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Abstract

Self-supervised pre-training and transformer-based networks have significantly
improved the performance of object detection. However, most of the current self-
supervised object detection methods are built on convolutional-based architectures.
We believe that the transformers’ sequence characteristics should be considered
when designing a transformer-based self-supervised method for the object detection
task. To this end, we propose a novel transformer-based self-supervised learning
method for object detection, which is based on the sequence consistency between
the online and momentum branches. The proposed method minimizes the dis-
crepancy of the output sequences of transformers with different image views as
input and leverages bipartite matching to find the most relevant sequence pairs to
improve the sequence-level self-supervised representation learning performance.
Our method achieves state-of-the-art results on MS COCO (45.6 AP) and PASCAL
VOC (63.9 AP), demonstrating the effectiveness of our approach.

1 Introduction

Object detection is a prediction-intensive process compared with the image classification task,
which needs to locate and classify multiple objects in an image [1]. Existing deep learning-based
object detection frameworks can be divided into one-stage methods [2, 3] and two-stage methods
[4, 5], either of them requires hand-crafted components. Recently, the transformer-based detection
method shows a new object detection paradigm [6, 7], which is a fully end-to-end method without
hand-crafted components. Compared with convolutional-based architectures, transformer-based
architectures define the problem as a sequence-to-sequence process; that is, the transformer converts
the input to a sequence and processes the information in the form of a sequence, and the final
output is also a sequence [8]. The transformer-based architectures do not rely on the inductive bias
characteristics of convolutional-based architectures, such as locality and translation invariance, but
rely on the global information processing procedure based on attention mechanism [8, 9]. However,
the abovementioned detection methods require supervised training, which needs massive labeled data
with extensive human labor since the labeling cost of object detection tasks is much higher than the
image classification tasks.

Self-supervised representation learning could leverage unlabeled data efficiently [10, 11, 12, 13, 14].
By introducing customized pretext tasks, self-supervised representation learning could pre-train a
model with unlabeled data. After that, the pre-trained model can be transferred or fine-tuned to
solve specific tasks. Most self-supervised methods are designed for image classification tasks, which
consider the image as a whole and only use image-level features [15]. However, object detection
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is a prediction-intensive task that requires predicting the location and category of multiple objects
in one image, which needs object-level features. Therefore, directly applying these image-level
self-supervised methods to objection detection tasks would lead to limited improvement. Some recent
approaches [15, 16, 17, 18, 19, 20, 21, 22] utilize the inductive bias characteristics of the convolutional
neural network(CNN) to achieve object-level self-supervised learning, which is unsuitable for the
transformers. More recently, some transformer-based pre-training methods are starting to develop.
UP-DETR [23] utilized random patches as the input to predict the location of the patches. Since
the location of the patch is known, the proposed pretext task is more like a supervised method
with pseudo labels. DETReg [24] relies on mimicking pre-trained model features; thus, the feature
representation’s ability is limited by the selected pre-trained model, limiting the model’s performance.

To solve the aforementioned problems, we take advantage of the sequence characteristics of transform-
ers and propose a self-supervised object detection pre-training method by maintaining the consistency
of sequences from different views of an image. Each output sequence of the transformer decoder
stands for an object prediction, which contains the location and category information of the object.
Thus, the proposed pretext task addresses self-supervised learning on both the location and category
of objects. Considering that the object prediction of each sequence varies under different image
views, we propose to utilize bipartite matching [25] to get the optimal sequence pair to improve the
sequence consistency learning process.

2 Method
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Figure 1: The proposed method contains two branches: the online and momentum branches. The
Online/Momentum Encoder in the figure consists of a CNN backbone and a transformer encoder. The
input of each branch is a different view of the image. Specifically, there is no location coordinates
difference between the two views but only with content distortion difference. After being processed
by the transformers, all object queries become the output sequences. Then the sequences pass
three feedforward networks (FFN) to be predicted as the object’s class, bounding box, and feature
projection. There are two bipartite matching processes: one is between the outputs of two branches,
and the other is between the output of online branches and the “objectness" proposals provided by the
Selective Search. Finally, the similarity loss of each paired sequence feature projection is minimized
to achieve sequence-level self-supervised representation learning.

