
Positive unlabeled learning with tensor networks

Bojan Žunkovič∗
Faculty of computer and information science

University of ljubljana
Večna pot 113, Ljubljana, Slovenia
bojan.zunkovic@fri.uni-lj.si

Abstract

We apply the locally purified state tensor network to the positive unlabeled learning
problem. We test the model on the image MNIST dataset and achieve state-of-
the-art results even with very few labeled positive samples. We find that the
agreement fraction between outputs of different models on unlabeled samples is a
good indicator of the model’s performance. This enables us to devise a 1-sample
positive unlabeled learning strategy for unsupervised clustering. Our method can
also generate new positive and negative samples, which we demonstrate on simple
synthetic datasets.

1 Introduction

Positive unlabeled learning (PUL) is a binary classification problem with only some labeled positive
samples and many more unlabeled positive and negative samples [1]. Typical PUL problems arise in
medicine (e.g. disease gene identification [2], identifying protein complexes [3]), drug discovery [4],
remote sensing [3], recommender systems [5], and more.

The main part of our model is a tensor network (TN) called a locally purified state [6, 7]2. Tensor
networks have already been applied for classification [8, 9, 10], generative modelling [11], image
segmentation [12], anomaly detection[6]. Although TNs provide competitive results, state-of-the-art
is only rarely achieved. A notable example is the anomaly detection with tensor networks [6], which
is the basis of our approach.

Most approaches to positive unlabeled learning are applicable to either text data [3, 13, 14], or
categorical data [15], or images [16, 17]. Instead our tensor-network approach can be applied in all
domains. Here, we will show results on synthetic datasets and on the MNIST dataset. To best of
our knowledge our results are first where a tensor-network model outperforms the state-of-the-art
deep neural network (in this case, a generative adversarial network GAN) on image datasets. This is
promising since we expect better results on categorical data [6].

2 Model

In this section, we shall discuss the main parts of the setup, i.e. the model architecture, the training
loss, the batch generation procedure, and sampling. We will assume that the input vector x has size
N with continuous elements belonging to the unit interval, i.e. xi ∈ [0, 1].

Architecture Our PUL tensor network model has two parts. The first part is the embedding layer.
We define the embedding with a local vector transformation, which maps each input vector element

∗https://qmltn.ai/
2https://github.com/qml-tn/pul

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://qmltn.ai/
https://github.com/qml-tn/pul

into a local Hilbert space. We use the following one-parameter Fourier embedding
ϕ(xi) = (1, cos(xiπ), cos(2xiπ), . . . , cos((d− 1)xiπ)), (1)

where the parameter d determines the dimension of the embedding Hilbert space. Instead of the
cosine, we sometimes use the sine basis functions. An important property of the local embedding
function is the element-wise orthonormality on the domain, i.e.

∫ 1

0
duϕa(u)ϕb(u) = δa,b, which will

enable efficient sampling [8].

The second part of the model consists of two locally purified state (LPS) tensor networks. An LPS
is a one-dimensional tensor network consisting of three-dimensional tensors Ai ∈ RD×D×d and
four-dimensional tensors Bi ∈ RD×D×d×d. We calculate an output ŷ associated with an LPS via the
Born rule.

First, we construct matrices Ai and tensors Bi by contracting the local embeddings with Ai and Bi

Ai
a,b =

d∑
α=1

ϕα(xi)A
i
a,b,α, Bi

a,b,β =

d∑
α=1

ϕα(xi)B
i
a,b,α,β . (2)

We construct tensors Bi for positions i ∈ I = {1, S+1, 2S+1, . . . (⌊N/S⌋− 1)S+1, N}. For the
remaining positions, we construct the tensors Ai. In other words, every Sth tensor is Bi (including
the first and the last one), and the remaining are Ai. Next, we calculate matrices Ci ∈ RD2×D2

which also depend on the position

Ci
(a1,a2),(b1,b2)

=

{∑d
β=1 Bi

a1,b1,β
Bi
a2,b2,β

i ∈ I
Ai

a1,b1
Ai

a2,b2
else

. (3)

Finally, we calculate the output by taking the trace of the product of matrices C
ŷ(x) = Tr C1C2 . . . CN . (4)

Our model consists of two LPS tensor networks, one associated with positive samples (producing the
output ŷp(x)), and one with negative samples (producing the output ŷn(x)). We classify the sample
as positive if ŷp(x) > ŷn(x).

