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Abstract

Handling out-of-distribution (OOD) and adversarial inputs has become a major
stake in the real-world deployment of machine learning systems. In this work,
we explore the use of maximum mean discrepancy (MMD) two-sample test in
conjunction with self-supervised contrastive learning to verify whether two sets of
samples have been drawn from a same distribution. In particular, we find that the
similarity functions defined on top of models trained with contrastive learning lead
to high testing power on different types of distributional shifts. Our approach is
able to differentiate CIFAR10 from CIFAR10.1 with much higher probability and
using less samples than previous methods. Moreover, when trained on ImageNet,
our approach shows great efficiency in detecting both adversarial attacks and OOD
data on challenging benchmarks, using only 3 to 20 samples.

1 Introduction

While modern machine learning systems now have countless successful real-world applications,
robustness to out-of-distribution (OOD) and adversarial inputs remain tough challenges of significant
importance. The issue is especially acute for high-dimensional problems like image classification.
Models are typically trained in a close-world setting but inevitably faced with novel input classes
when deployed in the real world. The impact can range from displeasing customer experience
to dire consequences in the case of safety-critical applications such as autonomous driving [8] or
medical analysis [14]. Although achieving high accuracy against all meaningful distributional shifts
is the most desirable solution, it is particularly challenging. Anomaly detection methods [18] aim to
mitigate the consequences of unexpected inputs by allowing the system to anticipate its inability to
process unusual inputs and react adequately. However, different distributional shifts (e.g., natural or
adversarial) will unpredictably affect statistics used for anomaly detection. Accordingly, detection
systems either achieve good performance on specific types of out-distributions or require tuning on
OOD samples. In both cases, their practical use is severely limited. Motivated by these issues, recent
work has tackled the challenge of designing detection systems for unseen classes without assuming
access to OOD samples [20, 16, 18].

In this work, we push this reasoning further and define approaches able to distinguish sets of
samples regardless of whether they correspond to unseen classes or in-distribution samples perturbed
by adversarial attacks. A few pieces of work have addressed these tasks simultaneously. They
either focus on particular in-distribution data such as medical imaging for specific diseases [17] or
evaluate their performance on datasets with very distant classes such as CIFAR10 [9], SVHN [12],
and LSUN [22], resulting in simple OOD benchmarks that do not translate to general real world
applications [10]. In our work, we focus on popular two-sample tests based on the Maximum Mean
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Discrepancy (MMD) [6, 11, 19, 5, 15, 3, 7], and show that a similarity function trained via contrastive
learning can be used as a general-purpose similarity function to discriminate data sources.

Contributions: 1-We show that one can use similarity functions learned by self-supervised con-
trastive learning with MMD [6] to define a general approach that discriminates sources of data. In
particular, we show that the test sets of CIFAR10 and CIFAR10.1 [13] have different distributions
with greater confidence than supervised alternatives. 2-We propose improvements to MMD-based
tests and show they can also be used to confidently detect distributional shifts when given a small
number of samples from the same out-distribution. Namely, we show that our proposed method is able
to discriminate very subtle changes on the test set of ImageNet, including adversarial perturbations.

2 Contrastive model

We build our model on SimCLRv2 [1] for its simplicity and efficiency. It is composed of an encoder
backbone network fθ as well as a 3-layer contrastive head hθ′ . Given an in-distribution sample
X , a similarity function sim, and a distribution of training transformations Ttrain, the goal is to
simultaneously maximize Ex∼X ;t0,t1∼Ttrain [sim(hθ′ ◦ fθ(t0(x)), hθ′ ◦ fθ(t1(x)))] and minimize
Ex,y∼X ;t0,t1∼Ttrain [sim(hθ′ ◦ fθ(t0(x)), hθ′ ◦ fθ(t1(y)))], i.e., we want to learn representations in
which random transformations of the same exemplar are close while random transformations of
different exemplars are distant. To achieve this, given an input batch {xi}i=1,...,N , we compute the
set {x(j)

i }j=0,1;i=1,...,N by applying two transformations independently sampled from Ttrain to each
xi. We then compute the embeddings z(j)i = hθ′ ◦ fθ(x(j)

i ) and apply the following contrastive loss:
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where τ is the temperature hyperparameter and sim(x, y) = ⟨x|y⟩
∥x∥2∥y∥2

is the cosine similarity.

