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Abstract

Prevention of complete and dimensional collapse of representations has recently
become a design principle for self-supervised learning (SSL). However, questions
remain in our theoretical understanding: Under what precise condition do these
collapses occur? We provide theoretically grounded answers to this question by
analyzing SSL loss landscapes for a linear model. We derive an analytically
tractable theory of SSL landscape and show that it accurately captures an array
of collapse phenomena and identifies their causes.

Self-supervised learning (SSL) methods have achieved remarkable results in learning good represen-
tations without labeled data. SSL loss functions are designed to promote representational similarity
between pairs of related samples while using explicit penalties (Chen et al., 2020; He et al., 2020;
HaoChen et al., 2021; Zbontar et al., 2021; Caron et al., 2020; Jing et al., 2021; Balestriero and
LeCun, 2022) or asymmetric dynamics (Caron et al., 2021; Grill et al., 2020; Chen and He, 2021) to
ensure that the distance between unrelated samples remains large. In practice, however, SSL train-
ing often experiences the failure mode of dimensional collapse (Jing et al., 2021; Tian et al., 2021;
Pokle et al., 2022), where the learned representation spans a low dimensional subspace of the overall
available space. In the extreme case, this failure mode instantiates as a complete collapse, where
the learned representation becomes zero-rank, and no informative features can be extracted. In this
work, we analytically solve the effective landscapes of linear models trained on several popular
losses used in self-supervised learning, including InfoNCE (Oord et al., 2018), Normalized Tem-
perature Cross-Entropy (NT-xent) (Chen et al., 2020), Spectral Contrastive Loss (HaoChen et al.,
2021), and Barlow Twins / VICReg (Zbontar et al., 2021; Bardes et al., 2021). Combining theory
and empirical results, a key insight we offer is: collapses of representations is strongly dependent
on the stability of the last layer at the origin and happens when a broken symmetry is restored.

1 A Landscape Theory of Self-Supervised-Learning
Let {x̂i}Ni be a dataset with N data points. For every data point x̂, we augment it with an i.i.d.
noise ϵ such that x ∶= x̂ + ϵ. To be concrete, we start with considering the standard contrastive loss,
InfoNCE (Oord et al., 2018):

L = Eϵ [−
N

∑
i=1

log
exp(−∣f(xi) − f(x′i)∣2/2)

∑j≠i exp(−∣f(xi) − f(χj)∣2/2) + exp(−∣f(xi) − f(x′i)∣2/2)
] , (1)

where f(x) ∈ Rd1 is the model output; all x, x′ and χ are augmented data points for some indepen-
dent additive noise ϵ such that Eϵ[x] = x̂ = Eϵ[x′] ≠ Eϵ[χ] = χ̂. We decompose the model output
into a general function ϕ(x) ∈ Rd0 and the last-layer weight matrix W ∈ Rd1×d0 : f(x) = Wϕ(x).
The covariance of ϕ(x̂) is A0 ∶= Ex̂[ϕ(x̂)ϕ(x̂)T ], and the covariance of the data-augmented penul-
timate layer representation is Σ ∶= Ex[ϕ(x)ϕ(x)T ]. The effect of data augmentation on the learned
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representation is captured through a symmetric matrix C ∶= Σ−A0. For a general ϕ, the eigenvalues
of C can be either positive or negative. When ϕ is the identity mapping, A0 becomes the empirical
data covariance, C becomes PSD and is the covariance of the noise ϵ, and Σ is the covariance of
the augmented data. In some sense, this loss function captures the essence of SSL: the numera-
tor encourages the representation f(x) to be closer to the representation of similar data, and the
denominator encourages a separation between dissimilar data.

For a fixed set of noises, we can write the InfoNCE in a cleaner form:

Lϵ = Ex̂ {
1

2
∣f(x) − f(x′)∣2 + logEχ̂ [exp(−

1

2
∣f(x) − f(χ)∣2)]} , (2)

where we used Ex̂ to denote an averaging over the training set. In this notation, we have EϵEx̂[x] =
Ex[x] and Eϵ[Lϵ] = L. For a quantitative understanding, we mainly focus on the case when ϕ is the
identity function. We discuss the general nonlinear case in Section 1.3. The proofs are presented in
Appendix D.