Since our model will also be a generative model, we have to calculate the normalisation of the positive
LPS N p and negative LPS N n separately. Similarly, as for the outputs, we first calculate the matrices
C̃i

C̃i
(a1,a2),(b1,b2)

=

{∑d
α,β=1 B

i
a1,b1,α,β

Bi
a2,b2,α,β

i ∈ I∑d
α=1 A

i
a1,b1,α

Ai
a2,b2,α

else
. (5)

We then calculate the normalisation by taking the trace of the product of C̃i

N = Tr C̃1C̃2 . . . C̃N . (6)

Loss For positive samples x, we want the ŷp(x) to be large and ŷn(x) to be small and the opposite
for negative samples. Since we will interpret the positive and negative LPS as probability distributions,
we also want the 2-norm of the tensor networks to be close to one. Finally, to avoid the collapse of
the network to one class, we want the sum of the outputs ŷp + ŷn to be close to zero. Our loss has
five terms

L =
1

|Dl|
∑
x∈Dl

L1(x) +
1

|Dp|
∑
x∈Dp

L2(x) +
1

|Dn|
∑
x∈Dn

L3(x) +
1

|Du|
∑
x∈Du

L4(x) + L5, (7)

where
L1(x) = λ1(log(ŷ

p(x))− µ0)
2 + λ2(log(ŷ

n(x))− µ1)
2, (8)

L2(x) = λ3(log(ŷ
p(x))− µ0)

2 + λ4(log(ŷ
n(x))− µ1)

2,

L3(x) = λ5(log(ŷ
p(x))− µ1)

2 + λ6(log(ŷ
n(x))− µ0)

2,

L4(x) = λ7(log ŷ
p(x)− log ŷn(x))2,

L5 = λ8 (| logN p|+ | logN n|+ | logN p − logN n|) ,
and Dl denotes positive samples with labels, Dp,n denotes samples that are currently predicted to be
positive/negative, Du denotes all unlabeled samples, and |D| denotes the number of samples in the
set D. The constants λ1, λ2, . . . λ8 are parameters of the model which have to be tuned, while the
constants µ0, µ1 can be set to µ0 = 5, and µ1 = −50.

2

Batch generation In a typical PUL scenario, the number of labeled positive samples is much
smaller than that of unlabeled samples. Hence, it is likely that many batches will not have any labeled
samples during training. We solve this problem by adding a subsample (with repetition) of labeled
positive samples. The number of added labeled samples equals the number of samples in the original
batch, which contained randomly selected labeled and unlabeled samples.

Sampling A distinct feature of many tensor-network models is that they enable efficient sampling
[8, 11]. We can efficiently sample also from a probability distribution encoded in an LPS state. In a
tensor network, we typically sample sequentially by constructing a local probability density. We will
assume that we have already sampled all positions until i. The values for the remaining positions
i, i+ 1, . . . N have not yet been determined. The probability density at the position i is then given by

p(xi) = Tr C1C2 . . . Ci−1P(xi)C̃i+1C̃N , (9)

where

P(xi) =

{∑d
α,β,γ=1 B

i
a1,b1,α,γ

ϕα(xi)B
i
a2,b2,β,γ

ϕβ(xi) i ∈ I∑d
α,β=1 A

i
a1,b1,α

ϕα(xi)A
i
a2,b2,β

ϕβ(xi) else
. (10)

Before sampling we have to normalise the probability density Eq. 9 to one. In a similar manner we can
efficiently construct any marginal probability. Therefore, we can interpret the LPS as a compression
of dN coefficients of the estimated-probability series expansion (in the embedding basis functions).
We can efficiently sample also from an LPS ensemble. At a given position, we first construct the
probability densities corresponding to each LPS in the ensemble and then sample according to the
average probability density. Finally we assign the sampled value to each LPS in the ensemble.

Our model is inspired by the tensor-network anomaly detection model [6] but has several key
differences. First, we add a second tensor network that approximates the distribution of negative
samples. Second, besides the loss for labeled samples, we add a loss for probably negative and
probably positive samples as well as the "convergence" loss L4, which ensures that the model does
not collapse to one class. Third, due to scarcity of labeled examples we have to modify the train batch
construction to inject more labeled samples. Finally, as we will demonstrate in the next section, we
can use the model to generate new positive and negative samples.

3 Results

We show results obtained on synthetic datasets and the MNIST dataset. The first we use to demonstrate
the sampling and the second to demonstrate the accuracy of our model on an image dataset, which
is typically challenging for tensor network models. In all cases we used the Adam optimizer and
fixed the loss parameters to λ1 = λ2 = λ7 = 4, λ4 = λ5 = 2, and λ3 = λ6 = 1. We fixed the loss
hyperparameters after some manual tuning on the point datasets. The loss parameter λ8 was changed
dynamically in the range λ8 ∈ [0.5, 10]. We increased λ8 (up to the maximum value of 10) by a
factor of 1.1 if all positive labeled samples were classified correctly. Similarly, we decreased λ8 (up
to the minimum value of 0.5) by a factor of 0.9 if less than 90% of the positive labeled samples were
classified correctly.

