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Abstract
Self-supervised representation learning (SSL) methods provide an effective label-
free initial condition for fine-tuning downstream tasks. However, in numerous
realistic scenarios, the downstream task might be biased with respect to the target
label distribution. This in turn moves the learned fine-tuned model posterior away
from the initial (label) bias-free self-supervised model posterior. In this work, we
re-interpret SSL fine-tuning under the lens of Bayesian continual learning and con-
sider regularization through the Elastic Weight Consolidation (EWC) framework.
We demonstrate that self-regularization against an initial SSL backbone improves
worst sub-group performance in Waterbirds by 5% and Celeb-A by 2% when us-
ing the ViT-B/16 architecture. Furthermore, to help simplify the use of EWC with
SSL, we pre-compute and publicly release the Fisher Information Matrix (FIM),
evaluated with 10,000 ImageNet-1K variates evaluated on large modern SSL ar-
chitectures including ViT-B/16 and ResNet50 trained with DINO.

1 Introduction

Self-supervised learning (SSL) methods for learning representations have recently gained popular-
ity within the deep learning community, bridging the gap with supervised discriminative methods
in vision (Caron et al., 2021; Goyal et al., 2021; Grill et al., 2020; Chen et al., 2020b,a). While
representations learned via SSL methods are free from label induced bias (Goyal et al., 2021), this
can change during the process of fine-tuning to a downstream task.

In the supervised regime Sagawa et al. (2019) showed that models trained with empirical risk mini-
mization (ERM) tend to be biased towards label population distributions that are disproportionately
represented within the training dataset. Our objective with this work is to mitigate this drift through
the use of Bayesian continual learning where we investigate regularizing downstream tasks towards
their robust initial representation produced by the SSL pre-training procedure (Goyal et al., 2021).

We consider regularizers based on the Fisher Information Matrix (FIM), which constrain the model
parameters towards their initial SSL values, as in Continual Learning (CL) techniques, such as
Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017). CL is a rich sub-field of machine
learning that seeks to minimize the effect of catastrophic forgetting (McCloskey & Cohen, 1989) –
the phenomenon where models trained in a sequential manner tend to become biased towards the
latest observed distribution. To use EWC, we compute the FIM for DINO (Caron et al., 2021) models
pre-trained with ViT-B/16 (Dosovitskiy et al., 2021) and ResNet50 (He et al., 2016) architectures on
a subset of ImageNet1k (Deng et al., 2009) images3.

∗Work done during Apple internship.
3FIM available at https://coming_soon
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We validate the accuracy of the FIM by analyzing reverse transfer performance from CIFAR10 fine-
tuning. We observe that the FIM for the ViT-B/16 is poorly conditioned, making it impossible to
fully recover the SSL performance on ImageNet1k, and propose a method to alleviate this. Finally,
we show that with ViT-B/16 this regularization can be used to improve worst group accuracy on
Waterbirds (Sagawa et al., 2019) and Celeb-A (Liu et al., 2015) by 5% and 2% respectively.

2 Method

To keep fine-tuned representations close to their initial SSL values we consider techniques used in
CL, in particular EWC (Kirkpatrick et al., 2017), and treat the SSL pre-training and fine-tuning
tasks as two distinct sequential tasks. To overcome catastrophic forgetting (McCloskey & Cohen,
1989), where models trained with stochastic gradient descent become biased towards the latest task
distribution, EWC regularizes model parameters towards their optimal values on previous tasks. The
regularization uses the Fisher Information Matrix (FIM) and is based on the Laplace approximation
(Laplace, 1986; Smola et al., 2003). An intuitive way to look at this regularization is through the lens
of online Bayesian inference. In particular, we consider a given SSL model as a statistical Bayesian
model 𝑝𝜃 (𝑦 | 𝑥) with prior 𝑝 (𝜃 ). Given two datasets, DSSL and DFT, observed one after another, our
objective is to estimate parameters 𝜃 . While the full posterior distribution 𝑝 (𝜃 | DSSL,DFT) might
be intractable, a point estimate can be computed using Laplace’s approximation.

