is true for any function class implemented by a
neural network where the last layer is linear:
Assumption 4 (Closure under scaling). For any function f ∈ F and vector u ∈ Rm, define function
f ′(x) = u⊙ f(x) where ⊙ means element-wise product. Then, we have f ′ ∈ F .

We consider downstream tasks that are r-way classification problems with label function y(·) : X →
[r]. We assume that the downstream task aligns with the minimal implementable clusters:
Assumption 5. The downstream label y(x) is a constant on each Si.

Let Pmin := mini∈[m] Prx∼pdata
(x ∈ Si) and Pmax := maxi∈[m] Prx∼pdata

(x ∈ Si) be the sizes
of the smallest and largest sets respectively. Under the above assumptions, we have the following
theorem that shows learning a representation map within F and representation dimensionality k = m
can solve the downstream task:
Theorem 1. Suppose {S1, S2, · · · , Sm} are minimal implementable clusters with respect to F (i.e.,
Assumptions 1 and 2 hold), and the function class F satisfies Assumptions 3 and 4. For λ > α/Pmin,
consider a learned representation map f̂ = argminf∈F Lλ(f) that minimizes the contrastive loss.
Then, when k = m, for any downstream task that satisfies Assumption 5, there exists a linear head
W ∈ Rr×k which achieves downstream error

Ex∼pdata

[∥∥Wf̂(x)− ey(x)
∥∥2
2

]
≤ α

β
· Pmax

Pmin − α
. (6)

We note that Pmax ≈ Pmin when the partitions are balanced. Thus, so long as α ≪ Pmin (i.e., the
probability of a positive pair crossing different clusters is smaller than the probability of it containing
data from the smallest cluster), the right-hand side is roughly α/β. Thus, when the inter-cluster
connection α is smaller than the inner-cluster connection that is implementable by the function class
β, the downstream accuracy would be high.

3 Conclusion

In this paper, we provide a theoretical analysis of contrastive learning that incoporates the inductive
biases of the model class. We note that our work only concerns the inductive biases originating
from the model architecture, whereas in practice the learned representations also depend on the
optimization method. Hence, one interesting future direction would be studying how the implicit bias
introduced by the optimizer influences self-supervised learning.
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A Related works

The empirical success of contrastive learning has attracted a series of theoretical works that study the
contrastive loss [Arora et al., 2019, HaoChen et al., 2021, 2022, Tosh et al., 2020, 2021, Lee et al.,
2020, Wang et al., 2021, Nozawa and Sato, 2021, Ash et al., 2022, Tian, 2022], most of which treat
the model class as a black box except for Lee et al. [2020] which studies the learned representation
with linear models, and Tian [2022] and Wen and Li [2021] which study the training dynamics of
contrastive learning for linear and 2-layer ReLU networks.

Several theoretical works also study non-contrastive methods for self-supervised representation
learning [Wen and Li, 2022, Tian et al., 2021, Garrido et al., 2022, Balestriero and LeCun, 2022].
There are also works theoretically studying self-supervised learning in other domains such as language
modeling [Wei et al., 2021, Xie et al., 2021, Saunshi et al., 2020].

B An eigenfunction viewpoint

In this section, we introduce an eigenfunction perspective that generalizes the theory in the previous
section to more general settings. We first introduce the background on eigenfunctions and discuss its
relation with contrastive learning. Then we develop a theory that incorporates the model architecture
with assumptions stated using the language of eigenfunctions. The advantage over the previous
section is that we can further reduce the required representation dimensionality when the minimal
implementable clusters exhibit certain internal structures.

Our theory relies on the notion of Laplacian operator L which maps a function g : X → R to another
function L(g) : X → R defined as follows.

L(g)(x) := g(x)−
∫
ppos(x, x

′)

pdata(x)
g(x′)dx′. (7)

We say a function g is an eigenfunction of L with eigenvalue ψ ∈ R if for some scalar ψ

Ex∼pdata

[
(ψ · g(x)− L(g)(x))2

]
= 0. (8)

This essentially means that L(g) = ψ · g on the support of pdata. Intuitively, small eigenfunctions
(i.e., eigenfunctions with small eigenvalues) correspond to clusters in the positive-pair graph. To see
this, let g implement the indicator function of cluster S, i.e., g(x) = 1 if x ∈ S, and g(x) = 0 if
x /∈ S. One can verify that L(g)(x) = 0 for all x, thus g is an eigenfunction with eigenvalue 0.

