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Abstract

Despite the increased interest in applying deep learning to specific domains, de-
veloping algorithms for fine-grained datasets suffers from two challenges: expert
knowledge for annotation and the necessity of a versatile model for subordinate
tasks in a specific domain. We can leverage the recent self-supervised learning
approach to pretrain a model with the fine-grained dataset, serving as an effective
initialization for any downstream tasks. Here, we introduce a novel Open-set
Self-Supervised Learning problem with the assumption that a large-scale unla-
beled open-set is available during a pretraining phase. In this problem setup, it
is crucial to consider the distribution mismatch between pretraining and target
datasets. Hence, we propose a SimCore algorithm to sample a coreset, the subset
of open-set that has a minimum distance to the target dataset in a latent space. We
demonstrate that SimCore significantly improves representation learning through
extensive experimental settings with eight fine-grained datasets and two open-sets.

1 Introduction

While the application of deep learning to specific domains is drawing attention [19, 54, 34], the visual
recognition for fine-grained datasets poses two challenges for researchers to develop algorithms. First,
it requires a number of experts for annotation, which incurs a large amount of cost [3, 12, 46]. For
example, ordinary people do not have professional knowledge about aircraft types or fine-grained
categories of birds. Therefore, a realistic presumption for a domain-specific fine-grained dataset is that
one might have no or very few labeled samples. Second, fine-grained datasets are often re-purposed or
used for various tasks according to the user’s demand, which motivates us to make a versatile model.
One might ask, as a target task, that aircraft images be classified by model variants or even segmented
into foreground and background. A good initialization model can handle a variety of annotations
for fine-grained datasets, such as multiple attributes [55, 35, 32], pixel-level annotations [55, 40], or
bounding boxes [40, 35, 30].

Hence, we can leverage the recent self-supervised learning (SSL) [12, 24, 21, 10] to pretrain a model
with the fine-grained dataset so that it can serve as an effective initialization for any future downstream
tasks. Current SSL literature emphasizes the benefits of pretraining on large-scale benchmarks and
then fine-tuning on the fine-grained dataset [12, 21], rather than SSL pretraining on the fine-grained
dataset itself. For convenience, we denote the large-scale unlabeled datasets, which can be easily
obtained by web crawling, as an open-set. However, there has been a lack of discussion about the
distribution mismatch between pretraining and target datasets. Does pretraining a model with an
open-set mostly of animal images improve the target task of classifying aircraft model types? We
hypothesize that (1) a large distribution mismatch inhibits representation learning for the target task,
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Figure 1: Overview of an OpenSSL problem. For any downstream tasks, we pretrain an effective
model for the fine-grained dataset via self-supervised learning. Here, the assumption for a large-scale
unlabeled open-set in a pretraining phase is well-suited for a real-world scenario. The main goal is to
find a coreset, highlighted by the red box, among the open-set to enhance SSL.
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Aircraft [35] airliner, warplane, airship,
... (5 more)

Cars [30] convertible, limousine, jeep,
... (7 more)

Pet [40] Persian cat, Yorkshire terrier,
... (22 more)

Birds [55] goldfinch, junco, robin, jay,
... (16 more)

Figure 2: Left: Linear evaluation performance on four fine-grained datasets. Each label corresponds
to the pretraining dataset, while + means merging two datasets. Right: Manually selected categories
from an open-set (OS), ImageNet [18] in this case, according to each target dataset (X). Selected
categories and exact numbers are detailed in Appendix A. We followed the typical linear evaluation
protocol [12, 21] and used the SimCLR method [12] on ResNet50 [23].

and (2) exploiting a coreset, a subset of open-set that shares similar semantics with the target dataset,
is beneficial.

