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Abstract

Most popular contrastive-loss based methods use multiple views of the same image
by applying contrived augmentations on the image to create positive pairs and
contrast them with negative examples. While there have been some attempts to
capture a richer set of deformations in the positive samples, in this work, we
explore a promising alternative to generating positive examples for remote sensing
data within the contrastive learning framework. Images captured from different
sensors at the same location and nearby timestamps can be thought of as strongly
augmented instances of the same scene, thus removing the need to explore and tune
a set of hand crafted strong augmentations. In this paper, we propose a simple dual-
encoder framework, which is pre-trained on a large unlabeled dataset (∼ 1M ) of
Sentinel-1 (radar) and Sentinel-2 (optical) image pairs. We test the embeddings on
two remote sensing downstream tasks: flood segmentation and land cover mapping,
and empirically show that embeddings learnt from this technique outperform
the conventional technique of collecting positive examples via aggressive data
augmentations. We also show that our approach facilitates each modality to learn
features which are more clearly discriminable in the other modality.

1 Introduction

Recently, self-supervised learning (SSL) techniques have seen tremendous success as a way to
pre-train supervised models. Popular self-supervised frameworks for computer vision tasks, including
SimCLR [10], MoCo [20], MoCo-v2 [11], Barlow twins [38], BYOL [19], learn representations by
imposing invariance to several image augmentations. Many successful SSL techniques proposed
in the past few years use a contrastive learning framework, where the pretext task is based on
instance discrimination [35], which treats every instance of an image as a separate class. The positive
examples for each class (instance, in this case) are gathered by applying augmentations on each
image. Commonly used hand-crafted augmentations include random cropping, gaussian blurring,
color jitter, and color drop. Some works have also proposed more elaborate means of collecting
positive examples and capturing a richer set of deformations [7] [34] [24] [33] [36]. These SSL
techniques have also worked well for many remote sensing tasks. While ImageNet initialization
is a strong baseline for remote-sensing applications like scene classification [30], pre-training on
unlabeled satellite imagery using SSL techniques provides a further improvement [29].

Another line of work explores contrastive SSL techniques specific to remote sensing domain. Geo-
CLR [36] generates positive pairs by utilizing the geolocation metadata available in seafloor imagery
and gathering images which are physically close as positives. However, the distance within which an
image is considered a positive instance has to be tuned based on the downstream task. GASSL [4] and
SeCo [25] leverage spatially aligned images over time to create temporal positive pairs. While these
methods improve performance, they still rely on artificial augmentations with many hyper-parameters.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Remote sensing offers another unique possibility of applying multimodal learning on images captured
from different sources. Unlike RGB camera images (e.g., ImageNet [15], CoCo [12]), images
obtained from different satellite constellations acquire different types of information about the
scene: Multispectral, LiDAR, Hyperspectral, Synthetic Aperture Radar (SAR), all capture surface
information differently and contain complementary information. Sheehan et al. [31] and Heidler et
al. [22] use additional metadata in the form of geo-tagged Wikipedia articles and audio recordings,
respectively, to boost performance. Multimodal/multiview self-supervised learning has also been
explored in [13] [8] [23]. However, the scale of pre-training in these works is small, and often the
learned representations are not general purpose and limited to a single application.

We propose a multimodal framework for learning representations by using data from two different
remote sensing satellites. Our hypothesis is that images from different remote sensors, captured at the
same geolocation and close by timestamps, provide better positive examples for contrastive learning
than what is obtained using the hand-crafted augmentation techniques. It also allows each modality
to learn features which are more clearly visible/discriminable in the other modality. Images captured
from different remote sensing sensors can be thought of as naturally occurring strong augmentations
of the same scene. We adapt the SimCLR framework and replace the synthetic augmentations by
cross-modal positive pairs. Our main contributions include a dual-encoder multimodal framework for
remote sensing applications which leverages the naturally occurring augmentations obtained from
different remote sensors capturing the same scene. It is pre-trained on a large dataset of ∼ 1M paired
Sentinel-1 [32] and Sentinel-2 [17] imagery. We test the quality of these embeddings on two publicly
available downstream tasks of semantic segmentation: flood segmentation and land cover mapping.