In this section, we provide a generalized theory based on characterizing the implementability of
eigenfunctions. Intuitively, we will assume that there exists k (and only k) orthogonal eigenfunctions
in the function class with very small eigenvalue, and the downstream task can be solved by these
eigenfunctions. More formally, let ϕ ≥ 0 be a very small real number (can be thought as 0), and
feig(x) : X → Rk be a k-dimensional representation map in the function class F such that

E(x,x+)∼ppos

[∥∥feig(x)− feig(x
+)
∥∥2
2

]
≤ ϕ (9)

and

Ex∼pdata

[
feig(x)feig(x)

⊤] = I. (10)

Intuitively, when ϕ is small, each dimension of feig corresponds to one eigenfunction of the graph
Laplacian with small eigenvalue, as formalized by the following Proposition 1 in the case of ϕ = 0.

Proposition 1. For any i ∈ [k] and any function feig satisfying equation 9 with ϕ = 0 and equation 10,
we have that function g(x) = feig(x)i is an eigenfunction of L with eigenvalue 0.

Recall that our assumptions in the previous section intuitively say that even though a larger number
of clusters exist in the positive-pair graph, many of them are not implementable by the function class.
From the eigenfunction viewpoint, this means that only a small number of eigenfunctions with small
eigenvalue are in the function class. Thus, we can make the following corresponding assumption
which says that the vector-valued function feig contains all the implementable eigenfunctions with
small eigenvalue.
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Assumption 6. Suppose g is a function implementable by F (in the sense that g(x) = f(x)i for
some f ∈ F and i ∈ [k]) and

E(x,x+)∼ppos
[(g(x)− g(x+))2] ≤ ϕ̃ · Ex∼pdata

[
g(x)2

]
, (11)

then there exists w̃ ∈ Rk such that

Ex∼pdata

[
(w̃⊤feig(x)− g(x))2

]
≤ ϵ. (12)

Here both ϕ̃ and ϵ are very small and can be thought as 0.

We consider downtream tasks that can be solved by feig. Let y⃗(x) ∈ Rr be a vector that represents
the downstream label of data x (e.g., the one-hot embedding of the label when the downstream task is
classification). We have the following assumption on the downstream task:
Assumption 7. There exists a linear head W ∗ ∈ Rr×m with norm ∥W ∗∥F ≤ B such that

Ex∼pdata

[∥∥W ∗feig(x)− y⃗(x)
∥∥2
2

]
≤ ζ. (13)

Here ζ is very small and can be thougth as 0.

We have the following theorem using the above two assumptions:

Theorem 2. Suppose function feig ∈ F satisfies Assumptions 6 with (ϕ̃, ϵ) and Assumption 7 with
(B, ζ). Suppose ϕ̃ > ϕ or ϕ̃ = ϕ = 0. Then, for any λ > 0 such that ϕ ≤ ϕ̃(1−

√
ϕ/λ) and learned

representation map f̂ = argminf∈F Lλ(f), there exists a linear head W ∈ Rr×k such that

Ex∼pdata

[∥∥Wf̂(x)− y⃗(x)
∥∥2
2

]
≲ ζ +B2k

(
ϵ+

ϕ

λ

)
. (14)

Since ζ, ϵ and ϕ are all very small values, the RHS of equation 14 is very small, hence the learned
representation acheives small downstream error. As we will see in the first example in the next
section, Theorem 2 indeed allows the representation dimensionality to be smaller than the number of
minimal implementable clusters in the graph, hence generalizes the result in the previous section.

C Instantiations on several synthetic data distributions

In this section, we instantiate our previous theory on several examples of data distributions and
show that when the model class has limited capacity, one can learn low-dimensional representations
using contrastive learning and solve the downstream task with simple linear probing. In all of these
examples, if we use a much more expressive model class, the representation dimensionality needs
to be much higher, and hence more downstream samples are needed. These results demonstrate the
benefit of leveraging inductive biases of the model architecture in contrastive learning.

C.1 Linear functions

Our first example is the hypercube example proposed in Saunshi et al. [2022].
Example 1. The natural data x̄ ∼ {−1, 1}d is the uniform distribution over the d-dimensional cube.
Given a natural data x̄, an augmented data x ∼ A(x̄) is sampled as follows: first uniformly sample a
scalar τ ∼ [ 12 , 1], then scale the (s+ 1)-th to d-th dimensions of x̄ with τ , while keeping the first s
dimensions the same. Intuitively, the last d− s dimensions correspond to spurious features that can
be changed by data augmentation, and the first s dimensions are invariance features that contain
information about the downstream task. The downstream task is a binary classification problem,
where the label y(x) = sgn(xi) is the sign function of one of the first s dimensions i ∈ [s].

We consider contrastive learning with the linear function class defined below:
Definition 1 (Linear function class). Let U ∈ Rk×d be a matrix and we use fU (x) = Ux to denote
the linear function with weight matrix U . We define the k-dimensional linear function class as
Flinear = {fU : U ∈ Rk×d}.