First, the posterior with respect to the SSL task, 𝑝 (𝜃 | DSSL), is approximated with a Normal
distribution using a Taylor’s expansion as shown in Eq (1):

log𝑝 (𝜃 | DSSL) ≈ −1
2
(𝜃 − 𝜃SSL)>𝐻 (𝜃SSL) (𝜃 − 𝜃SSL) = −1

2
‖𝜃 − 𝜃SSL‖2𝐻 (𝜃SSL) . (1)

Here 𝜃SSL is the Maximum a Posteriori (MAP) estimate of log𝑝 (𝜃 | DSSL) and 𝐻 (𝜃SSL) is the
Hessian. A point estimate to 𝑝 (𝜃 | DSSL,DFT) can then be derived via Bayes rule:

𝜃FT = argmax
𝜃

log𝑝 (𝜃 | DSSL,DFT) ≈ argmax
𝜃

log𝑝 (DFT | 𝜃 ) − 1
2
‖𝜃 − 𝜃SSL‖2𝐻 (𝜃SSL) . (2)

Since the Hessian is quadratic in the number of model parameters, it is impractical to store it for
anything besides small models and therefore it is common to rely on approximations (Amari, 1998;
Martens & Grosse, 2015). Here we consider the diagonal FIM as in EWC4 (Kirkpatrick et al., 2017):

𝐹 (𝜃 ) = 1
𝑁

𝑁∑︁
𝑖=1
E𝑦∼𝑝𝜃 ( · | 𝑥𝑖 )

[
{∇𝜃 log𝑝𝜃 (𝑦 | 𝑥𝑖 )}2

]
, (3)

which has been used in prior work as an approximation to 𝐻 (𝜃SSL) ≈ 𝐹 (𝜃 ) (Daxberger et al., 2021).
As 𝐹 (𝜃 ) is guaranteed to be positive semi-definite (PSD), unlike 𝐻 (𝜃SSL) which is guaranteed to be
PSD only when 𝜃SSL is an exact MAP estimate, this leads to a better objective, which we use:

𝜃FT = argmax
𝜃

log𝑝 (DFT | 𝜃 ) − 𝜆‖𝜃 − 𝜃SSL‖2𝐹 (𝜃SSL) , (4)

where the hyperparameter 𝜆 controls the regularization strength. Intuitively, 𝐹𝑖 corresponds to the
local importance of parameter 𝜃𝑖 . The regularization, ‖𝜃−𝜃SSL‖2𝐹 (𝜃SSL) , constrains important parame-
ters, i.e. those with high 𝐹 values, to stay close to their initial pre-trained SSL values, while allowing
less important parameters to vary more freely. In our experiments, we also consider the naive setting,
where we replace the FIM regulariztion in Eq (4) with a quadratic L2 penalty, ‖𝜃 − 𝜃SSL‖22.
We focus on DINO (Caron et al., 2021) due to the high performant nature of the model, and show
that it can be recast in the probabilistic framework described above. DINO uses a teacher network
to produce pseudo-labels for the cross-entropy loss and a student network is used to predict those
labels. As is common in SSL, both networks consist of a backbone network 𝑓𝜃 and a projection
head network 𝑔𝜃 . Given an image, 𝑥 , drawn from an augmentation distribution {𝑥1, 𝑥2} ∼ A(𝑥),
the student network, 𝑠 (𝑥1;𝜃 ) = 𝑔𝜃 (𝑓𝜃 (𝑥1)), applies these networks sequentially while the teacher

4Most practical implementations of EWC use the empirical FIM due to the relaxed computation complexity
of the calculation. This has been criticized in the context of natural gradient descent (Kunstner et al., 2019),
where the authors argue that it produces a biased estimate. Here, we compute the FIM by explicitly enumerating
𝐸𝑦 |𝑥 , where 𝑦 |𝑥 in Eq (3) is distributed as a conditional Categorical and is sampled from the model distribution.
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Figure 1: Pareto fronts of different regularization
methods when fine-tuning a DINO ViT-B/16 pretrained
on ImageNet to CIFAR10.
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Figure 2: FIM value distributions on ViT-B/16