2 Datasets

Multi-satellite unlabeled pre-training dataset: We extract paired Sentinel-1 (also referred to as
SAR in this paper) and Sentinel-2 pre-training data using Google Earth Engine [18]. Sentinel-1 and
Sentinel-2 satellites acquire imagery using very different mechanisms. SAR imagery captures signals
irrespective of the weather conditions, clouds, or darkness, as opposed to optical imagery which
shows high variation depending upon prevailing cloud cover. However, SAR images are not as easy
to interpret for non-expert humans and doesn’t discriminate well between certain land cover types
compared to optical imagery. We collect a dataset of 1,087,502 image pairs. Details about data
sampling and visualizations are in Appendix A.2.

Downstream labeled datasets: We evaluate trained embeddings on two publicly available datasets:

Sen1Floods11 [5]: We use this dataset for flood segmentation. It consists of hand-labeled Sentinel-1
images of flood scenes and the segmentation task is to demarcate flooded regions.

Dynamic World [6]: This dataset is used for land cover segmentation (into 9 classes) using Sentinel-2
imagery. We also augment this dataset by joining every Sentinel-2 image with a corresponding
Sentinel-1 image to allow for models to be trained and evaluated on SAR images that are robust to
changing weather and lighting conditions. This dataset is used to set up two downstream tasks, one
that uses only Sentinel-1 images as inputs and the other only Sentinel-2 images. The two datasets are
referred to as Dynamic World (Sentinel-1) and Dynamic World (Sentinel-2), respectively.

Appendix A.3 further details image normalization, dataset size, splits, and label quality.

3 Multimodal pre-training

We adapt the SimCLR contrastive learning framework for multimodal pre-training by constructing
positive pairs from different satellite collections, which act as natural augmentations to each other.
We take a pair of such images and apply only spatial augmentations to them independently by taking a
crop and resizing. Applying spatial augmentations is required to avoid the network from just learning
the local edge features. Figure 1 illustrates our proposed method.

These paired images are passed through a dual-encoder architecture and a contrastive loss is applied to
map their embeddings closer in feature space and away from the non-matching pairs. The multimodal
contrastive loss is defined per batch of images. Consider a batch ofN such image pairs, withN images
coming from Sentinel-1 {s1k, k ∈ [1, ..., N ]} and another N from Sentinel-2 {s2k, k ∈ [1, ..., N ]}.
Each s1i has a corresponding positive example s2i and the remaining 2(N −1) images are considered
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Figure 1: Overview of our framework. Sentinel-1 and Sentinel-2 are jointly mapped in the same
space and the representations can be used for both Sentinel-1 or Sentinel-2 based downstream tasks.

as negative examples for this pair. Sentinel-1 and Sentinel-2 images are encoded with different
encoder network f1(.) and f2(.) to generate feature representations h1i and h2i, respectively. These
feature representations are passed through a non-linear projection head, g1(.) and g2(.) to produce
embeddings xi and yi, respectively (with xi = g1(f1(s1i)) and yi = g2(f2(s2i))). For a positive
pair i, we define multimodal contrastive loss per batch as: li = lixy + liyx, where liab is defined as:

liab = −log exp(sim(ai, bi)/τ)

ΣN
k=11[k 6=i]exp(sim(ai, ak)/τ) + ΣN

k=1exp(sim(ai, bk)/τ)
(1)

sim(.) denotes the cosine similarity function between two normalized vector embeddings. The same
encoder networks f1(.) and f2(.) are also used as the encoder networks for the downstream tasks to
allow transfer of these learned representations.