1.1 Landscape of a Linear Model

NT-xent. As in Tian (2022), we note InfoNCE can be generalized as follows:

L = Eϵ [−
N

∑
i=1

log
exp(−∣f(xi) − f(x′i)∣2/2)

∑χ≠x exp(−∣f(xi) − f(χj)∣2/2) + α exp(−∣f(xi) − f(x′i)∣2/2)
] . (3)

Different from InfoNCE, one terms in the denominator is weighted by a factor α ≥ 0. Two interesting
limits are α = 1, where we recover the InfoNCE loss, and α = 0, where we obtain the popular NT-
xent loss used in SimCLR (Chen et al., 2020). For general α, we refer to this loss as the weighted
InfoNCE. For a perceptron, the leading terms of the loss function is

L = 1 − α
N

Tr[WCWT ] −Tr[WA0W
T ] + 1

8
Var[∣W (x − χ)∣2]. (4)

In fact, for the losses functions we consider, the leading order terms of the loss function all take the
following rather universal form, for some symmetric matrix B,

L = −Tr[WBWT ] + 1

8
Var[∣W (x − χ)∣2]. (5)

Landscape Analysis. When training ends, one expects the model to locate at (at least close to)
a stationary point of the loss. It is thus important to identify all the stationary points of this loss
function.

Theorem 1. Let d∗ ∶=min(d0, d1). Let the data and noise be Gaussian. All stationary points W of
Eq. (5) satisfy WTW = 1

2
Σ−1/2UMΛUTΣ−1/2, where UΛUT is the eigenvalue decomposition of

Σ−1/2BΣ−1/2, and M is an arbitrary (masking) diagonal matrix containing only zero or one such
that (1) Mii = 0 if Λii < 0 and (2) contain at most d∗ nonzero terms.

Additionally, if C and A0 commute, all stationary points satisfy

WTW = 1

2
Σ−1BMΣ−1, (6)

where BM denotes the matrix obtained by masking the eigenvalues of B with M .

This stationary-point condition implies the direct cause of the dimensional collapse. Namely, dimen-
sional collapse happens when the eigenvalues of the matrix B become negative. The eigenvalues
of B, in turn, depend on the competition between data augmentation and the data feature. Com-
paring the commuting case with the noncommuting case, we see that the main difference is that
when CA0 ≠ A0C, the augmentation can also change the orientation of the learned representa-
tion; otherwise, augmentation only affects the eigenvalues. To focus on the most important terms,
we now assume that the augmentation is well-aligned with the features such that the augmentation
covariance commute with the data covariance.

Assumption 1. From now on, we assume CA0 = A0C.
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For the case of weighted InfoNCE, we have that B = A0 − 1−α
N

C. Let ai denote the i-th eigenvalue
of the A and ci that of C viewed in a predetermined order; then, the ith subspace collapses when
1−α
N

ci ≥ ai, namely, when the variation introduced by the noise dominates that of the original data.
Importantly, this collapse is a property shared by all stationary points of the landscape, and one
cannot hope to fix the problem by, say, biasing the gradient descent towards a certain type of local
minima. When weight decay is used, the condition for collapse becomes 1−α

N
ci +γ ≥ ai. It becomes

easier to cause a collapse when weight decay is used.

Because the stationary points contain collapsed solutions where the eigenvalues of WTW are zero,
one is naturally interested in how likely it is to converge to these solutions. The following proposition
implies that the loss landscape of contrastive SSL (with a linear model) is rather benign because all
local minima must achieve a maximum possible rank.
Proposition 1. (WTW achieves maximum possible rank) Let m denote the number of positive
eigenvalues B. Then, rank(WTW ) =min(m,d∗) for any local minimum.

1.2 Landscape with Normalization
It is common in practice to normalize the learned representation such that ∣∣f(x)∣∣2 = c. When the
normalization is applied, only the direction of the learned representation matters. While this is a
simple trick in practice, its implication on the landscape is poorly understood. In this section, we
extend our theory to analyze the effect of normalization.