Hyperparameters: We follow as closely as possible the setting from SimCLRv2 with a few
modifications to adapt to hardware limitations. In particular, we use the LARS optimizer [21] with
learning rate 1.2, momentum 0.9, and weight decay 10−4. We scale up the learning rate for the
first 40 epochs linearly, then use an iteration-wise cosine decaying schedule until epoch 800, with
temperature τ = 0.1. We train on 8 V 100 GPUs with a total batch size of 1024. We compute the
contrastive loss on all batch samples by aggregating the embeddings computed by each GPU. We
use synchronized BatchNorm and fp32 precision and do not use a memory buffer. We use the same
set of transformations, i.e., Gaussian blur and horizontal flip with probability 0.5, color jittering
with probability 0.8, random crop with scale uniformly sampled in [0.08, 1], and grayscale with
probability 0.2. For computational simplicity and comparison with previous work, we use a ResNet50
encoder architecture with final features of size 2048. Following SimCLRv2, we use a three-layer fully
connected contrastive head with hidden layers of width 2048 using ReLU activation and batchNorm
and set the last layer projection to dimension 128. For evaluation, we use the features produced by
the encoder without the contrastive head. We do not use supervised fine-tuning.

3 MMD two-sample test

The Maximum Mean Discrepancy (MMD) is a statistic used in two-sample tests to assess whether
two sets of samples SP and SQ are drawn from the same distribution. It estimates the expected
difference between the intra-set distances and the across-sets distances.

Definition 3.1 (Gretton et al. [6]). Let k : X × X → R be the kernel of a reproducing Hilbert space
Hk, with feature maps k(·, x) ∈ Hk. Let X,X ′ ∼ P and Y, Y ′ ∼ Q. Under mild integrability
conditions,

MMD(P,Q;Hk) := sup
f∈Hk,∥f∥Hk

≤1

|E [f(X)]− E [f(Y )]| (2)

=
√
E [k(X,X ′) + k(Y, Y ′)− 2k(X,Y )]. (3)
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Given two sets of n samples SP = {Xi}i≤n and SQ = {Yi}i≤n, respectively drawn from P and Q,
we can compute the following unbiased estimator [11]:

M̂MD2
u(SP, SQ; k) :=

1

n(n− 1)

∑
i ̸=j

(k(Xi, Xj) + k(Yi, Yj)− k(Xi, Yj)− k(Yi, Xj)). (4)

Under the null hypothesis h0 : P = Q, this estimator follows a normal distribution of mean
0 [6]. Its variance can be directly estimated [5], but it is simpler to perform a permutation test
as suggested in Sutherland et al. [15], which directly yields a p-value for h0. The idea is to use
random splits X,Y of the input sample sets to obtain nperm different (though not independent)
samplings of M̂MD2

u(X,Y ; k), which approximate the distribution of M̂MD2
u(SP, SP; k) under

the null hypothesis. Liu et al. [11] train a deep kernel to maximize the test power of the MMD two-
sample test on a training split of the sets of samples to test. We propose instead to use our similarity
function learned from data, without any fine-tuning. Additionally, we propose an improvement of
MMD called MMD-CC (MMD with Clean Calibration). Instead of computing pi (see Algorithm 1
for a precise notation definition) based on random splits of SP

⋃
SQ, we require as input two disjoint

sets of samples drawn from P and compute pi based on random splits of S(1)
P

⋃
S
(2)
P . This change

requires to use twice as many samples from P, but reduces the variance induced by the random splits
of SP

⋃
SQ, which is significant when the number of samples is small.

We also highlight that Algorithm 1 returns the p-value 1
nperm+1

(
1 +

∑nperm

i=1 1 (pi ≥ est)
)

instead
of 1

nperm

∑nperm

i=1 1 (pi ≥ est). Indeed, under the null hypothesis P = Q, est and pi are drawn from
the same distribution, so for j ∈ {0, 1, . . . , nperm}, the probability for est to be smaller than exactly
j elements of {pi} is 1

nperm+1 . Therefore, the probability that j elements or less of {pi}i are larger

than est is
∑j

i=0
1

nperm+1 = j+1
nperm+1 . While this change has a small impact for large values of

nperm, it is essential to guarantee that we indeed return a correct p-value. Notably, the algorithm of
Liu et al. [11] has a probability 1

nperm
> 0 to return an output of 0.00 even under the null hypothesis.

3.1 Distribution shift between CIFAR-10 and CIFAR-10.1 test sets

Algorithm 1 MMD-CC two-sample test

Input: S(1)
P , S

(2)
P , SQ, nperm, sim

est← M̂MD2
u(S

(1)
P , SQ; sim)

for i = 1, 2, . . . , nperm do
Randomly split S(1)

P
⋃
S
(2)
P into two disjoint

sets X,Y of equal size
pi ← M̂MD2

u(X,Y ; sim)
end for

Output: p: 1
1+nperm

(
1 +

∑nperm

i=1 1 (pi ≥ est)
)

After years of evaluation of popular supervised
architectures on the test set of CIFAR-10 [9],
modern models may overfit it through their
hyperparameter tuning and structural choices.
CIFAR-10.1 [13] was collected to verify the per-
formances of these models on a truly indepen-
dent sample from the training distribution. The
authors note a consistent drop in accuracy across
models and suggest it could be due to a distribu-
tional shift, though they could not demonstrate
it. Recent work [11] leveraged the two-sample
test to provide strong evidence of distributional
shifts between the test sets of CIFAR-10 and
CIFAR-10.1. We run MMD-CC and MMD
two-sample tests for 100 different samplings of
S
(1)
P , S