Baselines: We compare multimodal pre-trained models against Random, ImageNet, and Sim-
CLR [10] initializations by fine-tuning on downstream tasks. We follow the SimCLR augmentations
proposed in [29] which focused on remote sensing applications, and makes for a stronger baseline.

Both SimCLR and Multimodal models are trained using the same hyperparameters, similar to [10].
We use Deeplabv3+ encoder-decoder architecture [9] for segmentation tasks, with the same encoder
as used for pre-training. Training details for pre-training and fine-tuning are specified in Appendix B.

4 Experimental evaluation

The performance on Sen1Floods11 and Dynamic World dataset is reported in pixel-wise IoU of
the water class and overall classification accuracy, respectively. For understanding the impact of
transferred representations in label scarce settings, we sub-sample multiple sets of the labeled dataset
at 1%, 10%, and 100%. For each dataset, the learning rate sweep is run on the entire training dataset
and the same learning rate is used for the sub-sampling experiments. Our model performs better than
SimCLR across both the tasks and on all the sub-sampling splits as shown in Table 1 and Table 2.

Sen1Floods11: Despite being pre-trained on large datasets, both ImageNet and SimCLR do not

Table 1: Water IoU on Sen1Floods11 test set. 1% experiment
is not conducted as the training set has only 252 examples.

Checkpoint 10% split 100% split

Random 55.22± 5.29 66.42± 0.25
ImageNet 54.33± 2.84 65.56± 0.47
SimCLR 55.35± 4.95 66.40± 0.21
Multimodal 57.89± 5.65 68.71± 0.29

significantly outperform the random
initialization. Multimodal consis-
tently outperforms ImageNet initial-
ization, with +3.5% and +3.1% im-
provement in the absolute IoU value
(for water class) on 10% and 100% of
the training data, respectively.

Dynamic World (Sentinel-1): Sim-
CLR initialization provides huge gain
over training from ImageNet initial-
ization. Multimodal performs the best,
providing a +1 to +1.3% increase in the classification accuracy over SimCLR. The results on 1% and
10% experiments show that in-domain multimodal pre-training can give huge gains [14] [29], provid-
ing +8.9% and +5.7% absolute classification accuracy improvement, respectively, over ImageNet
initialization, making the learning extremely data efficient.

Dynamic World (Sentinel-2): We observe a similar trend when using Sentinel-2 images as inputs.
Multimodal pre-training gives +2.2% and +1.3% absolute improvement on classification accuracy over
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Table 2: Classification accuracy on Dynamic World test set using
Sentinel-1 (top) and Sentinel-2 (bottom).

Checkpoint 1% split 10% split 100% split

Random 47.49± 1.31 55.81± 0.91 61.86± 0.48
ImageNet 50.71± 1.52 59.00± 0.43 65.93± 0.20
SimCLR 58.49± 0.42 63.70± 0.43 67.45± 0.18
Multimodal 59.59± 0.96 64.73± 0.39 68.72± 0.55
Random 49.96± 0.66 62.90± 0.92 71.32± 0.26
ImageNet 56.71± 1.45 69.00± 0.46 73.02± 0.32
SimCLR 65.87± 1.08 71.67± 0.65 74.96± 0.24
Multimodal 68.07± 1.02 72.93± 0.26 74.95± 0.18

SimCLR for 1% and 10% split,
respectively. The performance
seems to saturate when using
all the labeled data, with Sim-
CLR and multimodal perform-
ing almost equally well. The
overall land cover segmenta-
tion performance on Dynamic
World (Sentinel-2) is higher
than Dynamic World (Sentinel-
1) as Sentinel-2 bands are more
discriminative for land cover
classes.

