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Abstract

This paper presents a novel positive and negative set selection strategy for con-
trastive learning of medical images based on labels that can be extracted from
clinical data. In the medical field, there exists a variety of labels for data that serve
different purposes at different stages of a diagnostic and treatment process. Clinical
labels and biomarker labels are two examples. In general, clinical labels are easier
to obtain in larger quantities because they are regularly collected during routine
clinical care, while biomarker labels require expert analysis and interpretation to
obtain. Within the field of ophthalmology, previous work has shown that clinical
values exhibit correlations with biomarker structures that manifest within optical
coherence tomography (OCT) scans. We exploit this relationship between clinical
and biomarker data to improve performance for biomarker classification. This is
accomplished by leveraging the larger amount of clinical data as pseudo-labels for
our data without biomarker labels in order to choose positive and negative instances
for training a backbone network with a supervised contrastive loss. In this way, a
backbone network learns a representation space that aligns with the clinical data
distribution available. Afterwards, we fine-tune the network trained in this manner
with the smaller amount of biomarker labeled data with a cross-entropy loss in
order to classify these key indicators of disease directly from OCT scans. Our
method is shown to outperform state of the art self-supervised methods by as much
as 5% in terms of accuracy on individual biomarker detection.

Introduction

Contrastive learning (1) refers to a family of self-supervision algorithms that utilize embedding
enforcement losses with the goal of training a model to learn a rich representation space. The general
premise is that the model is taught an embedding space where similar pairs of images (positives)
project closer together and dissimilar pairs of images (negatives) project apart. In order to do this
in an unsupervised fashion, modern methods, such as (2), generate a positive pair through data
augmentation to get multiple views of a sample of interest and treat all other instances within a batch
as negatives. While these approaches have shown good performance on the natural image domain,
they operate under fundamental assumptions that may not generalize to the medical domain. For
example, data augmentations, by themselves, may not be the best way to choose positive pairs due to
small localized regions within medical data oftentimes containing the features most relevant to detect.
Additionally, previous approaches operate under the assumption that there exists simply labeled and
unlabeled data, rather than distributions of various types of labels as is oftentimes the case within the
medical domain. For example, a practical medical task is to detect biomarkers of a disease directly
from Optical Coherence Tomography (OCT) scans. This is important because biomarkers refer to
"any substance, structure, or process that can be measured in the body or its products and influence or
predict the incidence of outcome or disease (3)." However, biomarkers are difficult to label in large
quantities (4) due to the requirement of expert interpretation and analysis. Another reason for this
difficulty is that biomarkers such as Diabetic Macular Edema (DME), Intraretinal Fluid (IRF), and
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Figure 1: This gives an overview of statistics regarding biomarkers and clinical labels. 1) This shows
the number of images with biomarker and clinical labels in the OLIVES dataset. 2) All 9408 OCT
scans with biomarker labels were grouped based on the presence or absence of a specific biomarker.
These biomarker groups were then averaged based on their associated CST and BCVA values. It
can be observed that, on average, images with a biomarker present are separable from images with
a biomarker absent, with respect to clinical values, thus indicating a relationship between clinical
values and biomarkers.

others found in Appendix A.1 exist as fine-grained structures that can be difficult to distinguish from
the surrounding context. While it is challenging to obtain detailed biomarker information, other types
of data are collected more easily as part of standard clinical practice such as Best Central Visual
Acutity (BCVA) and Central Subfield Thickness (CST). This information is referred to as clinical
labels.

To illustrate this point, we show statistics of available data from the OLIVES dataset for ophthalmology
(5) in Figure 1. It can be observed that of the 78108 Optical Coherence Tomography (OCT) scans
within this dataset, all are labeled with some type of clinical information while a small amount
is labeled with biomarker information. Additionally, Figure 1 shows the relationship between
biomarkers and clinical labels. It can be observed that the corresponding clinical values of BCVA
and CST are separable depending on whether a specific biomarker is present or absent. Furthermore,
work within the medical field (6; 7; 8; 9) has shown that clinical labels can act as indicators of
structural changes that manifest within OCT scans. All of this indicates that these clinical labels
exhibit non-trivial relationships with key biomarkers of disease and can potentially act as surrogate
labels for biomarkers. We exploit this relationship by utilizing clinical labels as a means to choose
positive and negative sets for a supervised contrastive loss. The representation learnt from training in
this manner is then used to train a linear classifier utilizing a much smaller subset of biomarker labels.
As a result, the model will be able to utilize the larger pool of clinically labeled data in order to better
learn how to classify specific biomarkers. Contributions of this work include (i) introducing a novel
contrastive learning strategy based on OCT clinical data, (ii) comprehensive analysis of the effect
of different medical label distributions on performance, and (iii) comparison against state of the art
self-supervision algorithms.