(2)
P , SQ, always using nperm = 500, and rejecting h0 when the obtained p-value is below the

threshold α = 0.05. We also report results using cosine similarity applied to the features of super-
vised models as a comparative baseline. We report the results in Table 1 for a range of sample sizes.
We compare the results to three competitive methods reported in Liu et al. [11]: Mean embedding
(ME) [3, 7], MMD-D [11], and C2ST-L [2]. Finally, we show in Figure 1 the ROC curves of the
proposed model for different sample sizes.

3.2 Detection of OOD and adversarial distributions

Given a small set of samples with potential unknown classes or adversarial attacks, we can similarly
use the two-sample test with our similarity function to verify whether these samples are in-distribution
[4]. In particular, we test for samples drawn from ImageNet-O, iNaturalist, and PGD perturbations,

3



Table 1: Average rejection rates of h0 on CIFAR-10 vs CIFAR-10.1 for α = 0.05 across different
sample sizes n, using a ResNet50 backbone.

n=2000 n=1000 n=500 n=200 n=100 n=50

ME [3] 0.588 - - - - -
C2ST-L [2] 0.529 - - - - -

MMD-D [11] 0.744 - - - - -
MMD + SimCLRv2 (ours) 1.00 1.00 0.997 0.702 0.325 0.154

MMD-CC + SimCLRv2 (ours) 1.00 1.00 0.997 0.686 0.304 0.150
MMD + Supervised (ours) 1.00 1.00 0.884 0.305 0.135 0.103

MMD-CC + Supervised (ours) 1.00 1.00 0.870 0.298 0.131 0.096

Table 2: AUROC for detection using two-sample test on 3 to 20 samples drawn from ImageNet and
from ImageNet-O, iNaturalist or PGD perturbations, with a ResNet50 backbone.

ImageNet-O iNaturalist PGD
n_samples 3 5 10 20 3 5 10 20 3 5 10 20

MMD + SimCLRv2 64.3 72.4 86.9 97.6 88.3 97.6 99.5 99.5 35.2 53.8 86.6 98.8
MMD-CC + SimCLRv2 65.3 73.2 88.0 97.7 95.4 99.2 99.5 99.5 70.5 84.0 96.6 99.5

MMD + Supervised 62.7 69.7 83.2 96.4 91.8 98.7 99.5 99.5 20.0 22.5 33.0 57.5
MMD-CC + Supervised 62.6 71.0 85.5 97.2 98.0 99.5 99.5 99.5 57.4 61.3 70.5 85.8

with sample sizes ranging from 3 to 20. For these experiments, we sample S
(1)
P and S

(2)
P 5000 times

across all of ImageNet’s validation set and compare their MMD and MMD-CC estimators to the one
obtained from SP and SQ. We report in Table 2 the AUROC of the resulting detection and compare it
to the ones obtained with a supervised ResNet50 as the baseline. We discuss it further in Section 3.3.

3.3 Discussion

Figure 1: ROC curves of MMD-CC two-sample
test on CIFAR-10.1 against CIFAR-10 for different
sample sizes.

CIFAR-10 vs. CIFAR10.1: Other methods do
not use external data for pre-training, as we do
with ImageNet, rendering a fair comparison dif-
ficult. However, it is noteworthy that our learned
similarity can very confidently distinguish sam-
ples from the two datasets, even if fewer samples
are available. Furthermore, while we achieve
excellent results even with a supervised network,
our model trained with contrastive learning out-
performs the supervised alternative significantly.
We note however that with such high number of
samples available, MMD-CC performs slightly
worse than MMD. Finally, we believe the confi-
dence obtained with our method decisively con-
cludes that CIFAR10 and CIFAR10.1 have dif-
ferent distributions, which is likely the primary
explanation for the significant drop in performances across models on CIFAR10.1, as conjectured by
Recht et al. [13]. The difference in distribution between CIFAR10 and CIFAR10.1 is neither based
on label set nor adversarial perturbations, making it an interesting task.

ImageNet-O, iNaturalist, and PGD:

Despite using very few samples (3 ≤ n ≤ 20), our method can detect OOD samples with high
confidence. We observe particularly outstanding performances on iNaturalist, which is easily ex-
plained by the fact that the subset we are using only contains plant species, logically inducing an
abnormally high similarity within its samples. Furthermore, we observe that MMD-CC performs
significantly better than MMD, especially on detecting samples perturbed by PGD. Although our
method attains excellent detection rates for sufficient numbers of samples, the requirement to have
a set of samples all drawn from the same distribution to perform the test makes it unpractical for
real-world applications, which we seek to address in future work.
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