
Content suppresses style: dimensionality collapse in
contrastive learning

Evgenia Rusak∗1, Patrik Reizinger∗1, Roland S. Zimmermann∗1, Oliver Bringmann1, and
Wieland Brendel1,2

1University of Tübingen, Germany
2Max Planck Institute for Intelligent Systems, Tübingen, Germany

Abstract

Contrastive learning is a highly successful yet simple self-supervised learning
technique that minimizes the representational distance of similar (positive) while
maximizing it for dissimilar (negative) samples. Despite its success, our theoretical
understanding of contrastive learning is still incomplete. Most importantly, it
is unclear why the inferred representation faces a dimensionality collapse after
SimCLR training and why downstream performance improves by removing the
feature encoder’s last layers (projector). We show that collapse might be induced by
an inductive bias of the InfoNCE loss for features that vary little within a positive
pair (content) while suppressing more strongly-varying features (style). When at
least one content variable is present, we prove that a low-rank projector reduces
downstream task performance while simultaneously minimizing the InfoNCE
objective. This result elucidates a potential reason why removing the projector
could lead to better downstream performance. Subsequently, we propose a simple
strategy leveraging adaptive temperature factors in the loss to equalize content and
style latents, mitigating dimensionality collapse. Finally, we validate our theoretical
findings on controlled synthetic data and natural images.

1 Introduction
Self-Supervised Learning (SSL) enables the exploitation of large, unlabeled data sets by defining
surrogate objectives in place of labels. Contrastive Learning (CL) belongs to SSL-methods relying
on data augmentation to define positive (similar) and generally negative (dissimilar) samples [13, 3,
6, 2, 4]. Some SSL methods circumvent the need for negative samples [5, 7, 21].

Dimensionality collapse occurs when the representations do not capture some latent factors. In CL, it
was first described by Chen et al. [3] as information loss—quantified by linear readout performance—
occurring in the last layers (often called projector or projection head). The linear readout layer’s
weight matrix was found to be approximately low-rank, which led to the conjecture that the SimCLR
loss causes information loss [3]. As a result, discarding the projector after training became popular in
both contrastive [6, 2, 4] and non-contrastive methods [5, 7, 21].

We investigate why the commonly-used InfoNCE loss [13] leads to information loss in the projec-
tor [3]. While a previous study [11] already investigated the role of the projector, we find their
analysis incomplete (see Appx. E for more details). In contrast, we interpret the information loss
in the context of identifiability for CL [22], learning dynamics [1, 17, 11, 18], and the content-style
partitioning of latent factors [19]. Using these tools, we theoretically confirm the conjecture of Chen
et al. [3] by proving (for both linear and nonlinear networks) that a content-style partitioning exploits
an inductive bias of the InfoNCE loss, leading to collapse. The seeming controversy to the results
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of [22]—i.e., that CL can invert the Data Generating Process (DGP)—is resolved by showing that
the inductive bias of the InfoNCE loss is only effective when there is at least one content variable.
We propose a possible explanation for the projector’s role: by localizing dimensionality collapse, it
compensates for the inductive bias of the InfoNCE loss, which can be thought of as shielding the
intermediate representations. Our contributions are:

• We prove that the contrastive (SimCLR) loss prefers dimensionality collapse when the latent
conditional distribution of positive pairs has invariant (content) and varying (style) components—
for linear and nonlinear models, box and sphere latent spaces.

• We propose a strategy of adaptive temperature values in the InfoNCE loss to mitigate dimensionality
collapse based on our insights. Further, we conjecture that the projector’s role is to shield the
intermediate representation by absorbing the low-rank transformations leading to collapse. Finally,
we provide empirical verification on controlled synthetic data and natural images.