Saunshi et al. [2022] directly compute the learned representations from contrastive learning. Here we
show that the example can be viewed as an instantiation of our more general Theorem 2. In particular,
we have the following result:
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Theorem 3. In Example 1, suppose we set the output dimensionality as k = s and learn a linear
representation map that minimizes the contrastive loss f̂ = argminf∈Flinear

Lλ(f) for any λ > 0.
Then, there exists a linear head w ∈ Rk such that

Ex∼pdata
[(w⊤f̂(x)− y(x))2] = 0. (15)

In contrast, suppose the function class is the set of universal function approximators Funi. So long as
the output dimensionality is no more than 2d−1, there exists solution f̂ ′ ∈ argminf∈Funi

Lλ(f) such
that for any linear head w ∈ Rk, we have Ex∼pdata

[(w⊤f̂ ′(x)− y(x))2] ≥ 1.

We note that as an implication of the lower bound, previous works that analyze universal function
approximators [Arora et al., 2019, Tosh et al., 2021, HaoChen et al., 2021] wouldn’t be able to show
good downstream accuracy unless the representation dimensionality is larger than 2d−1. In contrast,
our theory that incorporates the inductive biases of the function class manages to show that a much
lower representation dimensionality k = s suffices.

We also note that this example shows a situation where Theorem 2 works but Theorem 1 doesn’t,
hence demonstrating how our theory derived from the eigenfunction viewpoint allows for lower
representation dimensionality. There are 2s model-restricted minimal clusters in the graph, each
encoded by one configuration of the s feature dimensions. However, all the function in Flinear that
implment a cluster span in a s-dimensional subspace, thus we can find s-dimensional eigenfunctions
that satisfies Assumption 6. As a result, learning s-dimensional representations already suffices for
solving the downstream task.

C.2 ReLU networks

In the previous example, the downstream task is only binary classification where the label is defined
by one invariant feature dimension. Here we show that when we use a ReLU network as the model
architecture, the linear probing can solve more diverse downstream tasks where the label can depend
on the invariant feature dimensions arbitrarily.
Example 2. The natural data distribution and the data augmentation are defined in the same way
as Example 1. The downstream task is a r-way classification problem such that the label function
y(·) : X → [r] satisfies y(x) = y(x′) if x1:s = x′1:s. In other words, the label only depends on the
first s dimensions of the data.
Definition 2 (ReLU networks). Let U ∈ Rk×d and b ∈ Rk, we use fU,b = σ(Wx+ b) to denote the
ReLU network with weight U and bias b, where σ is the element-wise ReLU activation. We define the
k-dimensional ReLU network function class as FReLU = {fU,b : U ∈ Rk×d, b ∈ Rk}.

We have the following theorem which shows the effectiveness of the ReLU network architecture.
Theorem 4. In Example 2, suppose we set the output dimensionality k = 2s and learn a ReLU
network representation map f̂ = argminf∈FReLU

Lλ(f) for some λ > 0. Then, we can find a linear
head W ∈ Rr×k such that

Ex∼pdata

[∥∥Wf̂(x)− ey(x)
∥∥2
2

]
= 0. (16)

In contrast, suppose the function class is the set of universal function approximators Funi. So long as
the output dimensionality is no more than 2d−s, there exists solution f̂ ′ ∈ argminf∈Funi

Lλ(f) such

that for any linear head W ∈ Rr×k, we have Ex∼pdata

[∥∥Wf̂ ′(x)− ey(x)
∥∥2
2

]
≥ 1

2 .

C.3 Lipschitz continuous functions

In many real-world settings where a neural network is trained with weight decay, the resulting model
usually has a limited weight norm which encourages the network to have a smaller Lipschitz constant.
The implicit bias of the optimizers can further encourage the smoothness of the learned function. Here
we provide an example showing that restricting the model class to Lipschitz continuous functions
allows us to use lower dimensional representations. In particular, we consider the following example
where a large number of clusters are located close to each other despite being disconnected in the
positive-pair graph. Our result shows that contrastive learning with Lipschitz continuous functions
would group those clusters together, allowing for lower representation dimensionality.

9



Example 3. Let S1, S2, · · · , Sm ⊂ Rd be m manifolds in Rm, each of which contains lots of
disconnected subsets. Suppose the radius of every manifold is no larger than ρ, that is for any
i ∈ [m] and two data x, x′ ∈ Si, we have ∥x− x′∥2 ≤ ρ. We also assume that different manifolds
are separated by γ, that is for any i, j ∈ [m] such that i ̸= j, and x ∈ Si, x′ ∈ Sj , we have
∥x− x′∥2 ≥ γ. The data distribution pdata is supported on S1 ∪ S2 ∪ · · · ∪ Sm and satisfies
Prx∼pdata

(x ∈ Si) = 1/m for every i ∈ [m]. A positive pair only contains data in the same Si.
The downstream task is a r-way classification problem such that the label function y(·) : X → [r]
satisfies y(x) = y(x′) if x and x′ belong to the same set Si.