Synthetic datasets We use three point datasets, namely the two moon dataset, the circles dataset
and the blobs dataset available through the scipy API. In all cases, we use 1000 training samples
where half of the samples are positive but only 100 are labeled. To obtain a more expressive model
we first repeat the input nine times resulting in 18-dimensional feature vectors that are processed
as discussed in Section 2. We use S = 3 and D = d = 12. We also randomly choose local basis
functions between sine and cosine. We train the models with the Adam optimizer and a learning rate
of 0.1. After we train the models, we sample from an ensemble by sequentially sampling from the
average local probability density. Then we accept only samples for which all models predict a high
probability that the sample is in the correct class, e.g. for positive samples we set the threshold to
ŷp − ŷn > 20. Although the samples are already close to the original distribution, the thresholding
further improves the sampled distribution by removing obvious outliers (see Fig. 1). By comparing
the samples to the state-of-the-art GAN results [16, 18] it is visually clear that our method better
reproduces the original distribution (especially after thresholding).

3

Figure 1: Samples generated by an ensemble of four models. We show the two moon dataset (first
two panels), circles dataset (third and fourth panel), and blobs dataset (last two panels). First we show
the training dataset, where gray denotes the unlabeled samples and blue the labeled positive samples.
Then we show the generated samples, where orange circles are accepted positive samples, blue circles
are accepted negative samples, gray and red dots are rejected negative and positive samples.

MNIST On the MNIST dataset, we performed the one-vs-one classification for each class pair and
the one-vs-all classification for each of the ten classes in the dataset. We used the Adam optimizer
with a learning rate of 0.01, cropped the images to size 20× 20 pixels, and applied random rotation
(for the angle 0.05π) and random zoom (with a factor in the range [0.8, 1.2]). For training and testing
we used balanced datasets. We performed experiments with Np = 100, 10, 1 labeled positive samples.
Finally, we fixed model parameters to S = 10, d = 6, and D = 20.

Before calculating the accuracy of the models, we perform a model selection step. After training
several models we compare the predictions on the training dataset for each model pair and select the
models which agree most. We find that the agreement fraction is a good estimate of the final test
accuracy of the models (see Appendix A). We calculate the test accuracy only for selected models.

In the one-vs-one setting we obtain a mean accuracy of 0.986 ± 0.01 (Np = 100), 0.98 ± 0.04
(Np = 10), and 0.9 ± 0.2 (Np = 1). Which is significantly better as the GAN approaches which
have the average test accuracy 0.89 ± 0.18 (Np = 100), 0.84 ± 0.18 (Np = 10), and 0.72 ± 0.23
(Np = 1) [18]. We report the results for the one-vs-rest task in Table 1. We find that the tensor
network model has larger accuracy compared to the state-of-the-art GAN approaches [18].

Table 1: Average accuracy on one-vs-rest task on MNIST dataset. Largest accuracy is in bold.

Np 0 1 2 3 4 5 6 7 8 9 Avg.

TN
100 0.99 0.93 0.90 0.90 0.93 0.91 0.98 0.90 0.91 0.88 0.92
10 0.98 0.95 0.92 0.90 0.91 0.83 0.98 0.92 0.80 0.87 0.91
1 0.98 0.96 0.89 0.83 0.91 0.65 0.98 0.85 0.57 0.85 0.85

GAN 50 0.89 0.97 0.78 0.78 0.93 0.80 0.87 0.93 0.80 0.83 0.86

1-sample PUL clustering Since we obtain a good accuracy on most one-vs-rest classification tasks,
we can utilise this to cluster a dataset in a completely unsupervised manner. First, we randomly
select many (e.g. 100 in the MNIST case) samples, and then train a PUL model for each of the
chosen samples. In the next step we calculate the agreement matrix between the labels of the models.
This matrix provides the information on the number of classes and the best trained PUL models to
construct a final classifier. Finally, we can cluster the dataset with the selected models.

4 Conclusion and broader impact

We propose a tensor-network approach to positive unlabeled learning problem and obtain state-of-the-
art results on the MNIST image dataset. To date no tensor network approach outperformed best neural
network methods on image datasets. However, to use the model on larger images, we would need
to apply additional preprocessing, e.g. patch based embedding. Further, we expect tensor networks
to achieve even better results on categorical datasets (work in progress) [6]. Finally, we propose
a method to utilise 1-sample PUL models with inter-model label correlations as an unsupervised
clustering method. Evaluation of this proposal is work in progress. Besides a broad applicability of
the proposed model we believe that the 1-sample PUL clustering approach could be applicable also
to other models and problems outside of the PUL setup.

4

Acknowledgments

The author acknowledges support from Sloveinan research agency (ARRS) project J1-2480. Compu-
tational resources were provided by SLING – Slovenian national supercomputing network. We thank
Zoran Bosnić for reading the first version of the draft and providing useful comments.