2 Background
Self-supervised/Contrastive learning. Contrastive Learning (CL) is a SSL paradigm learns an
encoder f : X → Z mapping observations x to latent vectors z. CL uses positive pairs x̃ (similar
data point, e.g., augmentations of the same sample), and negative pairs x− (dissimilar data points,
e.g., uniformly drawn from the dataset). Describing observations by a DGP g : Z → X , the positive
samples follow a conditional (p (z̃|z)), the unconditional samples a marginal p (z) distribution over
Z [22]. Under certain assumptions, CL inverts the DGP, i.e., the composition h = f ◦ g is a trivial
map (including scaling, permutation, or affine transformations, depending on the assumptions) [22].
CL mostly uses losses from the InfoNCE family [8, 13] with the normalized form of:

lim
M→∞

LCL − logM + log |Z| = E(x,x̃,x−)

[
− log

ef
T (x)f(x̃)/τ

ef
T (x)f(x̃)/τ +

∑M
i ef

T (x−)f(x̃)/τ

]
, (1)

where M is the number of negative samples, τ the scalar temperature, |Z| the normalization constant
of the latents, x̃ ∼ p(x̃|x) and (x,x−) ∼i.i.d. p(x) the positive and negative observation pairs.

Content-style partitioning of Z . von Kügelgen et al. [19] discuss a partitioning of z ∈ Z into
invariant (content) zc ∈ Zc and changing (style) zs ∈ Zs variables, where zc of positive pairs follows
a δ-distribution [19, Assum. 3.1] whereas the distribution of zs of those pairs is not degenerate [19,
Assum. 3.2], yielding p (z̃|z) = δ

(
z̃c − zc

)
p(z̃s|zs), where Z = Zc ×Zs. We note that Jing et al.

[11] implicitly use a similar distinction—defined as different augmentation amplitudes. Thus, their
approach is akin to a generalized notion of content variables with σ2

s ≫ σ2
c > 0.

Learning dynamics and collapse. Theoretical and empirical results [17, 11, 19] show that data
properties affect learning dynamics of the latent components zi; there seems to be a connection
between the Hessian’s rank and the number of classes [15, 16], based on which Awasthi et al. [1] show
that the optimal representations for InfoNCE are Simplex Equiangular Tight Frames (ETFs) [14].

3 Theory
We provide theoretical insights on why dimensionality collapse possibly happens and a strategy to
alleviate it. Our approach is investigating the loss, akin to [1], and showing that collapsing style
variables reduces the loss compared to a representation capturing all latents (e.g., when f = g−1).
We consider linear and nonlinear models, and corresponding encoders with normalized (i.e., Sd−1)
and non-normalized latent spaces (e.g., Rd), connecting insights from [22, 19, 1, 11]. We defer most
formal results and proofs to Appx. D; we also include a detailed analysis of the linear case in Appx. C.

Assuming at least one content dimension, a linear DGP g and linear encoder weights W; the question
is for which W LCL is minimal. I.e., in the empirical loss formulation eq. (4), the norms for positive
and negative pairs should change in a way that decreases the loss. To show that a low-rank W yields
the optimum (Prop. 4), we leverage that zc has a delta conditional: i.e., it does not contribute to the
alignment term, so the norm w.r.t. the positive pairs (z, z̃) simplifies to:

∥zi − z̃i∥2 = (xi − x̃i)
T
WTW (xi − x̃i) = (xs

i − x̃s
i )

T
WT

s Ws (x
s
i − x̃s

i ) , (2)

which is a weighted inner product with Ws affecting only zs. The larger σ2
s, the larger (xs

i − x̃s
i )

(on average). To reduce the norm, W should be such that the largest components of observation
covariance belong to its kernel (i.e., they are collapsed)—this is possible when W becomes low-rank
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Figure 1: Left: Normalized singular values of trained weights of linear models for different tem-
peratures: τ c = τ s = τ = 1 for all dimensions (solid) and τ c<τ s (dashed). Setting τ c<τ s yields
the same spectrum as for the uncollapsed setting (i.e., dc = 0). Adjusted R2 score of style (solid)
and content (dashed) dimensions when evaluated on intermediate layers throughout the encoder f .
For both hyperbox (middle) and hypersphere (right), we observe collapse in the final layer when
τ c = τ s, corroborating our linear model results. When setting τ c < τ s, the collapse is alleviated.