We introduce the following family of Lipschitz continuous functions with parameter κ:

Definition 3 (κ-Lipschitz continuous functions). A function f ∈ Rd → Rk is κ-Lipschitz if
∥f(x)− f(x′)∥2 ≤ κ ∥x− x′∥2 for all x, x′ ∈ Rd. We define the κ-Lipschtiz function class FLip,κ

as the set of all κ-Lipschitz continuous functions in Rd → Rk.

We have the following theorem:

Theorem 5. In Example 3, suppose κ ≥
√
2m/γ. Let the output dimensionality k = m and learn a

κ-Lipschitz continuous function f̂ ∈ argminFLip,κ
Lλ(f) for some λ > 0. Then, we can find a linear

head W ∈ Rr×k such that

Ex∼pdata

[∥∥Wf̂(x)− ey(x)
∥∥2
2

]
≤ 2rmκ2ρ2. (17)

On the other hand, suppose the positive-pair graph contains m̃ disconnected clusters, and the function
class is the set of universal function approximators Funi. So long as the output dimensionality k < m̃,
there exists solution f̂ ′ ∈ argminf∈Funi

Lλ(f) such that for any linear head W ∈ Rr×k, we have

Ex∼pdata

[∥∥Wf̂ ′(x)− ey(x)
∥∥2
2

]
≥ 1

m̃ .

We note that a smaller κ (hence smoother function class) decreases the RHS of equation 17 and leads
to better downstream performance.

C.4 Convolutional neural networks

Our last example shows that convolutional neural networks can learn contrastive representation more
efficiently than fully connected networks when the downstream task has a certain rotational invariance
structure. We consider the following data generative model where the data contains a feature patch
that determines the downstream label.

Example 4. The natural data x̄ ∈ Rd is defined as follows: for some consecutive s dimensions
x̄t:t+s−1 (the informative patch), we have x̄t:t+s−1 ∈ {−γ, γ}s where γ > 1. 1 The other d − s
dimensions of x̄ (spurious dimensions) are all in {−1, 1}. Given a natural data x̄, its augmentations
are generated by first sampling τ ∼ Uni[0, 1], then multiplying the spurious dimensions of x̄ by τ ,
while keeping the informative patch the same. The downstream task is a r-way classification problem
such that the label function y(·) : X → [r] satisfies y(x) = y(x′) if the informative patches for x
and x′ are the same.

We consider the following convolutional neural network model with k channels.

Definition 4 (Convolutional neural networks). Let U = [u1, u2, · · · , uk]⊤ ∈ Rk×s and b ∈ Rk.
We use f conv

U,b : X → Rk to represent the following convolutional neural network: f conv
U,b (x)i =∑d

t=1 σ(u
⊤
i xt:t+s−1 + bi), where σ is ReLU activation function. We define the convolutional neural

network class Fconv = {f conv
U,b : U ∈ Rk×s, b ∈ Rk}.

We have the following theorem which shows that contrastive learning with convolutional neural
networks requires lower representation dimensionality than using fully-connected ReLU networks.

Theorem 6. In Example 4, let output dimensionality k = 2s and learn a convolutional neural
network f̂ ∈ argminFconv

Lλ(f) for some λ > 0. Then, we can find a linear head W ∈ Rr×k such

that Ex∼pdata

[∥∥Wf̂(x)− ey(x)
∥∥2
2

]
= 0.

1Here we denote x̄d+i = x̄i.
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On the other hand, suppose the function class is the set of ReLU networks FReLU, so long as the
output dimensionality is less than d × 2s, there exists a function f̂ ′ ∈ argminf∈FReLU

Lλ(f) such

that for any linear head W ∈ Rr×k, we have Ex∼pdata

[∥∥Wf̂ ′(x)− ey(x)
∥∥2
2

]
≥ 1

d·2s .

D Experiments

Recall that our assumptions intuitively state that the model architecture cannot break the data into
too many well-separated clusters. In this section, we propose a method to empirically test how many
clusters a model architecture can partition positive-pair graph of the data distribution into. Given
a deep neural network and a target number of cluster r, ideally we aim to find a function f from
the model class that maps each data point to a one-hot vector in dimension r which includes the
cluster identity. That is, f(x) ∈ {e1, . . . , er} where ei is the i-th natural basis in Rr. With this
constraint, we minimize the disagreement between the functions outputs of a positive-pair, that is,
E(x,x+)∼ppos

[∥f(x)− f(x+)∥22], which compute the amount of inter-cluster edges. However, the
one-hot vector requirement makes it challenging for optimization. Note that when the r clustering has
the same probability mass 1/r, we have E[f(x)f(x)⊤] = I/r. We use this equation as the constraint
of f and arrive at a relaxation of the original optimization program.