network inserts a centering operation in between 𝑡 (𝑥2;𝜃 ) = 𝑔𝜃 (centering(𝑓𝜃 (𝑥2))). While the student
network parameters are updated to minimize the cross-entropy between the teacher and student
outputs, the teacher network parameters are set to the exponentially moving average (Polyak &
Juditsky, 1992) of the student parameters. Therefore, the student network can be interpreted as a
probabilistic model 𝑝𝜃 (𝑦 = 𝑐 |𝑥) = softmax(𝑠 (𝑥 ;𝜃 ))𝑐 , while the teacher network provides pseudo-
labels for the the dataset DSSL = {(𝑥𝑖 , 𝑡 (𝑥𝑖 ;𝜃 ))}𝑁𝑖=1.

3 Experiments

Given a pre-trained ImageNet1k DINO model, we compute the FIM using the first 10000 images
of ImageNet1k. We consider three downstream tasks in this work: (i) Waterbirds (Sagawa et al.,
2019) (ii) Celeb-A (Liu et al., 2015) and (iii) CIFAR10 (Krizhevsky, 2009). The full fine-tuning
procedure is described in detail in Appendix 2. Celeb-A and Waterbirds are datasets with known
(or constructed) biases and are used for analyzing worst sub-group performance (Sagawa et al.,
2019). By interpreting the deterioration of worst sub-group performance as a catastrophic forgetting
(McCloskey & Cohen, 1989) event for a robust SSL model (trained on large scale data), we can
leverage CL techniques such as EWC to minimize this performance penalty.

FIM analysis We start by validating the expected properties of FIM by fine-tuning the pre-trained
DINO ViT-B/16 ImageNet1k model on the CIFAR10 dataset. We vary the learning rate and the
FIM regularization weight5. After training, we evaluate the performance by computing: a) top-1
accuracy on the CIFAR10 dataset, and b) top-1 accuracy on ImageNet1k dataset. To evaluate the
reverse transfer performance from CIFAR10 to ImageNet1k we attach the ImageNet1k classification
head from the pre-trained model to the fine-tuned backbone.

Figure 1 shows the cross-task Pareto fronts for each fine-tuning method. We observe that as the regu-
larization weight is increased, both methods improve in terms of their performance on ImageNet1k.
However, since FIM regularizes parameters preferentially, its performance on CIFAR10 does not
decrease in contrast to the naive 𝐿2 regularization approach discussed in Section 2.

While the 𝐿2 regularization approach manages to fully recover 77% top-1 accuracy on ImageNet1k
this is not the case for FIM regularization, even for very high regularization weights 𝜆, which satu-
rates at around 73% (Figure 1).

5For the adjusted FIM experiments we also vary 𝛼 .
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Table 1: Results of fine-tuning a pre-trained DINO model. We report results for our naive 𝐿2 regularization
method ‖𝜃 − 𝜃SSL‖22, EWC FIM and the Adjusted FIM (𝛼 = 10−3) regularized variants. We compare against
a competitively tuned ERM baseline (Vapnik, 1995), finetuned from the same pre-trained DINO model – this
differs from the pre-trained supervised initialization of Sagawa et al. (2019). For more details and hyperparam-
eters see Appendix A. Given a validation set without group labels, we choose hyperparameters with the highest
validation top-1 accuracy. Results are reported on the worst sub-group test split over 5 trials (mean ± 1-std).

Finetuning method Waterbirds CelebA

Test WGA Test WGA

Vi
T-

B
/1

6 ERM 70.53(±2.07) 41.22(±1.86)
FIM (ours) 75.39(±1.38) 43.22(±1.49)
Adjusted FIM (ours) 71.00(±3.55) 43.88(±2.52)
𝐿2 (ours) 72.43(±1.30) 38.89(±1.62)

R
es

N
et

50 ERM 62.55(±1.73) 40.55(±1.47)
FIM (ours) 60.90(±0.54) 41.85(±1.40)
Adjusted FIM (ours) 60.29(±1.63) 41.85(±1.70)
𝐿2 (ours) 39.84(±2.26) 38.15(±0.85)