(with implications for its gradient discussed in Prop. 2). Note that this reasoning requires the presence
of content variables: If only style variables are present, then a low-rank W will increase the norm for
(z, z̃)—intuitively, this is why W = 0 does not minimize LCL, which we show in Appx. C.

Perhaps surprisingly, the linear results transfer to nonlinear DGPs g and encoders f : making f

low-rank can drive ∥f (xi)− f (x̃i)∥2 to zero, e.g., by scaling f with a low-rank diagonal matrix
D (rank (D) = dc). By the same argument as above, this results in a low-rank (collapsed) f that
minimizes LCL while having low-rank gradients (Prop. 5). We state our most general result for
unnormalized f as (Im denoting the image, Ker the kernel):
Proposition 1. [zs-collapse achieves optimal LCL] When Im (f (X )) = Zc and Ker (f) = Zs

then LCL achieves its optimum under the bijective encoder of Assum. 2.

For normalized representations, we rely on [1], showing that for a DGP with class-determining latent
variables, the optimal representations for the InfoNCE loss are Simplex ETFs [14], reducing the
inter-class variance, thus, collapsing to the class means. We interpret the content variables zc as the
class-determining variables of the DGP, resulting in the following lemma:
Lemma 1. [Interpreting zc as class variables explain collapse on Sd−1] When zc are interpreted as
the class variables of a DGP and [1, Assums. 3.1,3.6] hold then the optimal representation minimizing
the InfoNCE loss yields collapsed zs.

Our above results only show that there is an inductive bias in the InfoNCE loss that becomes relevant
as soon as there is at least one content dimension. Fortunately, these results suggest a strategy for
how we might avoid dimensionality collapse: by using different temperature values for content and
style latents, we could counter the emerging low-rank structure in f . We use τ c > τ s (this is similar
to the diagonal matrix D in our proofs) in the InfoNCE loss and demonstrate its success in § 4.

Engineering a collapsed but minimal-loss f also sheds light on a possible role of the projector: We
conjecture that the selectivity of the low-rank diagonal matrix D materializes in the projector as
well, concentrating dimensionality collapse in the last few layers. Thus, “shielding" the intermediate
representations from further collapse; this is what we observe in practice (§ 4) and summarize as:
Conjecture 1. The projector’s role in CL is “shielding" the intermediate representation from the
inductive bias of LCL.

4 Experimental results
4.1 Fully controlled experiments

Preliminaries. In our first set of experiments, we follow Zimmermann et al. [22] and consider
a fully controlled Data Generating Process (DGP), where the ground-truth latent space is either a
hyperbox (Z = [0, 1]d) or a hypersphere (Z = Sd−1). Specifically, we use an invertible Multi-Layer
Perceptron (MLP) as the generative model g with same input, intermediate, and output dimensionality
d (optionally, with Leaky ReLU non-linearities). Unless noted otherwise, d = 10. Further, the latents
of anchor points and negative samples are sampled from a latent marginal distribution z ∼ p (z),
while positive samples follow a conditional distribution z̃ ∼ p (z̃|z). During training, the model only
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uses observations, which are obtained by passing latents z through g. The encoder f is also modeled
as an MLP with same input, intermediate and output dimensionality, optionally, with Leaky ReLU
non-linearities. As we have access to the ground-truth z, we compute the amount of information in
the inferred latents z′ about each of ground-truth latent dimensions by fitting a linear map A between
z′ and z and calculating the coefficient of determination R2 [20] between Az′ and z.