br = min E(x,x+)∼ppos
[
∥∥f(x)− f(x+)

∥∥2
2
] s.t. E[f(x)f(x)⊤] = I/r (18)

Thus, we use br as a surrogate for how the architecture can partition the graph into r clusters,
and a smaller br means that it’s easier to partition. We empirically implement equation 18 by
first minimizing the contrastive loss Lλ(fθ) with representation dimension k = r and a heavily-
tuned regularization strength λ. Then, we whiten the obtained model fθ̂(x) to have exactly the
covariance I/r, that is, f̄(x) = Ex∼pdata

[fθ̂(x)fθ̂(x)
⊤]−

1
2 fθ̂(x)/

√
r is a valid solution for the

program in equation 18. We compute br = E(x,x+)∼ppos
[
∥∥f̄(x)− f̄(x+)

∥∥2
2
]. We also try various

choices of λ and pick the smallest result as the final value of the estimated br.

We run this test with a ResNet-18 model on CIFAR-10 and compute the br for r ∈ {10, 100, 500}
list the results the table below. Here we note that br increases from 0.127 to 0.315 as r increases
from 10 to 500, suggesting that although the network can partition the data relatively well into 10
clusters, it cannot partion the data into 500 well-separated clusters, which supports our theoretical
assumptions. More details can be found in Appendix E.

r 10 100 500
br 0.127 0.204 0.315

E Addition experimental details

We train a ResNet-18 model on CIFAR-10 training set and test the br on the test set. We train
with SGD using initial learning rate 0.01 and decays with cosine schedule. All experiments
are run for 200 epochs. We test with r ∈ {10, 100, 500} and grid search using λ ∈
{0.1, 0.3, 1, 3, 10, 30, 100, 300, 1000}, the result for each configurate is listed in the table below.

λ 0.1 0.3 1 3 10 30 100 300 1000
r = 10 0.445 0.127 0.134 0.144 0.151 0.155 0.215 0.343 0.901
r = 100 0.887 0.660 0.408 0.245 0.204 0.220 0.254 0.424 1.579
r = 500 1.031 0.981 0.710 0.554 0.427 0.372 0.315 0.481 1.231

F Proofs for Section 2

Proof of Theorem 1. Let Pi := Prx∼pdata
(x ∈ Si) be the probability of Si. Let f∗ be the function

f∗(x) = 1√
Pidx

eidx . From Assumption 1 and Assumption 3, we have f∗ ∈ F .
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We first show that f∗ achieve small contrastive loss. For the regularizer term, we have

Ex∼pdata

[
f∗(x)f∗(x)⊤

]
=
∑
i∈[m]

Pi ·
1

Pi
· eidxe

⊤
idx = I. (19)

Thus, we have R(f∗) = 0. For the discrepancy term, let Pmin := mini∈[m] Pi be the probability mass
of the smallest set, we have

Ex,x+

[∥∥f∗(x)− f∗(x+)
∥∥2
2

]
≤ 1

Pmin
· Pr
(x,x+)∼ppos

(idx ̸= idx+) ≤ α

Pmin
. (20)

Combining equation 19 and equation 20 we have

Lλ(f
∗) = Ex,x+

[∥∥f∗(x)− f∗(x+)
∥∥2
2

]
+ λ ·R(f) ≤ α

Pmin
. (21)

Since f̂ = argminf∈F Lλ(f) is the minimizer of contrastive loss within the function class, we have

Lλ(f̂) ≤ Lλ(f
∗) ≤ α

Pmin
. (22)

Define matrix

M := Ex∼pdata

[
f̂(x)f̂(x)⊤

]
. (23)

We have

∥M − I∥2F ≤ Lλ(f̂)

λ
≤ α

λPmin
. (24)

Since λ > α
Pmin

, we know that M is a full rank matrix, thus we can define function

f̃(x) :=M− 1
2 f̂(x). (25)

Let

Q := Ex∼pdata

[
f̃(x)f∗(x)⊤

]
, (26)

and

πf (x) := f̃(x)−Qf∗(x). (27)

We know that

Ex∼pdata

[
πf (x)f

∗(x)⊤
]
= Ex∼pdata

[
f̃(x)f∗(x)⊤

]
−QEx∼pdata

[
f∗(x)f∗(x)⊤

]
= 0. (28)

Using Assumption 2 we have:

E(x,x+)∼ppos

[∥∥πf (x)− πf (x
+)
∥∥2
2

]
≥
∑
i∈[m]

(Pi − α) · E(x,x+)∼pposi

[∥∥πf (x)− πf (x
+)
∥∥2
2

]
≥β ·

∑
i∈[m]

(Pi − α) · Ex∼pdatai,x
′∼pdatai

[
∥πf (x)− πf (x

′)∥22
]