Motivating experiment. To this end, we introduce a novel Open-set Self-Supervised Learn-
ing (OpenSSL) problem, where we can utilize open-set as well as the fine-grained dataset in a
pretraining phase. In this problem setup (see Figure 1), our main goal is to find a coreset that enhances
the pretraining and therefore improves the target task performance on the fine-grained dataset. Figure
2 describes the motivating experiments, verifying our two hypotheses. First, SSL on the open-set
does not always outperform SSL on the fine-grained dataset since it depends on the semantic sim-
ilarity between X and OS. This is in line with the observation in [20, 19] that the performance of
self-supervised representation on downstream tasks is correlated with how similar the target dataset
is to the pretrained dataset. Next, to prove our insights on the coreset, we manually selected the
relevant classes from ImageNet (OSOracle) that are supposed to be helpful according to each target
dataset (X). Interestingly, merging OSOracle to X showed a significant performance gain, and its
comparison to merging the entire open-set (X+OS) or the randomly sampled subset (X+OSRand)
implies the necessity of a sampling algorithm for the coreset in the OpenSSL problem.

In this work, we propose SimCore, a simple and effective coreset sampling algorithm from the
unlabeled open-set. We formulate the data subset selection problem to obtain a coreset that has a
minimum distance to the target dataset in a latent space. Since there is no label information, we
exploit the feature-space distance to measure semantic similarity. Our method is reminiscent of
the facility location problem [36, 53], but our goal is to find a semantically relevant subset to the
target dataset, not to choose a representative for the open-set. SimCore significantly improves the
performance in extensive experimental settings (eight fine-grained datasets and two open-sets) and
shows consistent gains with different self-supervised losses, architectures, and target tasks.
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2 SimCore: Simple Coreset Sampling from Open-set

We introduce a simple coreset sampling algorithm, coined as SimCore. Motivated by Figure 2,
selecting an appropriate coreset is the most crucial factor for the OpenSSL problem. To this end, we
build a set with the open-set samples that are the nearest neighbors of the target samples.

This is formulated by finding a subset S that maximizes the following objective function. If we
denote X and V as the target dataset and the open-set, respectively,

f(S) =
∑
x∈X

max
v∈S

w(x, v), where S ⊆ V, V ∩X = ∅, |V | ≫ |X|, (1)

while w(x, v) = maxi∈X,j∈V ∥ûi− ûj∥2−∥ûx− ûv∥2 estimates similarity of two samples from each
set, and û is the normalized feature from an encoder Eθ pretrained on X with small epochs. From this,
SimCore can find a subset that shares the most similar semantics with the target set. It is also reminis-
cent of the facility location problem [36, 53], argmax ffac(S) =

∑
x∈V maxv∈S w(x, v), S ⊆ V .

However, f(S) is different from ffac(S), since in Eq. 1, S does not include any target sample x.

Iterative coreset sampling. f(S) is a monotonically increasing submodular function. One remark
is that if there is no constrained budget on S, f(S) continues to increase until it converges to the
maximum value. If we denote S∗ as a minimal set that achieves maximum f value, S∗ is obtained
when including only the instances closest to each instance of X , i.e., |S∗| ≤ |X|. Since we want
to sample sufficiently large subset, we re-define Eq. 1 with the selection round t: ft(S) where the
candidate set is Vt. Thus, we iterate the rounds to repeat sampling S∗

t and excluding them from the
candidate set Vt, until we reach the proper budget size (see Algorithm 1 of Appendix B).

Reducing the complexity. Meanwhile, the direct calculation of pairwise distances requires the
complexity ofO(|X||V |), which might be extremely large. To reduce the computational overhead and
make the algorithm scalable, we adapt k-means clustering [2] to the target dataset X . Exploiting only
the centroids (k = 100 in practice), we show significant performance gains on various benchmarks.

3 Related Works

Self-supervised learning. After Oord et al. [39] proposed an InfoNCE loss, contrastive learning
algorithms began to show a remarkable improvement in representation learning with a Siamese
network [12, 24, 21, 9, 13] or a Vision Transformer [10, 4, 31, 14]. While a large-scale open-set
enhances the generalization of learned representation [26, 48, 17], recent literature has pointed out
the distribution mismatch between a pretraining dataset and a fine-tuning target dataset [47, 19].
Particularly, El et al. [19] have claimed that pretraining on ImageNet may not always be effective on
the target task from different domains and proposed a denoising autoencoder for the robust SSL only
with the fine-grained dataset. Their motivation is similar to ours, but our goal is sampling an effective
coreset to profit from the open-set by augmenting the small-scale fine-grained dataset.