Model Z = [0, 1]d Z = Sd−1

Lalign Luniform LCL Lalign Luniform LCL

f = g−1 0.020.01 7.690.20 7.710.20 -0.190.32 9.260.00 9.070.32

f InfoNCE 0.230.14 0.660.08 0.890.11 -0.970.04 9.290.03 8.320.05

Table 1: With content dimensions present, collapsed have a
lower loss than the intended solutions (i.e., f = g−1). Loss
was computed on 10’000 samples.

Linear DGP. We start with a linear
DGP g and linear encoder f (with-
out bias and d = 8 latent dimensions)
to understand whether collapse hap-
pens and potentially how to alleviate
it. The latent marginal is uniform, the
conditional is normal with mean z for
style dimensions and a δ-distribution
for content dimensions. When Z is
an ℓ2-normalized hypersphere we train f using InfoNCE based on cosine-similarity; while for the
hyperbox we use an extended InfoNCE objective for non-normalized representations based on an ℓp
norm [22]. Inspecting the trained weight spectrum (varying dc), we notice that zs collapses when at
least one content dimension is present, i.e., dc > 0, unless we set smaller temperature for zc (Fig. 1),
corroborating our strategy Appx. C. Moreover, a collapsed f leads to a lower loss than an encoder
that perfectly inverts the DGP, i.e., f = g−1 (see Prop. 4).

Model Lin. readout acc.
after p. before p.

Regular 91.40.5 93.00.1

w/o norm. 91.40.6 92.50.5

w/o norm + diff. τ 92.50.2 93.20.1

Table 2: Removing ℓ2-normalization
improves readout performance after
and (slightly) before the projector.

Nonlinear DGP. Next, we consider nonlinear DGPs (3-
layer MLP, d = 10) and nonlinear encoders (7-layer MLP).
Again, as latent spaces we consider a hyperbox as well as the
hypersphere; the marginals are uniform, the conditionals of
zs are Gaussian (box) and von Mises-Fisher (vMF) (sphere)
while that of zc variables is a δ-distribution. We evaluate
the adjusted R2 score between the ground-truth latents and
intermediate activations throughout the trained encoder f ,
and observe that collapse is only present in the last layer (i.e.,
the projector) when τ c = τ s. With τ c < τ s, collapse is
alleviated for the box, whereas for the sphere, we further need to remove the ℓ2-normalization—a
possible explanation is that optimization on Sd−1 is harder; further, Papyan et al. [14] showed that
collapsed representations form a Simplex ETF, i.e., they are already on Sd−1 (Lemma 4).

4.2 Reducing dimensionality collapse on CIFAR10

0 50 100 150 200 250
Singular values

10 2

10 1

100

M
ag

ni
tu

de

after projector
before projector

regular
w/o 2 norm.
w/o 2 norm. + different 

Figure 2: Spectrum of the representations’
cov. after (solid) and before (dashed) the
projector. Removing the ℓ2-normalization
reduces dimensionality collapse.

On CIFAR10 [12] the ground-truth latents are un-
known. Thus, we can only reason about recovered
or collapsed latents indirectly: either by (1) character-
izing the latent covariance spectrum after the projec-
tor [11], or by (2) training a linear readout for down-
stream classification [3]. We train a ResNet50 [9]
on CIFAR10 [12] with the code from [10] and report
the average of 3 random seeds. We find that remov-
ing the ℓ2-normalization and standardizing the outputs
substantially reduces dimensionality collapse after the
projector (Fig. 2), but does not improve the linear read-
out accuracy (§ 4.1). Following the intuition that the
distributions generating the latent factors in CIFAR10
have different variances, we set different τ values for
different dimensions. Specifically, we use τ = 1 for half of the dimensions and τ = 0.7 for the rest.
Setting different τ values does not influence the spectrum of the representations but improves the
linear readout accuracy for representations both before and after the projector.