We attribute this to the fact that a significant proportion of parameters in the ViT-B/16 have low
values (see the distribution of FIM values in Figure 2 and refer to Appendix B for a more detailed
breakdown). By decomposing the FIM into a layer-wise distributional plot (Figure 5) we observe
that the first attention layer has a large proportion of very small values within the range of 10−30. In
fact, some of the FIM values are 0, making ‖ · ‖𝐹 a pseudo-norm, i.e. minimizing ‖ · ‖𝐹 does not
imply fully recovering all of the parameters. In other words, 𝐹 is poorly-conditioned, and parameters
with small FIM values are allowed to vary freely making full recovery of the model impossible. To
resolve this we rescale 𝐹 :

𝐹𝛼 = (1 − 𝛼)𝐹 + 𝛼𝐹, (5)

where 𝐹 is the mean of 𝐹 and 𝛼 ∈ [0, 1] is an additional hyperparameter. This rescaling pushes ‖ · ‖𝐹
closer to ‖ · ‖2, which is not ill-conditioned. Adjusted FIM in Figure 1 sweeps the Pareto front with
varying 𝛼 whereas Adjusted FIM 𝛼 = 10−3 sweeps the Pareto front with a fixed 𝛼 – both strategies
for rectification produce a Pareto front that improves on 𝐿2 and the unadjusted FIM regularization.

Robustness analysis We use the proposed regularization to finetune DINO models on the biased
Waterbirds (Sagawa et al., 2019) and CelebA (Liu et al., 2015) datasets. We fine-tune all of the
mentioned methods with varying hyperparameters, extracted from a 20 trial random hyper-parameter
sweep, evaluated over 5 replicates. We evaluate a simplified scenario where we assume we don’t
have access to group information and pick the validation hyper-parameters that maximize the total
top-1 accuracy. This parallels the ERM evaluation from Sagawa et al. (2019). We emphasize that
most other methods for improving worst sub-group performance, such as Sagawa et al. (2019);
Liu et al. (2021); Kirichenko et al. (2022), assume access to group labels in the validation set and
therefore are not a suitable comparison.

We find that FIM based regularization techniques outperform standard finetuning in all but one sce-
nario (ResNet50 on Waterbirds), demonstrating the utility of regularizing towards previously learned
SSL representations. With ViT-B/16 we observe a 5% improvement on Waterbirds and 2% improve-
ment on CelebA compared to our baseline ERM model. With ResNet50 this regularization improves
upon ERM by approximately 1% on CelebA, but performs worse on the Waterbirds dataset.

4 Conclusion

In this work we present a novel treatment of SSL finetuning under the lens of a Bayesian continual
learning framework. We empirically demonstrate that constraining the fine-tuned model posterior
towards the original (label) bias free pre-trained model posterior improves performance for the worst
sub groups in Celeb-A and Waterbirds. Future work will explore how other CL techniques could be
leveraged to further improve SSL finetuning procedures.
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A Experiment details

Table 2: Hyperparameters for finetuning on CIFAR10

Hyperparameter Finetuning method

FIM adjusted FIM 𝐿2

learning rate {0.3, 1, 3} × 10−5 {1, 3} × 10−5 {0.3, 1, 3} × 10−5

regularization weight 0, 10{4,5,6,7,8,9,10} 10{4,5,6,7,8,9} 0, 10{−4,−3,−2,−1,0,1,2}

𝛼 — 10{−8,−7,−6,−4,−3,−2,−1} —

batch size 4032 4032 4032

epochs 120 120 120

warmup epochs 20 20 20

drop path rate 0 0 0

optimizer adamw adamw adamw

learning rate schedule cosine cosine cosine

learning rate scaling value 256 256 256

weight decay 0.3 0.3 0.3

weight decay end 0.7 0.7 0.7

augmentation randaug randaug randaug

aug multiplicity 2 2 2

CIFAR10 experiments in Section 3 were run with hyperparameters in Table 2. Each hyperparameter
combination was run once and its performance was evaluated at the end of training on CIFAR10 and
Imagenet1k test sets. As mentioned before, to evaluate the performance of the fintuned backbone on
Imagenet1k, we attached an Imagenet1k classifier head which was trained before the backbone was
finetuned. Figure 1 was produced by computing the convex hull over the (CIFAR10 top-1 accuracy,
Imagenet1k top-1 accuracy) data points for each group of runs.