Theoretical Interpretation

In (10) the authors present a theoretical framework for contrastive learning. Let X denote the set of
all possible data points. In this framework, contrastive learning assumes access to similar data in the
form of (x, x+) that comes from a distribution Dsim as well as k iid negative samples x−

1 , x
−
2 , ..., x

−
k

from a distribution Dneg. This idea of similarity is formalized through the introduction of a set of
latent classes C and an associated probability distribution Dc over X for every class c ∈ C. Dc(x)
quantifies how relevant x is to class c with a higher probability assigned to data points belonging to
this class. Additionally, let us define ρ as a distribution that describes how these classes naturally
occur within the unlabeled data. From this, the positive and negative distribution are characterized as
Dsim = E

c∼ρ
Dc(x)Dc(x

+) and Dneg = E
c∼ρ

Dc(x
−) where Dneg is from the marginal of Dsim.

The key idea that separates our work from the standard contrastive learning formulation presented
above is a deeper look at the relationships between ρ, Dsim, and Dneg . In principal, during unsuper-
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vised training, there is no information that provides the true class distribution ρ of the dataset X . The
central goal of contrastive learning is to generate an effective Dsim and Dneg such that the model is
guided towards learning ρ by identifying the distinguishing features between the two distributions.
Ideally, this guidance occurs through the set of positives belonging to the same class cp and all
negatives belonging to any class cn ̸= cp as shown in the supervised framework (11). Traditional ap-
proaches such as (2; 12; 13), enforces positive pair similarity through augmenting a sample to define
a positive pair which would clearly represent an instance belonging to the same class. However, these
strategies do not define a process by which negative samples are guaranteed to belong to different
classes. This problem is discussed in (10) where the authors decompose the contrastive loss Lun as a
function of an instance of a hypothesis class f ∈ F into Lun(f) = (1− τ)L ̸=(f) + (τ)L=(f). This
states that the contrastive loss is the sum of the loss suffered when the negative and positive pair come
from different classes (L̸=(f)) as well as the loss when they come from the same class (L=(f)).
In an ideal setting (L=(f)) would approach 0, but this is impossible without direct access to the
underlying class distribution ρ. However, it may be the case that there exists another modality of data
during training that provides us with a distribution ρclin with the property that the KL(ρclin||ρ) ≤ ϵ,
where ϵ is sufficiently small. In this case, the Dsim and Dneg could be drawn from ρclin in the
form: Dsim = E

c∼ρclin

Dc(x)Dc(x
+) and Dneg = E

c∼ρclin

Dc(x
−). If ρclin is a sufficiently good

approximation for ρ, then this has a higher chance for the contrastive loss to choose positives and
negatives from different class distributions and have an overall lower resultant loss. In this work, this
related distribution that is in excess comes from the availability of clinical information within the
unlabeled data and acts to form the ρclin that we can use for choosing positives and negatives. As
discussed in the introduction, this clinical data acts as a surrogate for the true distribution ρ that is
based on the severity of disease within the dataset and thus has the theoretical properties discussed.
Methodology

The OLIVES dataset (5) has 9408 OCT scans with explicit biomarker labels for 16 different biomarkers.
The biomarker labels are organized as a 16x1 vector for each OCT scan where each entry in the
vector is 1 or 0 to indicate the presence or absence of the corresponding biomarker. Of these 16
biomarkers, 5 exist in sufficiently balanced quantities to train a classifier for detection. These are
Intra-Retinal Hyper-Reflective Foci (IRHRF), Partially At- tached Vitreous Face (PAVF), Fully
Attached Vitreous Face (FAVF), Intra-Retinal Fluid (IRF), and Diffuse Retinal Thickening or Macular
Edema (DRT/ME). This data also has 78108 OCT Scans with the clinical labels: BCVA, CST, and
Eye ID. The clinical labels are discrete measurement values taken at every visit for each individual
eye. These images are derived from 96 unique eyes. The dataset is split into a training set of the
images from 76 eyes and the test set constitutes the images from the remaining 20 eyes. From these
test OCT scans, random sampling was employed to develop an individualized test set for each of
the 5 biomarkers used in our analysis. This results in a balanced test set, for each biomarker, where
500 OCT Scans have the biomarker present and 500 OCT Scans have the biomarker absent. Further
details on the dataset can be found in Appendix A.1.