Coreset selection from open-set. In an OpenSSL problem, we denote an open-set as the additional
unlabeled pretraining set that includes instances either from similar or unsimilar domain to target
dataset. The assumption of available open-set is also common in other research fields, such as
open-set recognition [44, 6, 11, 51], open-set [38, 59, 15, 43] or open-world [5, 8, 7] semi-supervised
learning, and open-set annotation [37]. The main goal of our OpenSSL problem is sampling open-set
instances relevant to the target dataset, and it is related to recent coreset selection approaches. Existing
studies find the representative subset of the unlabeled set for active selection [53, 45], or find the
subset of current task data to avoid catastrophic forgetting for continual learning [1, 58, 49]. However,
our work is clearly different from them because we sample a coreset from the unlabeled open-set,
and the selected coreset is for augmenting the fine-grained dataset. More details of the comparison to
recent literature are summarized in Table 5 of Appendix C.

4 Experiments

Linear evaluation. We evaluated the learned representation quality according to each pretraining
dataset, and the detailed experimental setups are in Appendix D. In addition to the four datasets we
used in Section 1, we also included Dogs [27], Action [57], Indoor [41], and Textures [16] datasets.
Table 1 summarizes the linear evaluation results, where using the coreset sampled by SimCore is
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Table 1: Linear evaluation performance on eight fine-grained datasets. We used ImageNet [18]
as an open-set. We sampled p-ratio of the open-set, either via random sampling (OSRand) or Sim-
Core (OSSimCore), and merged them to the target dataset (X). † denotes SimCore with k = 1, single
centroid. Bold indicates the best accuracy for each target, and for each sampling ratio, the best
accuracy which outperformed both X and OS pretraining is also underlined.

X = ? (# of samples)

Aircraft Cars Pet Birds Dogs Action Indoor Textures
pretraining 6,667 8,144 3,680 5,990 12,000 4,000 5,360 3,760

X 46.56% 55.42% 59.23% 29.27% 49.88% 43.76% 54.10% 58.78%
OS (1.3M) 41.50% 41.86% 67.66% 33.21% 49.94% 60.65% 64.46% 67.23%
p = 0.01 or 1% of |OS| (12.8K)
X+OSRand 48.24% 49.26% 64.27% 31.90% 49.62% 47.25% 55.37% 61.33%
X+OSSimCore† 48.06% 58.56% 74.82% 33.37% 57.42% 51.37% 57.84% 61.76%
X+OSSimCore 48.45% 59.00% 77.13% 36.56% 59.83% 52.98% 59.18% 63.40%
p = 0.05 or 5% of |OS| (64.1K)
X+OSrand 45.75% 46.03% 68.38% 33.63% 50.24% 57.27% 60.71% 65.80%
X+OSSimCore† 45.57% 50.75% 80.20% 35.56% 64.62% 64.53% 68.13% 66.22%
X+OSSimCore 47.14% 52.22% 81.75% 39.21% 66.82% 66.38% 70.96% 68.13%

Table 2: Left: Linear evaluation performance with different architecture and different SSL method.
We followed the best sampling ratio in Table 1 for each fine-grained dataset. Right: iNaturalist
2021-mini [50] as an open-set, with sampling ratio of p = 0.05 (25K). We used Pets and Birds for
natural image datasets and Action and Indoor for unnatural image datasets.

method architecture pretraining Aircarft Cars Pet Birds

SimCLR ResNet18 X 43.44% 51.85% 58.19% 25.94%
SimCLR ResNet18 OS 33.92% 33.07% 62.54% 27.72%
SimCLR ResNet18 X+OSSimCore 45.81% 53.70% 76.62% 32.83%