The proposed method is designed to use the sequence characteristics to achieve self-supervised
pre-training for object detection based on the transformers. The main idea of our method is to
maintain consistency between sequences from differently augmented views of the same image. The
framework is based on the Deformable DETR [7]. As shown in Fig. 1, we utilize the momentum
design [10, 26, 27] to achieve the self-supervised learning. These two branches share the same
structure, including the CNN backbone, transformer encoder, transformer decoder, and feedforward
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network (FFN) heads. Specifically, we add a projection head [12] after the transformer decoder to
generate the feature projection for each sequence. After pre-training, the projection head will be
removed, and the classification head will be reset and modified according to the downstream detection
tasks. The rest of the weights learned during pre-training will be loaded as the initial weights during
fine-turning. Following the momentum design, we add a stop gradient operator that the gradient only
updates the weight of the online branch. And the weight of the momentum branch is updated by the
momentum of the weight of the online branch, according to the formula:

Θm ← β ∗Θm + (1− β) ∗Θo, (1)
where Θm and Θo represent the parameters of the momentum branch and the online branch, respec-
tively, β represents the updated momentum parameter.

The proposed sequence consistency strategy is simple and straightforward. Since each output sequence
stands for an object prediction and each sequence contains the most relevant feature description for
each object, we apply the consistency constraint on the sequences that predict the same object. Thus,
we could maintain the object-level feature consistency instead of the image-level feature, which is
more suitable for object detection tasks. The sequence consistency strategy is formulated as follows:

Lssl =

N∑
i=1

(Lsimilarity(fffn(si), f̂ffn(ŝσ̂(i)))), (2)

where s and ŝ represent the sequences output by the transformer decoder from the momentum and
online branches, respectively; fffn and f̂ffn represent the FFN heads from the momentum and online
branches, respectively; N is the number of sequences in one view, and σ̂ represents the matching
relationship between the two sequences. Lssl is the total self-supervised learning loss. Lsimilarity is a
function that measures the similarity between sequences. We adopt L2 as the Lsimilarity loss.

As mentioned above, the image views for the two branches are different, so the output sequences
from the branches would have diversity too. Thus, we adopt bipartite graph matching [25] to match
the sequences that have the same object prediction from the online and momentum branches, which
is defined as:

Lmatch(y, ŷσ) =

N∑
i=1

[−λcm log p̂σ(i)(ci) + 1{ci ̸=∅}(λbmLbox(bi, b̂σ(i)))], (3)

σ̂ = argmin
σϵ

∑
N

N∑
i

Lmatch(yi, ŷσ(i)), (4)

where N is the number of sequences in one view; Lmatch denotes the Hungarian matching loss; y and
ŷ are the predicted sequences from momentum and online branches, respectively; b and c are the
location prediction and category prediction, respectively; p̂σ̂(i)(ci) is the probability of class ci; σ̂
denotes the final optimal assignment; ∅ denotes the empty set; λcm and λbm are the corresponding
weights, which are 2.0 and 5.0, respectively. After the output sequences, which predict objects at the
same location, have been matched by the bipartite graph matching, the corresponding features from
the sequences are used to calculate the Lssl. Specifically, the two image views share the same location
augmentation parameters, and there are only content differences between the two views, such as color
jittering, random erasing, and blur, which reduces the difficulty of the output sequences matching.

In order to get more rich semantic features rather than some background features from an image to
calculate the self-supervised loss, the transformer needs to predict proposals that contain foreground
objects as many as possible. Thus, we utilize the Selective Search [28] to initial foreground proposals
to train the neural network to have the ability to predict “objectness" proposals. The Selective Search
is an unsupervised method that could only generate the position of foreground proposals, not the
category. Thus, there will be only two categories, i.e., foreground and background. The parameters
of the Selective Search are the same as in DETReg [24].

The total loss consists of the region proposals loss LRPS and the self-supervised learning loss on
sequences LSSL, denoted as:
Ltotal(y, ŷ) =LRPS + LSSL

=

N∑
i=1

[λfLfocal(ci, p̂σ̂(i)) + 1{ci ̸=∅}(λbLbox(bi, b̂σ̂(i))] +

N∑
i=1

[λeLssl(zi, ẑσ̂(i)))],

(5)
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whereLfocal is the focal loss of classification, Lbox is the location loss of box, Lssl is the self-supervised
learning loss on sequence, and zi stands for the output of fffn. The LRPS consists of Lfocal and Lbox,
which is the same as in DETReg [24], supervised by the proposals from Selective Search. λf , λb and
λe are the weights of those three losses, which are set to 2.0, 5.0, and 10.0, respectively.