Learning complimentary information across modalities: We compare the performance of
multimodal checkpoint with SimCLR for each class in the Dynamic World (Sentinel-1) and
Dynamic World (Sentinel-2) datasets to understand how each class is affected. We re-
port the difference (averaged on 5 sets of 1% training dataset) in pixel-wise IoU for each
class when fine-tuned using our multimodal checkpoint, compared to SimCLR checkpoint.
Our findings are summarized in Figure 2. We hypothesize that multimodal contrastive
learning enables the network to learn complimentary information from different modalities,
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Figure 2: Delta change in absolute per-
class IoU with Multimodal initialization
over SimCLR initialization on Dynamic
World (a) Sentinel-2 (b) Sentinel-1.

i.e., it allows each modality to learn features which are
more clearly distinguishable in the other modality, while
also retaining the features from the original modality.

Consider fine-tuning on Dynamic World (Sentinel-2)
dataset, the multimodal checkpoint outperforms SimCLR
checkpoint for 8 out of the 9 Dynamic World classes.
Highest gain is observed in water class by +8.26%, fol-
lowed by snow and ice with a +8.05% absolute IoU gain,
and built area by +6.24%. Active sensors, like SAR, are
known to be good at identifying very smooth surfaces
(calm water and smooth ice) and very rough surfaces
(man-made buildings) [3] [26] [16] [28]. In line with this,
we observe that water, ice/snow, and built area classes
observe maximum gains with multimodal pre-training.
Compared to SimCLR pre-training on just Sentinel-2
images, multimodal training also incorporates the dis-
criminative capabilities of Sentinel-1 during pre-training.

We observe a similar pattern when fine-tuning on Dy-
namic World (Sentinel-1). The multimodal initialization
improves over SimCLR in 6 out of the 9 classes. Crops
and built area show improved absolute IoU by +3.36%
and +2.52%, respectively. Optical imagery is the pre-
ferred data source for agricultural crop classification [27],
as multispectral optical imagery can measure and monitor the growth, stage type, and crop health.
Multimodal learning can leverage this discriminative characteristic of Sentinel-2 to enhance the
Sentinel-1 embeddings. These results align with our hypothesis that multimodal learning improves
the representations for both the modalities as each modality also learns complimentary information
from the other modality.

5 Conclusion

We present a simple method of leveraging abundant amounts of unlabeled data across different input
modalities that remote sensing satellites offer. Our method avoids selecting and tuning hand-crafted
augmentations for satellite images and outperforms the traditional baselines on two remote sensing
tasks. A similar training architecture could also be applied to other modality combinations outside
of the two satellites we explored in this paper. Other input types, like temperature, precipitation,
elevation, geo-tagged articles, or audio, all contain rich features and can be explored in future work.
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A Datasets

A.1 Satellite sources

Sentinel-1: Sentinel-1 [1] [32] satellite constellation provides data from its Synthetic Aperture
Radar (SAR) instrument, which is an active data collection sensor. It emits microwave radiation
in the C-band (5.4GHz) which gets reflected from Earth after interacting with the surface and the
bounced signal is recorded to characterize the surface properties. The images are pre-processed by
thermal noise removal, radiometric calibration, and terrain correction and the pixel values of the
exported images are in decibels. We collect Vertical Transmit-Vertical Receive (VV) and Vertical
Transmit-Horizontal Receive (VH) bands from Sentinel-1 at 10m resolution.

Sentinel-2: Sentinel-2 [2] [17] is a satellite constellation that acquires multispectral images at high
resolution. It works passively by collecting light reflected from the surface of the Earth. We use
Sentinel-2 Level 1C product which represents Top of Atmosphere (TOA) reflectance values. There
are 13 spectral bands in this constellation, out of which we only use the RGB bands (B4, B3, and B2
respectively) captured at 10m resolution.

As mentioned in Section 2, the mechanism through which the two sources acquire imagery is very
different, as visualized in Figure 3.

Figure 3: Randomly sampled Sentinel-1 (top) and Sentinel-2 (bottom) image pairs sampled from
the same location and close by timestamp. An additional channel of zeros is concatenated to the
Sentinel-1 bands for visualization.