The overall block diagram of the proposed method is summarized in Appendix B.1 Figure 5. Within
the OLIVES dataset, each individual image is associated with the clinical values BCVA, CST, and Eye
ID that are taken during the original patient visit. For each experiment, we first choose one of these
clinical values to act as a label for each image in the dataset. A backbone network ResNet-18 (14)
f(.) is trained with a supervised clinical contrastive loss (11) that uses the clinical label to choose
positives and negatives as shown in the first part of Figure 5. After training in this manner, the weights
of the backbone network are frozen and a linear layer is appended to the output of this network. This
layer is fine-tuned using the smaller subset of images containing explicit biomarker labels as shown in
the second part of Figure 5. We observe in Figure 2 that a backbone trained with a clinical contrastive
loss produces an embedding space that is separable with respect to individual biomarkers. Further
details surrounding the training and loss function can be found in Appendix B.1.

Results

During the clinical contrastive learning step, a single clinical label is chosen to act as the label on
which positives and negatives are selected. For example, in Table 1, when CST is specified as the
method, this indicates a supervised contrastive loss LCST where CST is utilized as the label of interest
for the images in the dataset. The appended linear layer is then fine-tuned by training each biomarker
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Figure 2: T-SNE visualization of the OLIVES Biomarker test set labeled by the presence or absence
of DME and IRF. We can effectively achieve an embedding space that is separable with respect to
biomarkers 1) DME and 2) IRF.

Table 1: Benchmark of the performance of supervised contrastive training on images with clinical
and biomarker data. Standard deviations for the results can be found in Table 3 of Appendix B.1

Method
Biomarkers Metrics

IRF DRT/ME IRHRF FAVF PAVF AUROC Average
Specificity

Average
SensitivityAccuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

PCL (13) 76.50% 0.717 80.11% 0.761 59.10% 0.683 76.30% 0.773 51.40% 0.165 0.767 0.741 0.604
SimCLR (2) 75.13% 0.716 80.61% 0.772 59.03% 0.675 75.43% 0.761 52.69% 0.249 0.754 0.747 0.614

Moco V2 (12) 76.00% 0.720 82.24% 0.793 59.60% 0.692 75.00% 0.784 52.69% 0.211 0.770 0.762 0.651

Eye ID 72.63% 0.674 80.20% 0.778 58.00% 0.674 74.93% 0.725 65.56% 0.588 0.767 0.776 0.656
CST 75.53% 0.720 83.06% 0.811 64.30% 0.703 76.13% 0.766 62.16% 0.509 0.790 0.772 0.675

BCVA 74.03% 0.701 80.27% 0.770 58.8% 0.672 77.63% 0.785 58.06% 0.418 0.776 0.713 0.645

individually as well as in a multi-label setting where all biomarkers are predicted simultaneously.
This is reflected in Table 1 where performance in predicting each of the 5 biomarkers individually is
shown by the Accuracy and F1-score for each biomarker as well as the average AUROC, Specificity ,
and Sensitivity to get an overall sense of performance across predicting all 5 biomarkers. We compare
against 3 state of the art contrastive learning algorithms (SimCLR(2), Moco v2 (12), and PCL (13))
that are trained in the same manner with their own method for choosing positives and negatives. We
observe a consistent improvement on these strategies for both individual biomarker classification
performance and performance in a multi-label setting. Part of the reason for this improvement may
be due to the finer granularity of tasks within the medical domain. Previous work (15) has shown that
standard contrastive learning strategies are worse in situations that involve fine-grained recognition.
In this case, we are attempting to detect small perturbations, rather than situations more consistent
with the natural image domain where the subject of interest is present throughout the image. This
acts as a preliminary explanation why the traditional strategies do comparably well for IRF and DME,
but perform much worse for IRHRF, PAVF, and FAVF. IRF and DME are much easier to distinguish
from the surroundng context, which is of benefit to these algorithms. This can be understood by the
images in Figure 3. By leveraging a wider array of positives from the distribution of clinical labels,
we observe superior performance on this biomarker detection task.

