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Abstract

Unpaired image-to-image translation methods aim at learning a mapping of images
from a source domain to a target domain. Recently, these methods showed to be
very useful in biological applications to display subtle phenotypic cell variations
otherwise invisible to the human eye. However, while most microscopy experiments
remain limited in the number of images they can produce, current models require
a large number of images to be trained. In this work, we present an improved
CycleGAN architecture that employs self-supervised discriminators to alleviate the
need for numerous images. We demonstrate quantitatively and qualitatively that
the proposed approach outperforms the CycleGAN baseline, including when it is
combined with differentiable augmentations. We also provide results obtained with
small biological datasets on obvious and non-obvious cell phenotype variations
demonstrating a straightforward application of this method.

1 Introduction

Image-to-image translation can be defined as transferring images from a source domain to a target
domain while preserving the content representations. Image-to-image translation became popular in
different fields such as autonomous driving cars[19], artistic style transfer[24] and more recently in
biological imaging[11]. Spotting differences in visual cell pheneotypes from medical and biological
images has many applications in fundamental research, drug discovery and medicine. In microscopy
experiments, hand-crafted image analysis can be used to measure the variation of phenotype produced
by a perturbation when the last is visible. However, because cell-to- cell variability within an image
often largely overlaps the cell-to-cell variability between phenotypes, the last is often invisible[11].
This issue prevents researchers from observing and measuring subtle phenotypic differences between
two images of cells.

The advent of GANs extended the frontiers of image generation, GANs were also used in many
approaches to build efficient image translation methods. In[8], the authors propose a supervised
method based on conditional-GAN[15] where the condition is the paired image target. Usually,
obtaining paired images may be hard or even impossible. Therefore, unpaired image translation
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methods such as CycleGAN[23], DiscoGAN[9] and DualGAN[21] were proposed by exploiting the
cycle-consistency constraint[23].

A common limitation with the methods cited above is that they all require a large amount of images
in both the source and the target domains to be trained effectively. Several strategies were proposed
to tackle this issue [20; 16; 13]. In general, these methods assume the existence of a large image
dataset from a close domain that can be exploited using different strategies. However this assumption
is not often met. In bio-imagery, for instance, it is hard to get images that resembles the images of
organoids of interest while the last cannot be produced by thousands.

Self-supervised learning (SSL) [10; 4] is a paradigm that tries to overcome the problem of the lack
of labelled data by obtaining a supervision signal from the data itself in order to learn a richer
representation. Recently, several works proposed to leverage SSL to solve tasks in setting where little
training data is available[5; 2; 12]

In this work, we present Self-Supervised CycleGAN(SCGAN), a model based on cycle
consistency[23] and self-supervised learning for an efficient image translation with limited data.

2 Proposed Method

Given a source domain X and a target domain Y , the goal of an image translation model is to learn
a mapping G : X −→ Y such that the output ŷ = G(x), x ∈ X , is indistinguishable from images
y ∈ Y . Our method (SCGAN) consists of two generators and two discriminators. The efficiency of
the proposed approach relies mainly on the fact that we use self-supervised discriminators [12]. In
the following sections, we describe the architectures and the losses we use to achieve satisfactory
unpaired image translation with a low amount of images.

Generator For the generators, we adopt the architecture used in [23]. The model contains three
convolutions followed by 9 residual blocks[6], then we use two fractionally-strided convolutions and
finally one convolution that maps the features to RGB. We also use instance normalization[18].

Self-supervised discriminator For the discriminator we rely on the architecture proposed in [12],
where a strong regularization for the discriminator is provided through a self-supervised learning
strategy. Unlike regular self supervised approaches, where transformations of the same image are
pushed to produce the same representation, this approach generates a self-supervised signal by
learning to reconstruct a degraded version of the image. In this configuration the discriminator acts as
an encoder trained with small decoders. These are simple networks made of four conv-layers which
are jointly optimized with the discriminator on a simple reconstruction loss using the real samples
only. For DX , the adversarial discriminator for images from domain X , the ssl loss reads:

Lssl(DX) = E
x∼pdata(x)

∥Dec(T ′(Enc(x)))− T (x)∥ (1)

where Enc produces an intermediate feature map in D , the function T ′ is a simple degradation
process (such as crop) on x and T is a similar degradation process on the internal representation
provided by Enc. Finally, Dec is a decoder from the degraded internal representation to the degraded
image T (x). In this setting, the discriminator is encouraged to extract a more comprehensive and
useful representation yet using a lower amount of data.