We model the effect of normalization as a regularization term: R ∶= (Ex∣∣f(x)∣∣2 − c)2:

L = Eq. (5) + κR. (7)

This regularization term achieves two things: (1) ∣∣f(x)∣∣2 = c is a minimizer of the loss function;
(2) the regularization is invariant to a rotation of the representation. This loss function can also
be seen as a mathematical model of the VICReg loss (Bardes et al., 2021), where R effectively
models the variance regularization term of VICReg loss and κ is its strength. This modeling is
necessary because the variance term of the original VICReg is not differentiable and thus cannot be
expanded. The proposed term R captures the essence of the variance term because it also encourages
the representation to have a constant variance. Our theory also explains why the VICReg is observed
to experience collapses when κ is not large enough. As κ tends to infinity, this constraint will become
perfectly satisfied. We thus take the infinite κ limit to study the effect of normalization.

The following proposition gives a condition that all stationary points of Eq. (7) satisfy.
Proposition 2. Let ρ(W ) ∶= Tr[WΣWT ], B′ ∶= B + 2κ(c − ρ)Σ, and let Λi be the eigevalues of
B′. Then, every stationary point of Eq. (7) satisfy WTW = 1

2
Σ−1B′MΣ−1, where M is an arbitrary

diagonal mask of the eigenvalues of B′ containing only zero or one such that (1) Mii = 0 if Λi < 0
and (2) contain at most d∗ nonzero terms.

Compared with the unnormalized case, the term 2κ(1 − ρ)ΣM emerges due to normalization. The
effect of normalization is as expected: it shrinks the norm of the model if ρ > 1, and it expands the
model if ρ < 1, and it does not have any effect if we have already achieved ρ = 1. Interestingly,
this rescaling effect is anisotropic and stronger along the directions of larger eigenvalues of the
covariance of the augmented data Σ. Section C.3 directly finds the solution of ρ. For a finite κ, these
results suggest that collapses can still happen. For VICReg, B = −A0, and the complete collapse can
happen when κ ≪ ∣∣A0∣∣/c∣∣Σ∣∣ – this explains the experimental observation of collapses for small
values of κ in (Bardes et al., 2021).

Lastly, to understand normalization, we are interested in the case of κ → ∞. Combining Proposi-
tion 2 and 3, one obtains

lim
κ→∞

WT
κ Wκ =

1

2
Σ−1 [BM +

2c −Tr[Σ−1BM ]
dM

ΣM]Σ−1. (8)

Because the eigenvalues of WWT must be positive, the following condition holds for all solutions:

λi + 2c/dM > λ̄. (9)

where λi are the eigenvalues of Σ−1BM and λ̄ is its average. Namely, for the i−th dimension not
to collapse, it must be smaller than the average eigenvalues by at most 2c/dM . Any smaller eigen-
values must collapse. Compared to the case without normalization, normalization makes collapses
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(a) 1D (b) No collapse (c) Dimensional collapse (d) Complete collapse
Figure 1: Landscape of Resnet18 on CIFAR10 with SimCLR. (a) Training objective L as a function of a
rescaling of the last layer W → aW . The origin becomes a local minimum as the data augmentation σ2 gets
stronger. (b-d) L as a function of a 2d rescaling of the last layer where the data augmentation strength is (b)
small (no collapse), (c) intermediate (dimensional collapse), and (d) strong (complete collapse). Use of data
augmentation changes the stability of the origin, a qualitative change that leads to different types of collapses.

dependent on the relative strength of each feature and augmentation. We present a detailed analysis
of this condition in Section C.1. One finds that the condition for collapse becomes heavily depen-
dent on the data structure, and there are cases where collapses become harder, and there are cases
where collapses become much easier. Importantly, it also becomes the case that a sufficiently strong
augmentation can always cause a collapse in the corresponding subspace.