=2β ·
∑
i∈[m]

(Pi − α) · Ex∼pdatai

[
∥πf (x)∥22

]
=2β · (1− α

Pmin
) · Ex∼pdata

[
∥πf (x)∥22

]
. (29)

12



On the other hand, we have

E(x,x+)∼ppos

[∥∥πf (x)− πf (x
+)
∥∥2
2

]
≤E(x,x+)∼ppos

[∥∥∥f̃(x)− f̃(x+)
∥∥∥2
2

]
≤
∥∥M−1

∥∥
spec · E(x,x+)∼ppos

[∥∥∥f̂(x)− f̂(x+)
∥∥∥2
2

]
≤
(
1 +

√
α

λPmin

)
· α

Pmin
. (30)

Combining equation 29 and equation 30 we have

Ex∼pdata

[
∥πf (x)∥22

]
≤
(
1 +

√
α

λPmin

)
· α

2β(Pmin − α)
. (31)

By Lemma 1, we know that there exists a matrix U ∈ Rm×m such that

Ex∼pdata

[∥∥∥f∗(x)− UM−1/2f̂(x)
∥∥∥2
2

]
≤
(
1 +

√
α

λPmin

)
· α

2β(Pmin − α)
(32)

≤ α

β(Pmin − α)
. (33)

Thus, if we define matrix W = diag{
√
P1,

√
P2, · · · ,

√
Pm}UM−1/2, then we have

Ex∼pdata

[∥∥∥eidx −Wf̂(x)
∥∥∥2
2

]
≤ PmaxEx∼pdata

[∥∥∥f∗(x)− UM−1/2f̂(x)
∥∥∥2
2

]
(34)

≤ Pmax
α

β(Pmin − α)
, (35)

which finishes the proof.

Lemma 1. Suppose f : X → Rm and g : X → Rm are two functions defined on X such that

Ex∼pdata

[
f(x)f(x)⊤

]
= Ex∼pdata

[
g(x)g(x)⊤

]
= I. (36)

Define the projection of f onto g’s orthogonal subspace as:

πf (x) = f(x)− Ex′∼pdata

[
f(x)g(x)⊤

]
g(x). (37)

Then, there exists matrix U ∈ Rm×m such that

Ex∼pdata

[
∥g(x)− Uf(x)∥22

]
= Ex∼pdata

[
∥πf (x)∥22

]
. (38)

Proof of Lemma 1. Let matrix

U = Ex′∼pdata

[
g(x)f(x)⊤

]
. (39)

We have

Ex∼pdata

[
∥g(x)− Uf(x)∥22

]
(40)

=Ex∼pdata

[
∥g(x)∥22

]
− 2Ex∼pdata

[
g(x)⊤Uf(x)

]
+ Ex∼pdata

[
f(x)⊤U⊤Uf(x)

]
(41)

=m− 2 ∥U∥2F + ∥U∥2F (42)

=m− ∥U∥2F . (43)

13



On the other hand, we have

Ex∼pdata

[
∥πf (x)∥22

]
(44)

=Ex∼pdata

[∥∥f(x)− U⊤g(x)
∥∥2
2

]
(45)

=Ex∼pdata

[
∥f(x)∥22

]
− 2Ex∼pdata

[
f(x)⊤U⊤g(x)

]
+ Ex∼pdata

[
g(x)⊤UU⊤g(x)

]
(46)

=m− ∥U∥2F . (47)

Thus, we have

Ex∼pdata

[
∥g(x)− Uf(x)∥22

]
= Ex∼pdata

[
∥πf (x)∥22

]
, (48)

which finishes the proof.

G Proofs for Section B

Proof of Proposition 1. Define function

g̃(x) =
√
pdata(x)g(x). (49)

Define the symmetric Laplacian operator

L̃(g̃)(x) = g̃(x)−
∫

ppos(x, x
′)√

pdata(x)
√
pdata(x′)

g̃(x′)dx′. (50)

It can be verified that ∫
x

g̃(x)L̃(g̃)(x) = 0. (51)

Notice that the operator L̃ is PSD, we have that∫
x

(L̃(g̃)(x))2 = 0, (52)

which is equivalent to

Ex∼pdata

[
(L(g̃)(x))2

]
= 0, (53)

hence finishes the proof.