A.2 Unlabeled dataset sampling

We obtain Sentinel-1 and Sentinel-2 image pairs by generating IID samples of latitude, longitude from
the global land mass, and IID samples of timestamp values collected over a period of 5 years from
31st December, 2016 to 31st December, 2021. We exclude Greenland and Antarctica from the global
landmass as it might be difficult for contrastive loss to discriminate between homogenous images. An
image pair is collected if there is a Sentinel-1 and a Sentinel-2 image available at the specified location
and is within 30 days (in the past) of the specified timestamp. In cases where there are multiple
images in the 30 days window, we choose the image which is closest to the specified timestamp. We
apply cloud filtering to remove images with more than 15% cloud coverage in Sentinel-2. This is
done because cloud covered images obscure semantic information and do not contain features needed
for learning in a contrastive learning framework. Sentinel-1 SAR images are, however, not affected
by cloud cover and do not need this filter. The total number of images collected for pre-training are
1,087,502 with an image size of 512 × 512 × 2 for Sentinel-1 and 512 × 512 × 3 for Sentinel-2.
The regions from where the data is sampled are highlighted in Figure 4.
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Figure 4: Regions highlighted inside the red polygons are used to generate random lat-lon values,
which are used to export unlabeled Sentinel-1 and Sentinel-2 paired imagery.

A.3 Downstream labeled datasets

Sen1Floods11 [5]: Sen1Floods11 SAR images of flood scenes are collected from 11 flooding events
across 6 continents. The authors released 4,831 images which were labeled using simple thresholding
models, yielding noisy weak labels. A small subset of 446 images were hand corrected by experts,
and we use only this subset for our experiments to avoid training data quality issues, and also test the
effectiveness of representation learning in a data scarce setting. The authors provide an IID partition
of the data comprising of 252 train images, 89 validation images, and 90 test images.

Dynamic World [6]: We use the train and test dataset that has been labeled by human annotators.
The number of Sentinel-2 training examples in the publicly available dataset is 22,906 and 409
samples in the test set. Sentinel-2 images in the Dynamic World dataset consist of 9 spectral bands.
We augment this dataset by joining every Sentinel-2 image with a corresponding Sentinel-1 image
(VV and VH bands). The joining criteria used is that a Sentinel-1 image should be available at the
exact same location and within 3 months of the Sentinel-2 image. If this criteria cannot be met,
we discard that example. Upon the join with Sentinel-1 images, 22,891 train images and 407 test
images are obtained. We create an IID split of the train dataset into roughly 80:20 train and validation
samples (as a separate validation set is not provided explicitly in the data). For the Sentinel-2 images,
we only use the RGB bands as inputs.

Table 3 summarises the key attributes of these downstream labeled datasets.

Table 3: Summary of key attributes for both the datasets used for evaluation.

Sen1Floods11 Dynamic World
(Sentinel-1)

Dynamic World
(Sentinel-2)

Source Sentinel-1 Sentinel-1 Sentinel-2
Bands VV and VH VV and VH B4, B3, and B2 (RGB)
Resolution 10m 10m 10m
Image size 512x512 510x510 510x510
Label classes 2 (water, no water) 9 (water, trees, grass,

flooded vegetation,
crops, shrub and scrub,
built area, bare ground,
snow and ice)

9 (water, trees, grass,
flooded vegetation,
crops, shrub and scrub,
built area, bare ground,
snow and ice)

No. train images 252 18,293 18,293
No. validation images 89 4,598 4,598
No. test images 90 407 407
Train regions 11 flooding events from

6 continents
Global Global
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A.4 Image normalization

Data from both the satellite sources is normalized into a consistent range during data pre-processing.
As discussed above, raw Sentinel-1 images are in decibels (dB) scale. We clip these images to a
fixed range ([-20dB, 5dB]) and scale it linearly to pixel values between [0, 255]. Sentinel-2 images
represent scaled TOA reflectance values. For Sentinel-2, we use a logarithm-based nonlinear scaling
method as in [6]. This is done because cloudy pixels in Sentinel-2 have large reflectance values
compared to the non-cloudy pixels and a linear scaling would result in a smaller range for the
non-cloudy pixels. The same image normalization is applied on the unlabeled pre-training datasets
and downstream datasets.