Table 3: Hyperparameter sweep for finetuning ResNet50 on Waterbirds

Hyperparameter Finetuning method

FIM adjusted FIM 𝐿2 ERM

learning rate 10−2,−3,−4

regularization weight 10{5,6,7} 10{5,6,7} 10{−1,0,1} —

𝛼 — 10−3 — —

batch size 128, 256

epochs 120

warmup epochs 0

drop path rate 0

optimizer SGD(momentum=0.9)

learning rate schedule constant

learning rate scaling value 1.0

weight decay {0, 10−4, 1.5 × 10−6}
weight decay end —

augmentation imagenet, crop_scale=(0.2, 1.0)

aug multiplicity 1
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Table 4: Hyperparameter sweep for finetuning ViT-B/16 on Waterbirds

Hyperparameter Finetuning method

FIM adjusted FIM 𝐿2 ERM

learning rate 10−6,−5,−4

regularization weight 10{5,6,7} 10{5,6,7} 10{−1,0,1} —

𝛼 — 10−3 — —

batch size 128, 256

epochs 120

warmup epochs 0

drop path rate 0

optimizer AdamW(𝛽1 = 0.9, 𝛽2 = 0.95)

learning rate schedule cosine

learning rate scaling value 1.0

weight decay {0, 10{−3,−2,−1}}
weight decay end —

augmentation imagenet, crop_scale=(0.2, 1.0)

aug multiplicity 1

Waterbirds experiments in Section 3 were run with hyperparameters in Table 3 and Table 4. 18
combinations were randomly sampled without replacement and each sampled hyperparameter com-
bination was run five times. We select the best performing validation hyper-parameter set for the
top-1 metric (using no group labels) and use that to report the test worst sub-group accuracy for all
methods.

Table 5: Hyperparameter sweep for finetuning ResNet50 on Celeb-A

Hyperparameter Finetuning method

FIM adjusted FIM 𝐿2 ERM

learning rate 10−2,−3,−4

regularization weight 10{5,6,7} 10{5,6,7} 10{−3,−2,−1} —

𝛼 — 10−3 — —

batch size 2048

epochs 300

warmup epochs 0

drop path rate 0

optimizer LARS(momentum=0.9)

learning rate schedule cosine

learning rate scaling value 256.0

weight decay {0, 10−4, 1.5 × 10−6}
weight decay end —

augmentation imagenet, crop_scale=(0.2, 1.0)

aug multiplicity 1

Celeb-A experiments in Section 3 were run with hyperparameters in Table 5 and Table 6. 18 combi-
nations were randomly sampled without replacement and each sampled hyperparameter combination
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Table 6: Hyperparameter sweep for finetuning ViT-B/16 on Celeb-A

Hyperparameter Finetuning method

FIM adjusted FIM 𝐿2 ERM

learning rate 10−6,−5,−4

regularization weight 10{5,6,7} 10{5,6,7} 10{−1,0,1} —

𝛼 — 10−3 — —

batch size 2048, 4096

epochs 60

warmup epochs 0

drop path rate 0

optimizer AdamW(𝛽1 = 0.9, 𝛽2 = 0.95)

learning rate schedule cosine

learning rate scaling value 256.0

weight decay {0, 10{−3,−2,−1}}
weight decay end —

augmentation imagenet, crop_scale=(0.2, 1.0)

aug multiplicity 1

was run five times. We select the best performing validation hyper-parameter set for the top-1 metric
(using no group labels) and use that to report the test worst sub-group accuracy for all methods.

B FIM distributions
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Figure 3: Overall FIM distribution of ViT-B/16
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Figure 4: Overall FIM distribution of ResNet50
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Figure 5: FIM distribution of outermost layers of
ViT-B/16. Note that the earlier blocks have much
wider spread of FIM values.
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Figure 6: FIM distribution of the non-block lay-
ers of ViT-B/16.
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Figure 7: FIM distribution of outermost layers of
ResNet50. Note that while the values seem better
behaved than in the case of ViT-B/16, all blocks
still have some parameters with 0 FIM value.
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