References
[1] Jessa Bekker and Jesse Davis. Learning from positive and unlabeled data: A survey. Machine Learning,

109(4):719–760, 2020.

[2] Fantine Mordelet and Jean-Philippe Vert. Prodige: Prioritization of disease genes with multitask machine
learning from positive and unlabeled examples. BMC bioinformatics, 12(1):1–15, 2011.

[3] Charles Elkan and Keith Noto. Learning classifiers from only positive and unlabeled data. In Proceedings
of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, pages
213–220, 2008.

[4] Yashu Liu, Shuang Qiu, Ping Zhang, Pinghua Gong, Fei Wang, Guoliang Xue, and Jieping Ye. Com-
putational drug discovery with dyadic positive-unlabeled learning. In Proceedings of the 2017 SIAM
international conference on data mining, pages 45–53. SIAM, 2017.

[5] Yafeng Ren, Donghong Ji, and Hongbin Zhang. Positive unlabeled learning for deceptive reviews detection.
In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP),
pages 488–498, 2014.

[6] Jinhui Wang, Chase Roberts, Guifre Vidal, and Stefan Leichenauer. Anomaly detection with tensor
networks. arXiv preprint arXiv:2006.02516, 2020.

[7] Ivan Glasser, Ryan Sweke, Nicola Pancotti, Jens Eisert, and Ignacio Cirac. Expressive power of tensor-
network factorizations for probabilistic modeling. Advances in neural information processing systems, 32,
2019.

[8] E Miles Stoudenmire and David J Schwab. Supervised learning with quantum-inspired tensor networks.
arXiv preprint arXiv:1605.05775, 2016.

[9] Bojan Žunkovič. Deep tensor networks with matrix product operators. Quantum Machine Intelligence
volume, 4(21), 2022.

[10] E Miles Stoudenmire. Learning relevant features of data with multi-scale tensor networks. Quantum
Science and Technology, 3(3):034003, 2018.

[11] Zheng-Zhi Sun, Cheng Peng, Ding Liu, Shi-Ju Ran, and Gang Su. Generative tensor network classification
model for supervised machine learning. Physical Review B, 101(7):075135, 2020.

[12] Raghavendra Selvan, Erik B Dam, Søren Alexander Flensborg, and Jens Petersen. Patch-based medical
image segmentation using quantum tensor networks. arXiv preprint arXiv:2109.07138, 2021.

[13] Yanshan Xiao, Bo Liu, Jie Yin, Longbing Cao, Chengqi Zhang, and Zhifeng Hao. Similarity-based
approach for positive and unlabelled learning. In Twenty-second international joint conference on artificial
intelligence, 2011.

[14] Ke Zhou, Gui-Rong Xue, Qiang Yang, and Yong Yu. Learning with positive and unlabeled examples using
topic-sensitive plsa. IEEE Transactions on Knowledge and Data Engineering, 22(1):46–58, 2009.

[15] Dino Ienco and Ruggero G Pensa. Positive and unlabeled learning in categorical data. Neurocomputing,
196:113–124, 2016.

[16] Ming Hou, Brahim Chaib-Draa, Chao Li, and Qibin Zhao. Generative adversarial positive-unlabelled
learning. arXiv preprint arXiv:1711.08054, 2017.

[17] Florent Chiaroni, Mohamed-Cherif Rahal, Nicolas Hueber, and Frédéric Dufaux. Learning with a generative
adversarial network from a positive unlabeled dataset for image classification. In 2018 25th IEEE
International Conference on Image Processing (ICIP), pages 1368–1372. IEEE, 2018.

[18] Unpublished work under review. 2022.

5

A Accuracy estimate

In this appendix, we demonstrate that the fraction of matching labels between best-performing models
is a reliable estimate of their accuracy. In Fig. 2, we show the difference between the estimated
accuracy and actual test accuracy on the best models in the one-vs-one task. As expected, the larger
the accuracy, the better the prediction. In fact, in most cases, we underestimate the actual test accuracy.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Estimated accuracy - Real accuracy

0
10
20
30
40
50
60
70

#m
od

el
s

0.04 0.02 0.00 0.02 0.04 0.06
Estimated accuracy - Real accuracy

0

10

20

30

40

#m
od

el
s

Figure 2: Histogram of differences between the estimated accuracy and the real test accuracy on
the one-vs-one MNIST task. Top row from left to right we show results for Np = 1, 10, and in the
bottom row for Np = 100.

B Compute Resources

All our experiments are performed on a compute cluster managed by Slurm Workload Manager.
Each node has access to four NVidia A100 with 40 GB HBMI2. Estimated total compute time for
presented experiments is 240 days.

6

	Introduction
	Model
	Results
	Conclusion and broader impact
	Accuracy estimate
	Compute Resources