BYOL ResNet50 X 40.56% 49.42% 56.47% 27.55%
BYOL ResNet50 OS 46.06% 49.60% 78.37% 44.72%
BYOL ResNet50 X+OSSimCore 46.54% 51.70% 81.68% 44.96%

pretraining Pet Birds Action Indoor

X 59.23% 29.27% 43.76% 54.10%
OS (0.5M) 62.60% 34.09% 49.33% 54.05%
X+OSSimCore 65.90% 37.36% 48.81% 57.21%

effective in most cases. We sampled p-ratio of the open-set to compare the performance of pretraining
datasets within the limited budget size. The different trend across target datasets gives us a hint about
the optimal coreset size based on the level of distribution mismatch to the open-set. We have also
confirmed that using a number of centroids is more advantageous than a single centroid, although
SimCore with k = 1 even outperforms the random sampling. We visualized the coreset examples in
Appendix E. We leave the adaptive sampling strategy and the sensitivity study for hyperparameter k
as future works. The results of the nearest neighbor classifier [56, 9] and semi-supervised learning
[12, 21] are summarized in Appendix F.

ResNet18 and BYOL. In Table 2 (left), we have applied our method with different architecture,
ResNet18 [23], and different SSL method, BYOL [21]. SimCore consistently proves the effect of
merging the coreset samples.

iNaturalist open-set. Thus far, we have used ImageNet benchmark [18] as the open-set. In practice,
however, an open-set is not what we know about; it is rather a bunch of data randomly drawn from the
web or database. Thus, we experimented with other open-set, iNaturalist 2021-mini [50] that contains
0.5M samples in total. Table 2 (right) shows that in unnatural fine-grained datasets, iNaturalist was
not as effective as ImageNet. Still, SimCore outperformed the pretraining on X in every dataset.

5 Conclusion

In this study, we introduce an OpenSSL problem, where a large-scale open-set can be utilized to help
SSL on the fine-grained dataset. Besides, we propose a SimCore algorithm, sampling the effective
coreset from the open-set, and demonstrate that these coreset samples help better representation
learning. We believe that our work will encourage future research on SSL with the open-set. Future
work will address the sensitivity study on the number of k, the stopping criterion that replaces the
choice of sampling portion, and additional downstream tasks like semantic segmentation.
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A Details of Motivating Experiment in Section 1

In Table 3, we described all the selected classes from ImageNet to construct OSOracle for each target
dataset. For clarity, we also visualized examples for each selected category in Figures 4–6. Also,
Table 4 summarizes the exact numbers of the motivating experiment results.

Table 3: The class list of OSOracle according to each target dataset (X).

X = ? Selected Classes for OSOracle

Aircraft airliner, airship, American egret, crane, space shuttle, spoonbill, warplane, white stork

Cars ambulance, beach wagon, cab, convertible, jeep, limousine, minivan, Model T, racer, sports car

Pet
basset, beagle, boxer, cocker spaniel, Chihuahua, Egyptian cat, English setter, German short-haired pointer, Great Pyrenees,
keeshond, Leonberg, miniature pinscher, Newfoundland, Persian cat, Pomeranian, pug, Saint Bernard, Samoyed,
Scotch terrier, Siamese cat, soft-coated wheaten terrier, Staffordshire bullterrier, tiger cat, Yorkshire terrier

Birds albatross, bee eater, brambling, bulbul, chickadee, goldfinch, house finch, hummingbird, indigo bunting, jacamar,
jay, junco, kite, magpie, pelican, quail, red-backed sandpiper, red-breasted merganser, redshank, robin

airliner airship

American egret crane

space shuttle spoonbill

warplane white stork

Figure 3: Visualization of examples whose classes belong to OSOracle (X = FGVC-Aircraft).

ambulance beach wagon

cab convertible

jeep limousine

minivan Model T

racer sports car

Figure 4: Visualization of examples whose classes belong to OSOracle (X = Stanford Cars).
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basset beagle

boxer cocker spaniel

Chihuahua Egyptian cat

English setter German short-haired pointer

Great Pyrenees keeshond

Leonberg miniature pinscher

Newfoundland Persian cat

Pomeranian pug

Siamese cat

Staffordshire bullterriersoft-coated wheaten terrier

Samoyed

Scotch terrier

Saint Bernard

tiger cat Yorkshire terrier

Figure 5: Visualization of examples whose classes belong to OSOracle (X = Oxford-IIIT Pet).
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albatross bee eater

brambling bulbul

chickadee goldfinch

house finch hummingbird

indigo bunting jacamar

jay junco

kite magpie

pelican quail

red-backed sandpiper red-breasted merganser

redshank robin

Figure 6: Visualization of examples whose classes belong to OSOracle (X = Caltech-UCSD Birds).