Training losses At training time, we use the least square loss introduced in LSGAN [14] as it
provides a more stable training by mitigating the vanishing gradient and mode collapse issues. The
two generators and the two discriminators minimize the following losses, here for G:

LG = E
x∼PX

[(DY (G(x))− 1)2] (2)

LDY
= E

y∼PY

[(DY (y)− 1)2] + E
x∼PX

[(DY (G(x)))2] + Lssl(DY ) (3)

where DY denotes the adversarial discriminator for images from domain Y and Lssl(DY ) is the self
supervised loss described in the previous section. LF for the generator F and LDX

for the adversarial
discriminator DX are trained similarly and altogether the adversarial loss is:

Ladv = LG + LDY
+ LF + LDX

(4)
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In addition, the cycle-consistency constraint ensures that an image x from domain X consecutively
transformed by the two generators reconstructs the original image x, i.e., F (G(x)) ≈ x. Similarly,
for each image y from domain Y , G(F (y)) ≈ y. This constraint is enforced by the following loss:

Lcyc = E
x∼pX

[∥F (G(x))− x∥1] + E
y∼pY

[∥G(F (y))− y∥1] (5)

In addition to the adversarial and the cycle-consistency losses, it was shown in [23] that adding an
identity loss [17] can enhance the performance of the CycleGAN. This loss ensures that transforming
an image from a domain to the same domain will not modify it. It is defined as follows:

Lid = E
x∼pX

[∥F (x)− x∥1] + E
y∼pY

[∥G(y)− y∥1] (6)

The full objective loss to minimize is the summation of the three losses: the adversarial, the cyclic
and the identity, it is given as follows:

Ltotal = Ladv + λ1Lcyc + λ2Lid (7)

3 Experiment

3.1 Datasets and training

Horse2Zebra. The images of horses and zebras were downloaded from ImageNet[3]. The images
were scaled to 256 × 256 pixels. The training set size of each class is: 939 (horse) and 1177 (zebra).

BBBC021. Microscopy images of MCF-7 cancer cells untreated (DMSO) and treated for 24h with
Cytochalasin B at high dosages (30µM). Training was performed on 200 images from each condition.

Organoids. Microscopy images of neural organoids (mini-brains) induced from the stem cells
of a rare neuro-developmental disorder. We used three marker: ZO1 for the cell-to-cell junctions,
phosphohistone H3 for the dividing cells and DAPI for the nuclei. Training was performed on 56
images of healthy organoids and 83 images of diseased organoids.

Figure 1: Translating horse images to zebra im-
ages using only 40 percent of the dataset. We
can see that our method outperforms CycleGAN.

Figure 2: Translated images of untreated
(DMSO) cell (first row) into drug treated cells us-
ing CycleGAN and SCGAN (2nd and 3rd rows
respectively, we can see that the translation made
by SCGAN is close to the real images of treated
cells (4th row).

Training. For all the experiments, we set λ1 = 10 and λ2 = 0.5. We used the Adam optimizer
with a batch size of 8 and a learning rate of 0.0002. This rate was decayed linearly once every 100
epochs. We used FID[7] and KID[1] to compare the image distributions, the lower the better. We
compared SCGAN to CycleGAN with and without adding a differentiable augmentation module.
We trained the models using different percentages of the horse2zebra dataset. We also trained it on
biological images to illustrate the portability of our approach.
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Comparing KID Comparing FID

Figure 3: Comparing the CycleGAN, CycleGAN+DiffAug and SCGAN in terms of (a) FID and (b)
KID using different percentages of the horse2zebra dataset. With each data perecentage, we train
three times our model, the boxplots are plotted using KID and FID scores computed for each run.

Figure 4: In the first row we have the real images of the healthy organoids and in the second row we
have their translation to the other class.

3.2 Results

The FID curves in fig. 3 show the effectiveness of our method compared to the standard CycleGAN.
The results based on FID and KID scores show that SCGAN improves the translation with any
quantity of data for the horse2zebra dataset. While differentiable augmentations[22] can slightly
improve over CycleGAN, our method remains significantly better. Qualitatively, our method achieves
a better translation when trained with only 40 percent of the horse2zebra dataset (fig. 1).

In fig.2, we show that we also achieved better translation on a biological dataset where untreated
cells (DMSO) were treated with a high concentration of compound (Cytochalasin B) which produces
an obvious change in phenotypes with as little as 200 images from each class. Quantitatively, we
obtained FID = 77.84 and KIDx100 = 6.53 with CycleGAN and FID = 55.36 and KIDx100 = 2.56
with our approach. This indicates that our method outperforms CycleGAN by a large margin.

In fig. 4, we then applied our approach on invisible phenotypic changes between two conditions on
organoids. The translated images showcase some changes: 1) the intensity of the blue marker has
diminished indicating a decrease in the number of neural cells attained with the syndrome. There
are also fewer red cells in the translated images compared to the real ones indicating a decrease in
cell divisions in the the diseased cells. In order to validate these subtle differences further biological
experiments should of course be conducted.

4 Conclusion

In this work, we presented SCGAN, a self-supervised, cycle-consistency based method for unpaired
image translation with limited size datasets. We showed through experiments that our method
outperforms the standard CycleGAN with and without augmentation strategies. Furthermore, we
showcased the importance of self-supervised learning as an efficient strategy to mitigate the need for
large size datasets. Finally, we showed how image translation can be applied in biology to identify
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subtle phenotypes when the number of the available images is limited. It can be used to guide
the intuition of the experts to understand subtle biological processes or identify new therapeutic
biomarkers.
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