B Training details

We compare the performance of the multimodal pre-trained models against all the baselines mentioned
in Section 3 for each dataset.

Pre-training: ResNet-50 [21] is used as the encoder architecture, for both SimCLR as well as our
dual-encoder multimodal pre-training. The first 7x7 convolutional layer in the architecture is replaced
with two 3x3 convolutional layers, as done in DeepLabv3+ [9]. Our pre-training setup is similar
to [10]. We train on a batch size of 4096, weight decay of 10−4, using the Layer-wise Adaptive Rate
Scaling (LARS) optimizer [37] with momentum 0.9. The initial learning rate is set to 0.48 with a
cosine learning rate decay schedule (we reduce the learning rate by a factor of 10 compared to the
default SimCLR training as the default one was high for training on this dataset, resulting in NaNs
during training). The models are trained on 256 × 256 crop sizes till 160k steps. The temperature
value for contrastive loss is kept constant as 0.1. The output from Resnet-50 is passed through a
projection head giving 128 dimensional embeddings which are normalized before passing to the
loss function. For the multimodal model, the image encoder of the modality that comprises the
downstream task is transferred for fine-tuning.

Fine-tuning: We use Deeplabv3+ encoder-decoder architecture [9] for segmentation tasks, with
the same encoder as used for pre-training. We optimize for the cross entropy loss. For ImageNet,
SimCLR, and Multimodal pre-training, the initialization is done only for the encoder, and the atrous
convolution and decoder layers are trained from scratch for all models. The weights are optimized
on the train split, hyperparameter and checkpoint selection is done on the validation split and the
final evaluation is done on the test split. We use a batch size of 64 with 321 × 321 image size for
training. Atrous rates are set to (3, 6, 9) and the weight decay is kept at 10−6 for all experiments.
The optimizer used is momentum with the momentum parameter set to 0.9. Polynomial schedule is
used for the learning rate, starting from an initial value and decaying till zero with power 0.9. We do
a sweep over the learning rate values, starting from 10−1 to 10−4, varying by a factor of 10−1.

For the sub-sampling experiments, we sample 5 sets of the training data at 1% and 10%. These
samples are chosen only once, are non-overlapping, and fixed for all experiments. For 100%, we
repeat the experiment on the entire dataset thrice. The learning rate sweep is run only on the entire
training dataset. A summary of the training details is given in Table 4.

Table 4: Training details of fine-tuning on the downstream datasets.

Sen1Floods11 Dynamic World
(Sentinel-1)

Dynamic World
(Sentinel-2)

Encoder ResNet-50 ResNet-50 ResNet-50
Evaluation Metric Mean IoU of Water

class
Classification accuracy Classification accuracy

Number of train steps 20,000 100,000 100,000

Sub-sampling experiment 3 sets of 100%
5 sets of 10%

3 sets of 100%
5 sets of 10%
5 sets of 1%

3 sets of 100%
5 sets of 10%
5 sets of 1%
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C Results on validation set

The hyper-parameter and checkpoint selection is done on the validation set of the labeled data for
each dataset. The results are detailed in Table 5.

Table 5: Results on the validation set of Sen1Floods11 and Dynamic World dataset. The numbers are
aggregated mean and standard deviation of respective metrics.