Table 4: Linear evaluation performance with sample size for each pretraining dataset. ImageNet is
used as the open-set, and the sampling portion is 1% of |OS|.

X = ?

pretraining FGVC-Aircraft Stanford Cars Oxford-IIIT Pet Caltech-UCSD Birds

X 46.56% (6.7K) 55.42% (8.1K) 59.23% (3.7K) 29.27% (6.0K)
OS 41.50% (1.3M) 41.86% (1.3M) 67.66% (1.3M) 33.21% (1.3M)
X+OS 39.88% (1.3M) 42.92% (1.3M) 68.22% (1.3M) 32.88% (1.3M)

X+OSRand 48.24% (19.5K) 49.26% (20.9K) 64.27% (16.5K) 31.90% (18.8K)
X+OSOracle 48.78% (17.1K) 57.56% (21.1K) 80.73% (34.9K) 38.26% (32.0K)
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B Algorithm Description

In Algorithm 1, we described the full algorithm of SimCore sampling procedure.

Algorithm 1: Simple Coreset Sampling from Open-set (SimCore)
1 Require: X , Eθ: target dataset, encoder pretrained on X;
2 Require: V0: initial candidate set (open-set);
3 Require: B: coreset budget;
4 initialize I ← ∅, t← 0;
5 calculate ux ← Eθ(x) for ∀x ∈ X;
6 calculate uv ← Eθ(v) for ∀v ∈ V0;
7 while |I| < B do
8 set S∗

t as the elements in Vt that are closest to each element in X;
9 I ← I ∪ S∗

t ;
10 Vt+1 ← Vt \ S∗

t ;
11 t← t+ 1;
12 end
13 re-initialize θ;
14 start pretraining Eθ with X ∪ I;

C Comparisons with Relevant Literature

To clearly compare the OpenSSL problem with existing research fields, we summarized the compari-
son table as follows.

Table 5: Comparisons of the OpenSSL problem with relevant literature. Especially, we focus on
each problem setting and the definition of open-set (OS) or coreset (CS). * indicates the instances in
unlabeled data pool supposed to be annotated after the active selection.

Train TrainTask Problem Setting (Labeled) (Unlabeled) Test Definition of OS / CS Main Goal

Novel Class Discovery
[25, 22, 60]

unlabeled data consist
of only novel classes seen - novel - cluster novel classes in

unlabeled dataset

Open-set Recognition
[44, 6, 11, 51]

test set contains seen
and novel classes seen - seen +

novel
[OS] test dataset containing
seen and novel classes

reject instances from
novel classes in test time

Open-set Semi-
Supervised Learning
[43, 38, 59, 15, 28]

unlabeled train data
contain novel classes seen seen +

novel seen
[OS] training dataset containing
seen and novel classes

train a robust model while
regularizing novel classes

Open-World Semi-
Supervised Learning
[8, 7, 5]

test set contains seen
and novel classes seen seen +

novel
seen +
novel

[OS] dataset containing
seen and novel classes

discover novel classes and
assign samples in test time

Open-set Annotation
[37]

unlabeled data pool
contains novel classes seen seen* +

novel* seen [OS] unlabeled data pool
with seen and novel classes

aims to query seen classes
from unlabeled data pool

Coreset Selection in
Active Learning
[45, 53]

query instances to be
annotated given
fixed labeling budget

seen seen* seen
[CS] the most representative
subset of unlabeled set

find a small subset
competitive to whole dataset

Coreset Selection in
Continual Learning
[1, 58, 49]

continuously learn
a sequence of tasks partially

novel - seen
[CS] the most representative
instances at each task

promote task adaptation with
less catastrophic forgetting

Hard Negative
Mining for SSL
[42, 52]

assumes that hard
negatives are useful - target target

[CS] the hardest contrastive
pair instances for SSL

improve SSL performance
using core-negative instances

OpenSSL
(ours)

open-set may have
data irrelevant to
target dataset

- target +
irrelevant target

[OS] large-scale unlabeled set
[CS] subset of OS sharing the
same semantic with target set

improve SSL performance
on fine-grained datset via
coreset sampling method
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D Experimental Settings