Conclusion

Broader Impacts From a medical perspective, our paper shows that there are ways to utilize
correlations that exist between measured clinical labels and their associated biomarker structures
within images. This work potentially inspires medical research into other domains and clinical
settings where questions exist as to how to effectively utilize relationships that exist within the data
available. This is especially relevant in contexts where access to one modality is easier than another.

Discussion In this work, we investigate how the usage of a supervised contrastive loss on clinical
data can be used to effectively train a model for the task of biomarker classification. We show how
the method performs across different combinations of clinical labels. We conclude that the usage of
the clinical labels is a more effective way to leverage the correlations that exist within unlabeled data
over traditional contrastive learning algorithms. We prove this through extensive experimentation on
biomarkers of varying granularity within OCT scans.
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Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.

• Did you include the license to the code and datasets? [No] The code and the data are
proprietary.

• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Appendix A.2.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Appendix A.2.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Theoretical
Discussion Section

(b) Did you include complete proofs of all theoretical results? [N/A] Theory from
paper (10) was discussed and showed connections to this paper, no explicit proof was
necessary.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] See Appendix
C.1

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix B.1

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Appendix B.1

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix C.2

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] See Appendix A.1.
(b) Did you mention the license of the assets? [Yes] See Appendix C.1.
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] The dataset is open source.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] The open source dataset discusses this point
in their paper. There is no personally identifiable information within the dataset.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]
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(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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Figure 3: Cross-sectional images of graded biomarkers. Intra-Retinal Hyper-Reflective Foci
(IRHRF), indicated by the six white arrows, are areas of hyperreflectivity in the intraretinal layers
with or without shadowing of the more posterior retinal layers. Intra-Retinal Fluid (IRF) encompasses
the cystic areas of hyporeflectivity. Diabetic Macular Edema (DME) is the apparent swelling and
elevation of the macula due to the presence of fluid. A Partially Attached Vitreous Face (PAVF), with
an arrow indicating the point of attachment and a Fully Attached Vitreous Face (FAVF). A discussion
of these biomarkers can be found at (16).

A Dataset Description

A.1 Dataset Details

The dataset is used in this study is the OLIVES dataset (5). Full details surrounding the dataset can be
understood from the paper, but we wish to highlight specific figures from the paper to understand
the studies performed in this workshop. Table 2 provides a full description of all the labels available
within the dataset. It specifies the exact biomarkers and clinical labels obtained for every image as
well as how they were collected. Figure 3 shows examples of the biomarkers that are detected in the
studies shown in this paper. Furthermore, a complete analysis of the distributions of clinical values
present in the study can be found at Figure 4.

Table 2: High-level overview of the OLIVES Dataset. The modality column details the type of data.
The columns "Per Visit" and "Per Eye" indicate the amount of data in each modality on a respective
visit or eye. NP is the number of visits that a patient P takes to the clinic. The statistics across all
eyes across all visits are shown in the Total Statistics column. Biomarkers are binary values, clinical
labels are integers, fundus are 2D images, and OCT are 3D slices.

OLIVES Dataset Summary

Modality Per Visit Per Eye Total Statistics Overview

OCT

Fundus

Clinical

Biomarker

49

1

4

16

NP *49

NP

NP *4

1568

78189

1268

5072

150528

General:
96 Eyes, Visits every 4-16 weeks,

Average 16 visits and 7 injections/patient
Clinical Labels obtained every visit:

BCVA, CST, Patient ID, Eye ID
Biomarkers labeled:

IRHRF, FAVF, IRF, DRT/ME PAVF, VD,
Preretinal Tissue, EZ Disruption, IR Hemmorhages,

SRF, VMT, Atrophy, SHRM, RPE Disruption,
Serous PED

A.2 Limitations

The primary limitations of our study is the number of clinical labels we investigated as well as the
fact the dataset comes from people who attended a single clinic. Having a wider range of clinical
labels would allow us to explore how the wide range of available medical data transfers in terms
of learning representations for other related tasks. Additionally, the fact the dataset comes from
a single location limits how well the model can generalize towards other populations of patients.
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Figure 4: Distribution of CST and BCVA labels in OLIVES dataset based on number of eyes
associated with each clinical value.