Proof of Theorem 2. Notice that Lλ(feig) ≤ ϕ, we know that Lλ(f̂) ≤ ϕ, so∥∥∥Ex∼pdata

[
f̂(x)f̂(x)⊤

]
− I
∥∥∥2
F
≤ ϕ

λ
. (54)

In Assumption 6, set f = f̂ and sum over i = 1, 2, · · · , k, we have that for some matrix W̃ ,

Ex∼pdata

[∥∥∥W̃feig(x)− f̂(x)
∥∥∥2
2

]
≤ kϵ. (55)

Let matrix Q := Ex∼pdata
[f̂(x)f̂(x)⊤], we have that

Ex∼pdata

[∥∥∥Q−1/2f̂(x)− f̂(x)
∥∥∥2
2

]
≤ 2ϕ

λ
· Ex∼pdata

[∥∥∥f̂(x)∥∥∥2
2

]
≤ 2ϕ

λ
k

(
1 +

√
ϕ

λ

)
. (56)

Thus,

Ex∼pdata

[∥∥∥W̃feig(x)−Q−1/2f̂(x)
∥∥∥2
2

]
≤ 2kϵ+

4ϕ

λ
k

(
1 +

√
ϕ

λ

)
. (57)
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Define matrix

M := Ex∼pdata

[
feig(x)Q

−1/2f̂(x)⊤
]

(58)

Using Lemma 1 and equation 55 we have

Ex∼pdata

[∥∥∥feig(x)−MQ−1/2f̂(x)
∥∥∥2
2

]
≤ kϵ. (59)

Thus, using Assumption 7, we have

Ex∼pdata

[∥∥∥W ∗MQ−1/2f̂(x)− ey(x)

∥∥∥2
2

]
(60)

≤2Ex∼pdata

[∥∥W ∗feig(x)− ey(x)
∥∥2
2

]
+ 2Ex∼pdata

[∥∥∥W ∗MQ−1/2f̂(x)−W ∗feig(x)
∥∥∥2
2

]
(61)

≤2ζ + 2B2kϵ+
8ϕ

λ
B2k. (62)

H Proofs for Section C

H.1 Proof for Example 1

Proof of Theorem 3. Define Û = [e1, e2, · · · , es]⊤ ∈ Rs×d. We can verify that

E(x,x+)∼ppos

[∥∥fÛ (x)− fÛ (x
+)
∥∥2
2

]
= 0 (63)

and

Ex∼pdata

[
fÛ (x)fÛ (x)

⊤] = I. (64)

Thus, we can view fÛ as the feig in Section B.

Let U ∈ Rk×d and i ∈ [k] such that

E(x,x+)∼ppos
[(fU (x)i − fU (x

+)i)
2] = 0. (65)

Notice that x and x+ only differs on the s + 1-th to d-th dimensions, we know that Ui is 0 on the
s+ 1-th to d-th dimensions. Thus, we have that Ui is in the span of e1, e2, · · · , es, and as a result
Assumption 6 holds wiht ϵ = 0.

Since the downstream task’s label is equal to xi for i ∈ [s], we can set W ∗ = e⊤i and we would have

Ex∼pdata

[
(W ∗fÛ (x)− y⃗(x))2

]
= 0. (66)

Hence Assumption 7 holds with α = 0 and B = 1.

Applying Theorem 2 finishes the proof for the linear function class case.

For the case of universal function approximators, without loss of generality we assume the downstream
task’s label only depends on the first dimension of x, i.e., y(x) = sgn(x1). When k ≤ 2d−1, we can
construct a function f : X → Rk such that for every diemnsion j ∈ [k], we have f(x)j =

√
k when

x2:d viewed as a binary number equals to j, otherwise f(x)j = 0. It can be verified that Lλ(f) = 0
hence f is a minimizer of the contrastive loss. However, f(x) is agnostic to the first dimension of x,
hence the downstream error is at least 1.

H.2 Proof for Example 2

Proof of Theorem 4. For any vector h ∈ {−1, 1}s, we define function bin(h) ∈ {0, 1, · · · , 2s − 1}
be the function that maps h to the corresponding number when viewing 1

2 (h+ 1) as binary. Since
bin(·) is a one-to-one mapping, we can define U ∈ {k × d} such that the i-th row of U satisfies: the
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first s dimensions equal to
√
k · bin−1(i− 1), and the rest d− s dimensions are 0. Let bias vector

b ∈ Rk such that every dimension is −
√
k · (r − 1). We have fU,b(x) =

√
k · ebin(x1:s)+1 ∈ Rk.

Since Ex∼pdata
[fU,b(x)fU,b(x)

⊤] = I and E(x,x+)∼ppos
[∥fU,b(x)− fU,b(x

+)∥22] = 0, we can view
fU,b as the feig in Section B. Assumption 7 naturally hold wihth B = 1.

For Assumption 6, consider a function fU ′,b′ ∈ FReLU and index i ∈ [k] such that
E(x,x+)∼ppos

[
(fU ′,b′(x)i − fU ′,b′(x

+)i)
2
]
= 0. Suppose there exist x̄ ̸= x̄′ and their augmentations

x, x′ such that fU ′,b′(x)i > fU ′,b′(x
′)i. Then, there must be (Ui)r+1:d ̸= 0 and σ(U⊤

i x) > 0. This
suggests that there must exist another x̃ which is also an augmentation of x̄ but σ(U⊤

i x) ̸= σ(U⊤
i x̃).