5 Conclusion
We propose a possible explanation for dimensionality collapse in CL by exposing a hidden inductive
bias in the InfoNCE loss, which results in information loss of the style variables. Based on these
insights, we provide a possible explanation for the relevance of a projector and suggest a strategy to
alleviate this phenomenon, resulting in a reduced collapse on both synthetic data and on CIFAR10.
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A Useful lemmas

Lemma 2 (Rank upper bound of matrix products). For matrices A ∈ Rm×n,B ∈ Rn×k the rank of
the product AB is upper bounded by the minimum of the ranks of A, B, i.e.,

rank (AB) ≤ min (rank (A) , rank (B)) . (3)

Lemma 3 (Singularity of matrix product). For square matrices A,B ∈ Rn×n, the product AB is
singular if and only if both A, B are singular—including the case when any of both is the zero matrix
0 ∈ Rn×n.

Lemma 4 (Collapsed latent class means lies on Sd−1 [14]). For a nonlinear encoder f with
representations z (used for classification via linear readout) the class means collapse to a Simplex
ETF on Sd−1.

B Assumptions

Assumption 1 (Bijective linear DGP). We assume that for latents z ∈ Rd, the observations x ∈ RD

are generated as x = W−1z. For the inverse to exists, we assume d = D.

Assumption 2 (Bijective nonlinear DGP). We assume that for latents z ∈ Rd, the observations
x ∈ RD are generated as x = gz.

Assumption 3 (Conditional and marginal axes align). The covariances of the marginal and condi-
tional are simultaneously diagonalizable, i.e., the directions of the corresponding variances align.
Furthermore, w.l.o.g., we assume that both conditional and marginal covariances are diagonal w.r.t.
the canonical basis.

Assumption 4 (Informative conditional). We assume that we have informative conditional distri-
butions in the latent space, i.e., σ2

c ≪ σ2
s < σ2

z , where σ2
c , σ2

s and σ2
z denote the variance of the

positive pair’s conditional distribution for the content, style and all dimensions, respectively.

C Gradient dynamics in the linear case
For our analysis, we will rely on the empirical formulation of LCL (eq. (1)), i.e.:

∑
i

∑
j ̸=i

− log
exp

(
−∥zi−z̃i∥2

2

)
exp

(
−∥zi−z̃i∥2

2

)
+
∑

j ̸=i exp
(
−∥zi−zj∥2

2

) , (4)

which has a minimum of zero—for all exponential terms being non-negative and the numerator being
less than or equal to the denominator. Note that w.l.o.g. we set τ = 1, as the temperature value only
scales all components of the gradient equally in the linear case; thus, the temperature is irrelevant for
this analysis.

We follow [11] to analyze the gradient of LCL (eq. (1)) w.r.t. the learned weight matrix W ∈ Rd×d.
The expression for the temporal dynamics for W yields (z̃ are the latents generating the positive
pairs from the conditional) for a large number of negative samples M :

Lemma 5 (W dynamics). Under the linear model (Assum. 1) and with a large number of negative
samples (M →∞), the temporal dynamics (i.e., the negative gradient) of the weight matrix W
depends on the marginal (Σx) and conditional (Σx̃) data covariance matrices.

dW

dt
= W (M + 1) [Σx −Σx̃] , (5)

Proof. The total derivative of the loss is:

dLCL

dW
=
∑
z,z̃

∂LCL

∂z

∂z

∂W
, (6)
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yielding

∂LCL

∂zi
= (zi − z̃i)− αii (zi − z̃i)−

∑
j ̸=i

αij (zi − zj) =
∑
j ̸=i

αij [(zi − z̃i)− (zi − zj)]

∂LCL

∂z̃i
= − (zi − z̃i) + αii (zi − z̃i) = −

∑
j ̸=i

αij (zi − z̃i)

αij =
1

Zi
exp

(
−∥zi − zj∥2

2

)