This is an inherent limitation of any medical dataset and could potentially be accounted for through
supplementing analysis with other datasets such as Kermany (17) and Farisu (18). This potential lack
of generalization towards other sub-populations is problematic if not properly accounted for when
applying algorithms to real-world settings. Without this accountability, this could have a negative
societal impact.

B Additional Results and Training Details

B.1 Standard Deviation

The standard deviations for 3 different runs of the algorithm in the task of individual biomarker
detection and average AUROC are shown in Table 3.

Method Biomarkers

IRF DME IRHRF FAVF PAVF AUROC

PCL (13) 76.50% ± .513 80.11% ± .335 59.1% ± 1.03 76.30% ± .378 51.40% ± .556 .767 ± .0017
SimCLR (2) 75.13% ± .529 80.61% ± .837 59.03% ± 2.54 75.43% ± .378 52.69% ± 2.68 .754 ± .0017

Moco v2 (12) 76.00% ± .305 82.24% ± 1.38 59.6% ± .702 75.00% ± .608 52.69% ± .472 .770 ± .0035

Eye ID 72.63% ± .264 80.2% ± .384 58% ± 2.56 74.93% ± 1.36 65.56% ± .200 .767 ± .0005
CST 75.53% ± .608 83.06% ± .213 64.3% ± 2.57 76.13% ± .264 62.16% ± 1.47 .790 ± .0006

BCVA 74.03% ± .351 80.27% ± .853 58.8% ± 1.82 77.63% ± .305 58.06% ± 1.27 .776 ± .0017

Table 3: We show the performance of supervised contrastive training on the OLIVES dataset. In this
table we explicitly show the standard deviation for the average across three runs for both accuracy
and AUROC.

B.2 Additional Training Details

Given an input batch of data, (xk, and clinical labels, (yk we obtain the set (xk, yk)k=1,...,N . We
perform augmentations on the batch twice in order to get two copies of the original batch with 2N
images and clinical labels. These augmentations are random resize crop to a size of 224, random
horizontal flips, random color jitter, and data normalization. These are sensible from a medical
perspective because they don’t disrupt the general structure of the retina. This process produces
a larger set (xl, yl)l=1,...,2N that consists of two versions of each image that differ only due to the
random nature of the applied augmentation. Thus, for every image xk and clinical label yk there
exists two views of the image x2k and x2k−1 and two copies of the clinical labels that are equivalent
to each other: y2k−1 = y2k = yk.

From this point, we perform the first step in Figure 5, where supervised contrastive learning is
performed on the identified clinical label. The clinically labeled augmented batch is forward-
propagated through an encoder network f(·) that we set to be the ResNet-18 architecture (14). This
results in a 512-dimensional vector ri that is sent through a projection network G(·), which further
compresses the representation to a 128-dimensional embedding vector zi. G(·) is chosen to be a
multi-layer perceptron network with a single hidden layer. This projection network is utilized only to
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reduce the dimensionality of the embedding before computing the loss and is discarded after training.
A supervised contrastive loss (11) is performed on the output of the projection network in order to
train the encoder network. In this case, embeddings with the same clinical label are enforced to be
projected closer to each other while embeddings with differing clinical labels are projected away
from each other. Our introduced clinical supervised contrastive loss process can be understood by:

Lsupconclin =
∑
i∈I

−1

|C(i)|
∑

c∈C(i)

log
exp(zi · zc/τ)∑

a∈A(i) exp(zi · za/τ)

where i is the index for the image of interest xi. All positives c for image xi are obtained from the
set C(i) and all positive and negative instances a are obtained from the set A(i). Every element c of
C(i) represents all other images in the batch with the same clinical label c as the image of interest
xi. Additionally, zi is the embedding for the image of interest, zc represents the embedding for
the clinical positives, and za represents the embeddings for all positive and negative instances in
the set A(i). τ is a temperature scaling parameter that is set to .07 for all experiments. The loss
function operates in the embedding space where the goal is to maximize the cosine similarity between
embedding zi and its set of clinical positives zc. It should be explicitly stated that the set C(i) can
represent any clinical label of interest.

After training the encoder with clinical supervised contrastive loss, we move to the second step in
Figure 5 where the weights of the encoder are frozen and a linear layer is appended to the output
of the encoder. This setup is trained on the available biomarker data after choosing the biomarker
we wish to train for. This linear layer is trained using cross-entropy loss to distinguish between
the presence or absence of the biomarker of interest in the OCT scan. In this way, we leverage
knowledge learnt from training on clinical labels to improve performance on classifying biomarkers.
The previously trained encoder with the supervised contrastive loss on the clinical label from step 1
produces the representation for the input and this representation is fine-tuned with the linear layer to
distinguish whether or not the biomarker of interest is present.