Relevant Loss Functions. Having developed a framework for understanding normalization, we
show that other common loss functions in SSL can also be written in the form given in Eq. (5). The
spectral contrastive loss (SCL) (HaoChen et al., 2021) reads

LSCL = −2E[f(x)T f(x′)]) +E[(f(x)T f(χ))2] + const. s.t. ∣∣f(x)∣∣2 = 1. (10)

Let f(x) = Wx be linear, the distributions are zero-mean Gaussian, and ignore the normalization.
This loss function becomes LSCL = −2Tr[WCWT ] +Tr[WΣWTWΣWT ]. When normalization
exists, we can apply the result in Section 1.2. By our argument, there is no collapse in this loss
function. The difference with InfoNCE loss is that the learned feature spreads along the directions
of the augmentation C, not along the directions of the feature A0.

The case of Barlow Twin (BT) (Zbontar et al., 2021) is similar. While the fourth-order term of BT
is much more complicated due to the imbalance created by the λ term. The second-order term can
be identified easily: LBT = −2Tr[WΣWT ] +O(∣∣W ∣∣4). This also does not collapse. A difference
between the SCL loss and InfoNCE is that the learned representation has a spread that aligns with
the combination of the feature and the augmentation strength.

1.3 Relevance to Nonlinear Models
An important question is how much the analysis connects to deep nonlinear models. In fact, the
loss landscape we have studied is close to the most general landscape one can have. Let L(f(x))
be a general SSL loss function for data point x. The quality of the learned representation should be
independent of the population-level orientation of the representation. Therefore, the loss function
should be rotationally invariant: for any rotation matrix R, L(x) = L(Rf(x). This invariance
implies that the loss expands as L(f(x)) = af(x)T f(x) + b[f(x)T f(x)]2 +O(f(x)6). Note that
all the odd-order terms of f(x) vanish due to the rotational symmetry. Substituting f(x) =Wϕ(x)
in the loss function, we obtain the general form of landscape that W obeys:

L(W,ϕ) = Tr[WTWA(ϕ)] + ∑
ijklmn

WimWjmWknWlnZijki(ϕ), (11)

where A and Z are dependent on ϕ. All the examples we have studied take this form. For W , its
collapse depends on the stability of the matrix A. Thus the study of the stability of the matrix A is
crucial for our understanding. To illustrate, we train a Resnet18 on CIFAR10 with the SimCLR loss
with normalization and with weight decay strength 10−3 until convergence to obtain the converged
weights W ∗. We inject independent Gaussian noises with variance σ2 as data augmentation. The
representation has a dimension 128. We rescale the weight matrix of the last layer W ∗

last by a factor
of a and compute the loss as a function of a. See Figure 1-a. We then partition the singular values
of W ∗

last into the larger and smaller half. We rescale the larger half by a factor r1 and the smaller
half by r2. We plot the loss as a 2d function of (r1, r2) in Figure 1. See Appendix A for more
experiments that validate our theory on both linear and nonlinear models.
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Figure 2: The three smallest singular values of WTW as a function of the augmentation strength. We
see that our effective landscape theory around the origin accurately captures collapses in learning.
Left: Vanilla InfoNCE . As the theory suggests, the singular values scale as σ4 and do not vanish for
any finite value of σ. Mid: Weight InfoNCE. α = 0.1, σ = 5. Collapse happens at the critical dataset
size predicted by the theory. Right: (Sqrt) Eigenvalues of WWT in β-InfoNCE. The collapses can
be well controlled.

Figure 3: A collapse happens easily when the learned representation is normalized. The smallest
eigenvalues of A0 are roughly 0.2, and the collapse happens much before the noise reaches this
strength.

A Additional Numerical Results

In this section, we validate our theory with numerical results. Unless specified otherwise, the di-
mension of the learned representation is set to be equal to the input dimension: d0 = d1.

No Collapse for InfoNCE. We showed that there is no collapse at all for the vanilla InfoNCE, no
matter how strong the augmentation is. Our result implies that the smallest singular of the model
W scales as σ4 where σ2 is the strength (namely, the variance) of the augmentation. See the left
panel of Fig. 2. We use the vanilla InfoNCE loss defined in (1) with a linear model. The training
set is sampled fromN(0, I32). The training proceeds with Adam with a learning rate of 6e− 4 with
full batch training for 5000 iterations. We use a simple diagonal Gaussian noise with variance σ2

for data augmentation. We see that the singular values scale as σ4 and never vanishes, as the theory
predicts.