3 Experiments

The training of our method includes pre-training and fine-tuning stages. The pre-training dataset is
ImageNet100 [29], which only contains 100 classes. The split of classes is the same as in DETReg
[24]. The fine-tuning datasets are MS COCO [30] and PASCAL VOC [31]. In particular, we fine-tune
the model on COCO train2017 and evaluate it on COCO val2017. As for VOC, we fine-
tune the model on VOC trainval07+12, and then evaluate on VOC test07. The comparison
approaches are DETReg [24], UP-DETR [23] based on Deformable DETR, Deformable DETR [7]
with different pretrained weights, and the common baseline Faster R-CNN [4]. Our training settings
are the same with DETReg [24], more implementation details are presented in the Appendix.

Table 1: Comparison results on object detection datasets. †: We run the method on our codebase.

COCO val2017 VOC test07
Model AP AP50 AP75 AP AP50 AP75

Faster R-CNN [32] 42.0 62.1 45.5 56.1 82.6 62.7
Deformable DETR (Supervised CNN) [7] 43.8 62.6 47.7 59.5 82.6 65.6

Deformable DETR (SwAV CNN)† 45.0 63.8 49.2 61.0 83.0 68.1
UP-DETR (Deformable DETR) † 45.2 64.2 49.4 61.8 83.4 69.6
DETReg w/o feature embedding † 45.1 63.6 49.2 63.0 83.5 70.2
DETReg [24] 45.4 - - 63.5 83.3 70.3

Ours 45.6 63.9 49.7 63.9 84.1 71.1

The experiment results on COCO and VOC are provided in Table 1. The above part of the table
is the widely referenced baselines in object detection tasks, which are listed here for convenience.
The middle part is our baseline, and the bottom part is our approach. Since the training process
of DETReg is supervised by the pre-trained SwAV model [13], the pre-training process can be
regarded as learning to use the fixed features from SwAV. On the contrary, our method proposes to use
self-supervised ways to learn the features, which could help the network learn more discriminative
features during pre-training. When the feature embedding part is removed in the experiment, the
final results are 45.1 on COCO and 63.0 on VOC, which could be regarded as a baseline. For the
final result, our method surpasses DETReg by 0.2 points on COCO and 0.4 points on VOC, which
achieves state-of-the-art results on both datasets, proving that our learning-based method has better
performance than the method that is supervised by manually defined pseudo-labels. Compared to the
methods that only the backbone part is pre-trained, such as Deformable DETR (Supervised CNN) and
Deformable DETR (SwAV CNN), our method could pre-train the entire object detection framework,
and surpasses Deformable DETR (SwAV CNN) by 0.6 points on COCO and 2.9 points on VOC.
Thus, our approach is more suitable for the object detection task. More results of the ablation study
and visualization are presented in Appendix.

4 Conclusion

This paper proposes a novel transformer-based self-supervised learning method for object detection.
The proposed method takes advantage of the sequence characteristics of transformers to achieve
self-supervised learning by maintaining the consistency of the sequence under different image views.
The bipartite matching is leveraged to get the optimal sequence pair to improve the efficiency of
the sequence-level self-supervision. Experiments on MS COCO and PASCAL VOC prove the
effectiveness of our method.

Acknowledgement This work is sponsored by Hetao Shenzhen-Hong Kong Science and Technology
Innovation Cooperation Zone (HZQB-KCZYZ-2021045).
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A Appendix

A.1 Overview

We organize the Appendix as follows. The implementation details are given in Appendix A.2. More
results of the ablation study are presented in Appendix A.3. Then, we visualize the matched proposal
pairs between the two branches in Appendix A.4. Finally, we discuss the limitations and future work
of our approach in Appendix A.5.