Care was taken to ensure that all aspects of the experiments remained the same whether training was
done via supervised or self-supervised contrastive learning on the encoder or cross-entropy training
on the attached linear classifier. The encoder utilized was kept as a ResNet-18 architecture. The
applied augmentations are random resize crop to a size of 224, random horizontal flips, random color
jitter, and data normalization to the mean and standard deviation of the respective dataset. The batch
size was set at 64. Training was performed for 25 epochs in every setting. A stochastic gradient
descent optimizer was used with a learning rate of 1e-3 and momentum of .9.

B.3 Training of Comparison Architectures

The training for SimCLR, Moco v2, and PCL was performed using the same setup described for
the supervised contrastive learning experiments described in the previous section. This means the
same ResNet-18 architecture and MLP projection head was utilized. It should be noted we made
appropriate changes to ResNet-18 to fit the constraints of our dataset i.e. single channel images as
well as removal of an early max-pooling layer. All models were trained for 25 epochs with a batch
size of 64. The applied augmentations were random resize crop to a size of 224, random horizontal
flips, random color jitter, and data normalization to the mean and standard deviation of the respective
dataset. A stochastic gradient descent optimizer with a learning rate of 1e-3 and momentum of .9
was used during pre-training of the backbone model as well as the appended linear layer during the
biomarker classification step. Links to the code for these strategies can be found in Appendix C.1.

Additional details exist for Moco v2 and PCL in regards to certain hyperparameters introduced
within their respective methodologies. For Moco v2, we used the same default hyper-parameters as
introduced in the original paper. This includes a queue size of 65536, a moco momentum update
term of .999, and a softmax temperature of .07. For PCL, further changes had to be made due to the
clustering nature of PCL. In this case, the provided hyperparameters of PCL were based on the size
of the Imagenet (19) dataset which has in excess of 1 million images. However, our training set had
60,000 images, which means that the default clustering values were inappropriate. The changes we
made to fit our constraints included a queue size of 64, the number of clusters set to [100, 200, 300],
the moco momentum term set to .999, and the softmax temperature scaling set to .07.
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Figure 5: Overview of supervised contrastive learning and linear fine- tuning steps. 1) Supervised
Contrastive Loss on clinical labels. 2) Attach linear layer and train on labeled biomarker data.

C Code and Resources

C.1 Links to Access Dataset and Code

We provide open access to the dataset. The images and labels found in the OLIVES dataset are
present at:
Dataset Access
The code for the benchmarks provided in the paper are accessible at the following link:
Code Access

PCL

The code is associated with an MIT License. The DOI of the dataset is 10.5281/zenodo.6622145.
The associated license with the dataset is a Creative Commons International 4 license.

The code for the comparison architectures can be found at:

SimCLR

Moco v2

C.2 Computing Resources

All experiments were run on PCs with NVIDIA GeForce GTX TITAN X 12 GB GPUs.

D Related Works

Modern contrastive learning approaches such as (2; 20; 21; 22) all generate positive pairs of images
through various types of data augmentations such as random cropping, multi-cropping, and different
types of blurs and color jitters. A classifier can then be trained on top of these learned representations
while requiring fewer labels for satisfactory performance. Recent work has explored the idea of
using medically consistent meta-data as a means of finding positive pairs of images alongside
augmentations for a contrastive loss function. (23) showed that using images from the same medical
pathology as well as augmentations for positive image pairs could improve representations beyond
standard self-supervision. (24) demonstrated utilizing contrastive learning with a transformer can
learn embeddings for electronic health records that can correlate with various disease concepts. (25)
investigated choosing positive pairs from images that exist from the same patient, clinical study,
and laterality. These works demonstrate the potential of utilizing clinical data within a contrastive
learning framework. However, these methods were tried on limited clinical data settings, such as
choosing images from the same patient or position relative to other tissues. Our work builds on these
ideas by explicitly using measured clinical labels from an eye-disease setting as its own label for
training a model. By doing this, we present a comprehensive assessment of what kinds of clinical
data can possibly be used as a means of choosing positive instances from the perspective of OCT
scans and expand the scope of how clinical data can be utilized.
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