We used eight fine-grained datasets and two open-sets in the main experiments. We summarized the
dataset configurations in the following Table 6. Also, we followed the linear evaluation protocol used
in recent SSL literature [12, 21]: pretraining the encoder and fine-tuning only the classifier with the
frozen encoder part.

Pretraining the encoder. We set the maximum cost of pretraining to 8 GPU days since the size of
train sets are different depending on the pretraining dataset. For example, we trained 200 epochs for
ImageNet open-set (OS) and X+OS experiments. Meanwhile, on small-scale fine-grained datasets,
we pretrain the model for much longer epochs of 5K. In the motivating experiment, we also used 5K
epochs pretraining by default, but for the experiments that exceeded 8 GPU days (X+OSOracle for
Pet and Birds), we reduced the epochs to 3K. For X+OSSimCore pretraining, every 1% sampling used
5K epochs, but every 5% sampling used 2K epochs. Before sampling the coreset, we should have a
model pretrained on the target dataset for small epochs. For this, we trained for 1K epochs on each
dataset.

When pretraining the encoder with SimCLR method, we used an SGD optimizer with initial learning
rate of 0.1 and ℓ2 regularization parameter 1e-4, and with 512 batch size. The learning rate is
scheduled by cosine annealing [33], where the minimum learning rate is zero on the last epoch.
We followed the same hyperparameter of 0.07 temperature and 128 projection dimension as in the
original paper [12]. For BYOL experiments in Table 2, we used an Adam optimizer [29] with a
learning rate of 1e-3 and ℓ2 regularization parameter 1e-6. BYOL method is highly sensitive to the
exponential moving average (EMA) value of a momentum encoder [24]. Therefore, we followed the
same EMA scheduler as in the original implementation [21], starting from 0.996 to 1. We should also
note that we did not utilize the EMA scheduler for some experiments with lower epochs.

Fine-tuning for linear evaluation. We fine-tuned a linear classifier for 100 epochs and searched
the optimal learning rate among five logarithmically spaced values from 1 to 102. We decayed the
learning rate by 0.1 at 60 and 80 epochs, and any regularization techniques, such as weight decay,
were not used.

Table 6: Datasets we used and their configurations. For the fine-grained dataset that has a separate
validation set, we incorporated the validation set to the train set because we only need unlabeled data
for self-supervised pretraining.

Dataset Train # Test # Class #

ImageNet [18] 1,281,167 50,000 1,000
iNaturalist 2021-mini [50] 500,000 100,000 10,000
FGVC-Aircraft [35] 6,667 3,333 100
Stanford Cars [30] 8,144 8,041 196
Oxford-IIIT Pet [40] 3,680 3,669 37
Caltech-UCSD Birds [55] 5,990 5,790 200
Stanford Dogs [27] 12,000 8,580 120
Stanford 40 Actions [57] 4,000 5,532 40
MIT-67 Indoor Scene Recognition [41] 5,360 1,340 67
Describable Textures (DTD) [16] 3,760 1,880 47
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E Coreset Visualization

We visualized which instances from the open-set are actually sampled by our SimCore algorithm. To
this end, in Figure 7, we displayed the ground-truth labels of the coreset samples when the target
dataset is Pet [40] or Birds [55]. For comparison, we also displayed the coreset by SimCore with
k = 1, using a single centroid. Note that the Pet dataset contains 12 cat breeds and 25 dog breeds, and
the Birds dataset contains 200 bird species. The open-set dataset is ImageNet [18], so the ground-truth
labels of coreset samples correspond to the ImageNet classes.