Nonrobust Collapses of Weighted InfoNCE. We now demonstrate that, as the theory predicts,
collapses of weighted InfoNCE depend strongly on the dataset size. We use the same dataset and
training procedure as the previous experiment. We set α = 0.1 and change the size of the training
set. Theory suggests that for a collapse in the i−th subspace to happen, the size of the dataset needs
to obey

N > ai
ci(1 − α)

∶= Ncrit. (12)

See the middle panel of Figure 2. We show the smallest three eigenvalues of WTW (roughly
having similar magnitudes), and the critical dataset size for the smallest eigenvalue. We see that the
theoretical threshold of collapse agrees well with where the collapse actually happens.

Collapses in β-InfoNCE. With β < 1, one can cause collapses in a predictable and controllable
way. In this experiment, we let d0 = 5 and we plot all five eigenvalues of WTW as we increase the
strength of an isotropic augmentation. As the numerical results show, collapses happen at the points
predicted by the theory.
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Figure 4: The Landscape of nonlinear models is very similar to the landscape of linear models. Top:
1d projection of the landscape of a two-layer tanh and ReLU network. Bottom Left: the landscape
of a 2D projection of the last layer of a nonlinear model with a weak augmentation. Middle: with
intermediate augmentation. Right: with strong augmentation.

Normalization Causes Dimensional Collapse. We also plot the three smallest eigenvalues of
WTW when we apply the standard representation normalization in practice: f(x) → f(x)/∣∣f(x)∣∣.
To facilitate comparison, we also use the same dataset and training procedure as before. See Fig-
ure 3. We see that normalization does cause a collapse in the smallest eigenvalues at an augmentation
strength much smaller than the feature variation.

B Landscape of a Nonlinear Model

In this section, we plot the landscape of the layer of nonlinear models on the same synthetic dataset
we outlined in the previous section. We train a three-layer nonlinear network with output dimension
2 with SGD until convergence. We then rescale the optimized weight of the last by a factor a:
Wlast → aWlast and plot the loss function along this direction. See the top panel of Figure 4 for
both the tanh and the ReLU nonlinearity. We then rescale the two rows of the weight matrix of the
model by r1 and r2 respectively: W = (w1,W2)T → (r1w1, r2w2).

C Additional Theoretical Concerns

C.1 Collapse condition for normalization

The important condition for collapse in Eq. (9) can be better understood by considering the extreme
cases. First of all, note that the eigenvalues of ΣBM are bounded between −1 and 1

− 1 ≤ ai − ci
ai + ci

≤ 1, (13)

and −1 is achieved when ci ≫ ai, and 1 is achieved when ai ≫ ci.

When the augmentation is negligibly small, Σ−1BM ≈ M , and λi ≈ λ̄ = 1, the condition thus
becomes

2

dM
> 0, (14)

which always holds. Thus, a sufficiently small augmentation will never cause collapse. Next, when
we apply very strong augmentation to the j-th subspace and zero augmentation to the others, the
condition for the non-augmented spaces becomes

1 + 2

dM
> dM − 2

dM
, (15)
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meaning that the collapse will not happen. For the j-th space, the condition is

− 1 + 2

dM
> dM − 2

dM
(⇐⇒) 4

dM
> 2, (16)

which is only possible when dM = 1, namely, the strongly augmented space is the only space that
does not collapse. This is reasonable when the original data is rank-1 because the normalization
will ensure that this space does not collapse, but when the original data is not rank-1, this stationary
point will be a saddle and will not be preferred by gradient descent. In different word, a strong
enough augmentation will cause a collapse in the corresponding subspace, as is the case without
normalization.