A.2 Implementation Details

Training details. In the pre-training stage, we add an additional FFN head for projecting sequence
features. The FFN is composed of 2 hidden layers, and the number of hidden layer neurons is 256. In
addition, since all the proposals generated by Selective Search are foreground boxes, the classification
head only has 2 categories, i.e., foreground and background. The backbone of the proposed method is
ResNet-50 [33], which is initialized by SwAV [13], which is the same as in DETReg [24]. Following
DETReg, the number of epochs in pre-training is 50, the batch size is 24, and the initial learning rate
is 2 · 10−4, which is decayed after 40 epochs by a factor of 10. The parameters in the fine-tuning
stage are also the same as in DETReg. On the COCO, the epoch is 50, the batch size is 4, and the
initial learning rate is 2 · 10−4, which is decayed after 40 epochs by a factor of 10. On the VOC, the
epoch is 100, the batch size is 4, and the initial learning rate is 2 · 10−4, which is decayed after 70
epochs by a factor of 10. Experiments are carried out on 8 * NVIDIA V100 GPUs.

Image augmentations. In order to generate different image views for the two branches, following
[34], we adopt weak image augmentations for the momentum branch and strong augmentations for
the online branch. To ensure the two views have location consistency, the image view #2 is partially
built based on the view #1. We first generate a base image view from the unlabeled input image,
using random flips, random resize, and random resized-crop, as view #1. The base image view is
the same as in DETReg [24]. As for the view #2, we add more augmentations to the base image
view, including color jitter, random grayscale, and random blur. Thus, there is no location coordinates
difference between the two views.

Algorithm pseudocode. The algorithm flow of the proposed method is summarized in Algorithm 1.

A.3 Ablation Study

Sequence utilization methods. As mentioned before, considering the importance of the sequences
that are output by transformers, we design a sequence consistency strategy that maintains the output
sequence consistency between the online and momentum branches to achieve the self-supervised
pre-training. One of the most naive strategies is the one-by-one match, because the sequence output
by transformers has sequential characteristics. However, different branches have different input
image views and slightly different network parameters. Even if the output sequences are in the
same order, their predicted results are still different. Therefore, the bipartite matching is adopted to
match the sequences from different branches which predict the same object. As shown in Table. A1,
bipartite matching could improve results from 45.1 to 45.6 compared to one-by-one matching, proving
the bipartite matching method’s effectiveness. Meanwhile, in order to achieve a more sufficient
supervision of the sequence, we try to use the outputs of classification head fcls, regression head
fbox and projection head fprj in Eq. (2) at the same time. It can be seen from the table that the
fusion of multiple heads decreases the final results in both matching settings. It may be because the
self-supervision on the projection head is enough; redundancy supervision on three heads would
cause a performance drop.

Table A1: Comparison of sequence utilization strategies, evaluated on MS COCO val2017.
Model One-by-one matching Bipartite matching Multi-feature AP

Ours

✓ 45.1
✓ ✓ 45.2

✓ ✓ 45.1
✓ 45.6
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Algorithm 1 Pseudo code in a PyTorch-like style.

# model_momentum: momentum backbone + encoder + decoder + head
# model_online: online backbone + encoder + decoder + head
# mse: mean squared error, i.e., L2 loss
# augment: image augmentation, more details are in Sec. A.2
# matcher: bipartite matching algorithm
# rps: region proposals from Selective Search
# criterion: classification and regression loss

for param in model_momentum.parameters():
param.requires_grad = False

def similarity_loss(e1, e2, ids_ssl):
loss = mse(e1-e2[ids_ssl).sum().mean()
return loss

for x in dataloader: # load a batch x with B samples
x1, x2 = weak_augment(x), strong_augment(x)

with torch.no_grad():
cls_m, box_m, prj_m = model_momentum(x1)

cls_o, box_o, prj_o = model_online(x2)

idx_rps = matcher((cls_o, box_o), rps)
loss_rps = criterion((cls_o, box_o), rps, idx_rps)

idx_ssl = matcher((cls_m, box_m), (cls_o, box_o))
loss_ssl = similarity_loss(prj_m, prj_o, idx_ssl)

loss = loss_rps + loss_ssl
loss.backward()

model_online.update()
model_momentum.update()

Table A2: Comparison of pre-training datasets and region proposal strategies, evaluated on MS
COCO val2017. †: We run the method on our codebase.