For the Pet dataset, SimCore with k = 1 has sampled mostly animal images but included data
somewhat irrelevant to cats and dogs (Figure 7a). The second most class is giant panda, the third
is koala, and the eighth is guenon, a kind of monkey. On the contrary, SimCore with k = 100 has
sampled mostly cat or dog images; up to top-20 classes, every class was from the breed of either cat
or dog (Figure 7b). Interestingly, eight out of the top-10 classes were those that overlap with the Pet
class labels, such as Siamese cat, Persian cat, Saint Bernard, etc.

For the Birds dataset, SimCore with k = 1 has sampled a lot of irrelevant images, such as French
horn, trombone, bullet train, admiral, hard disc, etc. (Figure 7c). On the contrary, SimCore with
k = 100 has sampled only the bird species up to the top-20 classes, including bulbul, chickadee,
brambling, bee eater, house finch, goldfinch, junco, robin, jay, etc. (Figure 7d).
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(a) OSSimCore with X = Pet, k = 1

100

150

200

250

0 5 10 15 20

(b) OSSimCore with X = Pet, k = 100
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(c) OSSimCore with X = Birds, k = 1
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(d) OSSimCore with X = Birds, k = 100

Figure 7: Visualization of sampled coreset by SimCore method. We plotted histograms for the top-20
classes with the largest number of samples and visualized one example image per top-9 classes. We
highlighted the coreset classes with orange, which do not look similar to the target data. X denotes
the target dataset, and k is the number of centroids in k-means clustering to reduce the complexity of
SimCore. The x-axis and y-axis of histograms denote the class index and the number of samples,
respectively.
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F kNN Classifier and Semi-Supervised Learning Results

We have shown the linear evaluation performance on each fine-grained dataset to evaluate the quality
of learned representation. Here, we also evaluate other downstream tasks: nearest neighbor (NN)
classification and semi-supervised learning. The NN classification is a nonparametric way to classify
the test images, which makes the prediction via weighted voting of nearest neighbors [56, 9]. Table 7
summarizes the 20 NN and 200 NN classification results, showing that SimCore consistently shows
the best accuracy.

In addition, when part of the datasets becomes labeled by expert annotators, we can use those labels
to further fine-tune the entire network. Here, we followed the semi-supervised learning protocol
in [12, 21]. In Table 7, we show the results with three label ratios, each trained with 100 epochs.
We used an SGD optimizer with ℓ2 regularization parameter 1e-4, and tuned the learning rate for
five logarithmically spaced values from 0.01 to 1. SimCore again showed the best results overall,
especially by a large margin in Aircraft and Pet datasets.

Table 7: Nearest neighbor classifier and semi-supervised learning performances. We experimented
with 20-nearest and 200-nearest neighbors for kNN classifier, and the label ratio of 10%, 20%, and
50% for semi-supervised learning setup. We used the pretrained model by SimCore with the sampling
ratio p = 0.01.

Aircraft: kNN Aircraft: semi-sup. Cars: kNN Cars: semi-sup.

pretraining 20 NN 200 NN 10% 20% 50% 20 NN 200 NN 10% 20% 50%

X 36.12 36.69 28.97 47.59 64.61 33.11 34.32 25.07 53.46 80.18
OS 19.32 17.67 19.59 34.05 43.93 11.38 10.86 10.84 35.70 74.11
X+OSSimCore 40.44 40.41 34.82 51.98 66.97 32.89 34.22 24.57 54.55 81.73

Pet: kNN Pet: semi-sup. Birds: kNN Birds: semi-sup.

pretraining 20 NN 200 NN 10% 20% 50% 20 NN 200 NN 10% 20% 50%

X 52.03 51.84 47.16 58.73 71.37 20.74 21.76 13.26 25.22 51.24
OS 50.40 48.95 35.74 62.26 76.94 13.90 15.11 10.07 21.02 51.21
X+OSSimCore 67.46 67.40 61.89 71.52 81.18 23.71 24.47 14.61 27.43 56.27
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