Hence, we have

E(x,x+)∼ppos

[
(fU ′,b′(x)i − fU ′,b′(x

+)i)
2
]
> 0, (67)

leading to contradiction. Hence, we know that fU ′,b′(x)i = fU ′,b′(x
′)i, so (fU ′,b′)i can only be a

function of x1:s. Therefore, there exists a vector w ∈ Rk such that fU ′,b′(x)i = w⊤fU,b(x), which
means Assumption 6 holds with ϵ = 0. Applying Theorem 2 finishes the proof for equation 16.

The result about universal function approximators follows the same proof as for Theorem 3 execpt for
constructing the function using the last (d−s) dimensions rather than the last (d−1) dimensions.

H.3 Proof for Example 3

Proof of Theorem 5. Let idx be the index such that x ∈ Sidx , and define function feig(x) =
√
m ·eidx .

It can be verified that feig satisfies equation 9 and equation 10. For f ∈ FLip,κ and i ∈ [m], define
g(x) = f(x)i. Suppose Ex∼pdata

[g(x)2] = 1, we can chooose m data x1, x2, · · · , xm such that
xi ∈ Si and 1

m

∑
i∈[m] g(xi)

2 ≤ 1. Define vector w̃ ∈ Rm such that w̃i =
1√
m

· g(xi). We have

Ex∼pdata

[
(w̃⊤feig(x)− g(x))2

]
=

1

m

∑
i∈[m]

Ex∼Si

[
(g(xi)− g(x))2

]
(68)

≤ 1

m

∑
i∈[m]

κ2ρ2 = κ2ρ2. (69)

Thus, feig satisfies Assumption 6 with ϵ = κ2ρ2.

Since the data in the same Si have the same downstream label, we know that Assumption 7 holds
with B =

√
r and α = 0. Thus, applying Theorem 2 finishes the proof for the upper bound.

For the lower bound, Let set S̃ be the set among those m̃ clusters that has the largest size. When
k < m̃, we can construct a function that maps all data in S̃ to 0, hence the final error would be at
least 1

m̃ .

H.4 Proof for Example 4

Proof of Theorem 6. For any vector h ∈ {−1, 1}s, we define function bin(h) ∈ {0, 1, · · · , 2s−1} be
the function that maps h to the corresponding number when viewing 1

2 (h+1) as binary. Since bin(·) is
a one-to-one mapping, we can define U ∈ {k×s} such that the i-th row of U equal to

√
k

γ−1 ·bin−1(i−
1). Let bias vector b ∈ Rk be such that every dimension is

√
k

γ−1 (−s − (γ − 1)(s − 1)). We have

f conv
U,b (x) =

√
k ·ebin(xt:t+s−1)+1 ∈ Rk, where t is the starting position of the informative patch in x. It

can be verified that Ex∼pdata
[f conv

U,b (x)f conv
U,b (x)⊤] = I and E(x,x+)∼ppos

[
∥∥∥f conv

U,b (x)− f conv
U,b (x+)

∥∥∥2
2
] =

0. Also, Assumption 7 holds with B = 1 when viewing feig = f conv
U,b .

Suppose some function f conv
Û,b̂

and dimension i ∈ [k] satisfies

E(x,x+)∼ppos

[(
f conv
Û,b̂

(x)i − f conv
Û,b̂

(x+)i

)2]
= 0. (70)

Then, we know that for any x ∈ pdata, suppose we define x̃ as the vector that replaces spurious
dimensions of x with 0. Notice that x̃ is in the support of x’s augmentations, and the model
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is continuous, we know f conv
Û,b̂

(x)i = f conv
Û,b̂

(x̃)i Further notice that for any two data x, x′ with

the same informative patch (location might be different) and corresponding x̃, x̃′, there must be
f conv
Û,b̂

(x̃)i = f conv
Û,b̂

(x̃′)i due to the structure of the convolutional neural networks. Thus, We have
f conv
Û,b̂

(x)i = f conv
Û,b̂

(x′)i. This suggests that the funciton f conv
Û,b̂

(·)i is in the span of f conv
U,b , hence finishes

the proof for the upper bound.

For the lower bound, we note that due to the lack of invariance to informative patch location, we can
construct a network with d · 2s-dimensional output that satisfies equation 9 and equation 10. When
then output dimension is less than d · 2s, there would exist a minimizer of the contrastive loss that
merges two of these d · 2s clusters. If these two clusters have different downstream label, there would
be at least 1

d·2s loss incurred due to the data being mapped to the same feature, hence finishes the
proof for the lower bound.
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