It is also interesting to note that having ci ≥ ai is no longer sufficient to cause a collapse. For
example, let c1 = 0 and cj = aj for j ≠ 1. The condition for j ≠ 1 becomes

2

dM
> 1

dM
, (17)

which always holds. At the same time, it does not mean that collapsing has become harder in general.
For example, it is also possible for ci < ai to cause a collapse. Suppose we add a weak augmentation
only to the first subspace such that ai − ci = ϵ > 0, the condition for this dimension to not to collapse
is

ϵ

ai + ci
+ 2

dM
> dM − 1 + ϵ

dM
, (18)

which can be violated whenever ϵ < (ai+ci)(dM−3)
ai+ci+dm

. Namely, in some cases, normalization can in
fact facilitate collapse.

C.2 Effect of Bias

Effect of Bias. Lastly, we study the effect of explicitly having a bias term: Wx → Wx + b. First
of all, when there is no normalization, the bias term does not affect the solution because the loss
landscape is invariant to a translation in the learned representation. However, this effect dramatically
changes if we apply normalization at the same time. This is because normalization removes the
translation symmetry of the effective loss, and the trivial solution W = 0, b = 1 becomes the simplest
way to achieve the norm−1 constraint. Our result shows that the addition of bias dramatically affects
the stationary points.

Theorem 2. Let f(x) =Wx+ b and E[x] = 0. Then, all stationary points satisfy Eq. (6), subject to
the constraint that ρ(W ) = Tr[WTΣW ] ≤ c.

Namely, the solution reverts to the case where there is no normalization at all, except that the norm
of the solution can no longer be larger than c. This upper bound can make collapses much easier
to happen. For example, if c < (ai − ci)/(ai + ci) for all i, a complete collapse can happen despite
normalization. When c = 1 and ci ≪ ai, ρ ≈ dM /2 and the constraint indicates that dM ≤ 2: when
the augmentation is very weak, there are at most 2 nontrivial subspaces. This is too restrictive for
learning a meaningful representation, which helps us understand why dimensional collapse can harm
learning in practice. The fact that simple normalization cannot prevent collapse has been noticed for
a while for the simplest case of a cosine-similarity loss, and our result explains why previous works
have tried to introduce asymmetry to cosine similarity to avoid collapses (Grill et al., 2020; Chen
and He, 2021).

C.3 Solution of ρ

The next theorem gives the explicit form of ρ at the stationary points.

Proposition 3. For any stationary point W ∗,

c − ρ(W ∗) =
c − 1

2
Tr[Σ−1BM ]
1 + κdM

, (19)

where dM is the number of non-zero eigenvalues of B′M .
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D Proofs

D.1 Proposition 4

Before proving the main results, we first prove a proposition that we will rely on to prove the main
results. The following proposition shows that the variance term of the loss takes a specific form
when the data is Gaussian.
Proposition 4. Let the data and noise be Gaussian. Then, L = −Tr[WBWT ] +
Tr[WΣWTWΣWT ].

Proof. The second term in Eq. (5) can be written as

Var[∣W (x − χ)∣2] = E [(Tr[W (x − χ)(x − χ)TWT ])2] −E [Tr[W (x − χ)(x − χ)TWT ]]2

(20)

= [first term] − 4Tr[W (A0 +C)WT ]2 (21)

= [first term] − 4Tr[WΣWT ]2, (22)
where we have used the definition Σ = A0 +C. The first term is
[first term] = E [(Tr[W (x − χ)(x − χ)TWT ])2] = 4Tr[WΣWT ]2 + 8Tr[WΣWTWΣWT ].

(23)
Combining the above expressions, we see that Eq. (5) can be written as

L = −Tr[WBWT ] + 1

8
Var[∣W (x − χ)∣2] (24)

= −Tr[WBWT ] +Tr[WΣWTWΣWT ]. (25)
This finishes the proof. ◻

D.2 Proof of Theorem 1

Proof. All stationary points have a zero gradient:

− 2WB + 4WΣWTWΣ = 0. (26)
Multiplying by WT on the left and B−1 on the right,

WTW = 2WTWΣWTWΣB−1 (27)

(⇐⇒) Σ1/2WTWΣ1/2 = 2Σ1/2WTWΣWTWΣB−1Σ1/2 (28)
Defining H ∶= Σ1/2WTWΣ1/2, we obtain

H = 2H2Σ1/2ΣB−1Σ1/2, (29)

(⇐⇒) H(I − 2HΣ1/2B−1Σ1/2) = 0. (30)
Because both H and Σ1/2ΣB−1Σ1/2 are symmetric, one can take the transpose of Eq. (29) to find
that H and Σ1/2B−1Σ1/2 commute with each, which implies that H has the same eigenvectors as
Σ1/2B−1Σ1/2/2.