Dataset Checkpoint Learning rate 1% split 10% split 100% split

Sen1Floods11
(IoU water)

Random 0.1 51.04± 5.38 63.50± 1.03
ImageNet 0.001 54.66± 3.29 64.21± 1.66
SimCLR 0.001 51.24± 4.35 64.30± 0.36
Multimodal 0.01 55.83± 3.5 66.89± 0.15

Dynamic World
(Sentinel-1)
(Classification accuracy)

Random 0.01 51.67± 0.88 59.99± 0.80 65.39± 0.47
ImageNet 0.01 55.02± 0.95 63.50± 0.45 69.32± 0.16
SimCLR 0.001 61.75± 0.60 67.30± 0.25 70.31± 0.16
Multimodal 0.001 63.26± 0.61 68.49± 0.23 71.26± 0.06

Dynamic World
(Sentinel-2)
(Classification accuracy)

Random 0.01 56.39± 1.44 67.56± 0.47 73.92± 0.18
ImageNet 0.001 62.06± 1.33 71.88± 0.36 75.06± 0.30
SimCLR 0.001 69.06± 1.30 74.56± 0.28 77.00± 0.13
Multimodal 0.001 70.74± 1.11 74.98± 0.18 77.14± 0.17

D Additional experiments

D.1 Improving SimCLR augmentations

We explore further optimizations over the SAR image SimCLR augmentations used in [29] (these
include random flips, color jitter, and Gaussian blur to the image crops). We reduce the intensity and
probability of applying color jitter and the other parameters are kept the same.

The list of augmentations applied on SAR images include:

• Random horizontal flip with probability 0.5
• Random vertical flip with probability 0.5
• Color distortion (jitter) with a probability of 0.5 and strength 5
• Random Gaussian blur with a probability of 0.5 and strength 4

Table 6: Results on the test set of Sen1Floods11 and Dynamic world (Sentinel-1) dataset with
improved SAR augmentations.

Dataset Checkpoint Learning
rate

1% split 10% split 100% split

Sen1Floods11
(IoU water)

SimCLR 0.001 55.35± 4.95 66.40± 0.21
SimCLR (improved
augmentation)

0.01 56.55± 4.37 67.83± 0.42

Multimodal 0.01 57.89±5.65 68.71±0.29
Dynamic world
(Sentinel-1)
(Classification accuracy)

SimCLR 0.001 58.49± 0.42 63.70± 0.43 67.45± 0.18
SimCLR (improved
augmentation)

0.001 57.86± 1.08 64.14± 0.07 67.92± 0.42

Multimodal 0.001 59.59±0.96 64.73±0.39 68.72±0.55

More details about the definition and implementation of these operations can be found in [10]. Table
6 shows the results with this augmentation for Sen1Floods11 and Dynamic World (Sentinel-1) dataset.
With this improved pre-trained Sentinel-1 SimCLR model, we observe a +1.2% and +1.4% gain
in absolute IoU for water class on 10% and 100% split for Sen1Floods11 dataset compared to the
SimCLR checkpoint described in [29]. For the Dynamic World (Sentinel-1) dataset, the change in
absolute classification accuracy for 1%, 10%, and 100% split is -0.6%, +0.4%, +0.5%, respectively.
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While this makes for a stronger baseline for SimCLR on Sentinel-1 images, our multimodal model
still outperforms SimCLR on both the tasks. It shows that exploring optimal parameters for these
hand chosen augmentations (operation, strength, and probability) is a computationally expensive task
and influences the performance of SimCLR heavily. Our model eliminates the requirement of looking
for optimal augmentation hyperparameters and leverages images from different sensors instead to
provide a more effective set of augmentations.

D.2 Training speed

We observe that fine-tuning with Multimodal pre-trained checkpoint reaches peak performance in
nearly∼ 2.4x less steps (averaged over multiple runs) compared to SimCLR on Sen1Floods11 dataset
and comparably on Dynamic World. Figure 5 compares validation curves for both Multimodal and
SimCLR. All curves correspond to training with 100% training data.
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Figure 5: Validation curves comparing fine-tuning using Multimodal and SimCLR pre-trained models
on (a) Sen1Floods11 (b) Dynamic World (Sentinel-1) dataset.
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