Model IN100 IN100(Rnd bbox) COCO COCO+ COCO GT

DETReg † 45.4 44.1 45.1 45.1 45.6
Ours 45.6 44.1 45.5 45.6 45.7

Pre-training datasets and region proposal strategy We conduct several experiments to compare
the performance with different pre-train datasets. IN100 stands for the baseline ImageNet100,
Rnd bbox stands for the random proposals. COCO stands for the COCO train2017, COCO+
denotes the COCO train2017 plus the COCO unlabeled dataset. The Selective Search is
used to generate initial region proposals for COCO and COCO+. COCO GT stands for the COCO
train2017, where the region proposals come from the COCO ground truth. Specifically, COCO is
a multi-object dataset, while ImageNet is a single-object dataset. As shown in Table A2, our method
achieves better results against DETReg on both single-object and multi-object datasets, which proves
that self-supervised learning based has better generality over different types of datasets. Furthermore,
we compare the influence of different region proposal strategies. When using the less “objectness"
proposals, i.e., random proposals, both method drops a lot. When using the ground truth as the region
proposal, DETReg improves from 45.1 to 45.6, whereas ours improves from 45.5 to 45.7. This proves
that the method that is fully dependent on the hand-craft pseudo labels would be easily affected by
the quality of the pseudo labels, whereas the learning-based method has less affected by the pseudo
labels. The quality of the region proposals generated by Selective Search is sufficient for the proposed
method to learn useful information.
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Table A3: Comparison of self-supervised loss strategies on MS COCO val2017.
Model Self-supervised loss strategy AP

Ours

L1 loss 45.3
L2 loss 45.6
MoCo loss 45.4
Predictor + BYOL loss 45.3

Table A4: Comparison of loss coefficient strategies on MS COCO val2017.
Model Loss coefficient strategy AP

Ours

Without LRPS 44.6
Turning off LRPS at 20 epochs 45.3
Turning off LRPS at 40 epochs 45.4
Exponential decaying LRPS 45.5
Default using LRPS for 50 epochs 45.6

Self-supervised loss strategy. As shown in Table A3, we compare the effects of different self-
supervised losses. Predictor + BYOL loss follows the BYOL [14] architecture, which adds an extra
MLP layer on the online branch to make the two branches asymmetrical, and the inputs of online and
momentum branches are also exchanged to create symmetry loss. MoCo loss comes from MoCov3
[11] symmetric version. Surprisingly, L1 and L2 loss can achieve satisfactory results. Thus, the L2
loss is adopted in the experiments.

The comparison of different loss coefficient strategies is shown in Table A4. We study the influence
of LRPS in Eq. (5). As noted before, LRPS is the region proposal loss, which is supervised by the
results from Selective Search. When there is no LRPS during pre-training, the result is only 44.6 on
COCO. As a contrast, the result of Deformable DETR (SwAV) is 45.0. Since the default prediction
box is in the center of the image, the model’s performance drops compared to SwAV which uses
information from the whole image. When decaying or turning off LRPS during pre-training, the
final results also decrease. This means that LRPS is important in the pre-training stage because the
self-supervised training is dependent on rich semantic features from proposals, which have to contain
foreground objects as many as possible. Stopping or decaying to learn foreground proposals during
training will affect the self-supervised learning process of the network.

A.4 Visualization

As is shown in Fig. A1, we visualize the matched predicted proposal pairs between the two branches.
Only part of the proposals are visualized for clarity and brevity. From the figure, the matching result
is reliable between the two branches. The paired predicted bounding boxes from the two branches are
on the same object, since the matching is mainly based on the location of the predicted bounding box.
The visualization proves the proposed method could achieve correct constraints on output sequences
that predict the same object.

A.5 Discussion

In the bipartite matching for the sequence consistency training, the two views need to share the same
crop window location, which limits our method with complex image augmentations. We have not
achieved a fully self-supervised detection pre-training, but we still rely on the Selective Search’s help.
We believe future works will break these limitations.

Recent work [35] has proven that an object detection method that is entirely constructed on the
transformer without a CNN backbone is feasible. Our self-supervised pre-pretraining method is
based on the sequence characteristics of transformers. Thus, it would be applicable to the fully
transformer-based detection framework. We will explore the feasibility of this approach in the future.
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Figure A1: Visualization of paired proposals from different branches with bipartite matching. The
left is from the momentum branch, and the right is from the online branch.
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