Eq. (30) then implies that the eigenvalues of H is either the inverse of that of Σ1/2B−1Σ1/2 or zero.
This implies that any stationary point of H can be written in the form

H = 1

2
UMΛUT , (31)

where U is a unitary matrix, Λ is diagonal matrix containing the eigenvalues of Σ1/2B−1Σ1/2, and
M is an arbitrary (masking) diagonal matrix containing only zero or one such that (1) Mii = 0 if
Λii < 0 and (2) contain at most d∗ nonzero terms. This then implies that the weight matrix W
satisfies

WTW = 1

2
Σ−1/2UMΛUTΣ−1/2. (32)

Lastly, when Σ and B commute, we can compactly write the result as

WTW = 1

2
Σ−1BMΣ−1, (33)

where BM denotes the matrix obtained by masking the eigenvalues of B with M . This finishes the
proof. ◻
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D.3 Proof of Proposition 1

Proof. For all stationary points, WTW commutes with B and Σ, which means that at these sta-
tionary points, one can simultaneously diagonalize all the matrices and the loss function (5) can be
written as

L = −
d∗

∑
i=1

λibi + λ2
i s

2
i (34)

where λi, bi, si are the eigenvalues of WTW , B, and Σ respectively.

We can thus consider each i separately. When bi > 0, λi = 0 cannot be a local minimum because the
local Hessian is −bi < 0. When bi ≤ 0, the only stationary point is λi = 0. This sum covers at most
d∗ summands, and so, at the local minima, λi ≠ if and only if bi > 0, and so the number of non-zero
eigenvalues of WTW is min(m,d∗). ◻

D.4 Proof of Proposition 2

Proof. The regularization can be written as

R = [(Ex∣∣Wx∣∣2 − c)2] (35)

= Tr[WΣWT ]2 − 2cTr[WΣWT ] + c2. (36)

By Proposition 4, Eq. (7) reads

L = −Tr[WBWT ] +Tr[WΣWTWΣWT ] + κ(Tr[WΣWT ]2 − 2Tr[WΣWT ] + 1) (37)

= −Tr[W (B + 2κcΣ)WT ] +Tr[WΣWTWΣWT ] + κρ2. (38)

The derivative of ρ is
d

dW
ρ = 4ρWΣ. (39)

The zero-gradient gradient is thus

− 2W (B + 2κcΣ − 2κρΣ) + 4WΣWTWΣ = 0. (40)

We can define B′ ∶= B + 2κcΣ − 2κρΣ to see that this condition is the same as Eq. (26) in the proof
of Theorem 1. The rest of the proof thus follows from the arguments. We thus arrive at the theorem
statement:

WTW = 1

2
Σ−1B′MΣ−1. (41)

We are done. ◻

D.5 Proof of Proposition 3

Proof. Recalling that ρ = Tr[WΣWT ], we multiply Σ from the right to both sides of the solution in
Proposition 2 and take trace:

1

2
Tr[Σ−1B′M ] =

1

2
Tr[Σ−1(BM + 2κ(c − ρ)ΣM)] (42)

= Tr[WTWΣ] (43)

= Tr[WΣWT ] = ρ. (44)

The first line further simplifies to
1

2
Tr[Σ−1BM ] + κ(c − ρ)Tr[Σ−1ΣM ] =

1

2
Tr[Σ−1BM ] + κ(c − ρ)dM , (45)

where dM ∶= Tr[M] is the number of nonzero eigenvalues of B′M .

This gives an equation of ρ that solves to

c − ρ =
c − 1

2
Tr[Σ−1BM ]
1 + κdM

. (46)

This proves the proposition. ◻
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