αii =
1

Zi
exp

(
−∥zi − z̃i∥2

2

)
αii +

∑
j ̸=i

αij = 1

Zi = exp

(
−∥zi − z̃i∥2

2

)
+
∑
j ̸=i

exp

(
−∥zi − zj∥2

2

)
∂LCL

∂z
= xT

Following Jing et al. [11], we describe the negative gradient of W:

dW

dt
= −

∑
i

∑
j ̸=i

αij

(
[(zi − z̃i)− (zi − zj)]x

T
i − (zi − z̃i) x̃

T
i

)
(7)

= −
∑
i

∑
j ̸=i

αij

[
(zi − z̃i) (xi − x̃i)

T − (zi − zj)x
T
i

]
(8)

= −
∑
i

∑
j ̸=i

αij

 (zi − z̃i) (xi − x̃i)
T −

∑
j ̸=i

αij (zi − zj)x
T
i

 (9)

We note that as M →∞, due to
∑

j αij = 1:

αij →
1

M

∑
j ̸=i

αij → 1.

Thus, its variance also goes to zero, yielding an estimate for the conditional data covariance, namely:

∑
i

∑
j ̸=i

αij

 (zi − z̃i) (xi − x̃i)
T

→W (M + 1)Σx̃. (10)

Moreover, as marginal samples are independent and identically distributed (i.i.d.), the covariance of
xixj is zero, resulting in:

−
∑
i

∑
j ̸=i

αij (zi − zj)x
T
i = −W

∑
i

∑
j ̸=i

αij

(
xix

T
i − xjx

T
i

)
(11)

= −W
∑
i

∑
j ̸=i

αijxix
T
i (12)

∼ −W
∑
i

∑
j ̸=i

1

M
xix

T
i = −W (M + 1)Σx. (13)

Assembling the terms yields the total derivative:

dW

dt
= −W (M + 1) [Σx̃ −Σx] , (14)
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The assumption of sufficiently large number of negative samples (or, equivalently, batch size, i.e.,
M + 1) in Lemma 5 also pinpoints a possible mechanism why increasing M can help CL:

Lemma 6 (Batch size affects gradient rank.). Increasing the batch size (or, equivalently, M ), improves
the estimate of the covariances Σx̃,Σx, leading to better conditioned (higher-rank) gradients.

A simple way to see this is that if M + 1 < d then the covariance matrix estimates cannot not
even be full rank, since there will fewer terms than dimensions (this can be thought as a spectral
decomposition with less than d components.

The eigenvalues of [Σx̃ −Σx] can affect whether there is collapse. To connect eq. (5) to content-style
paritioning, we reformulate it in terms of the latent marginal and conditional covariances (using the
abbreviation ground truth (GT)):

[Σx −Σx̃] = W−1
GT [Σz −Σz̃]W

−T
GT = W−1

GTdiag
(
σ2

z − σ2
c ;σ

2
z − σ2

s

)
W−T

GT (15)

Jing et al. [11] reasons that [Σx̃ −Σx] will be at least indefinite (with at least one negative eigenvalue)
for “strong" augmentations (on the data). Nonetheless, under the assumption that the positive pairs
are drawn from informative conditionals (i.e., their variance is smaller than that of the marginal,
cf. Assum. 4), [Σx̃ −Σx] cannot be negative semi-definite (NSD), it will remain positive definite
(PD). Notably, “strong augmentations" turn out to be a sufficient, but not necessary condition for
dimensionality—even [11, Fig. 3] demonstrates this fact where collapse is observed for k < 1, i.e.,
for informative conditionals. Equation (15) also states that the gradient for each element in W will
be proportional to its actual value (since [Σx −Σx̃] cannot be negative definite (ND)). The data
covariance decomposition in eq. (15) elucidates how content-style partitioning affects the gradients:

Lemma 7 (zc has larger gradients). Under Assums. 1 and 3, the gradients of W in linear CL are
larger for dimensions encoding content variables.

Proof. The decomposition of [Σx −Σx̃] in eq. (5) as in eq. (15) shows that since σ2
c ≪ σ2

s
(Assum. 4), the gradients for zc (defined as the gradient directions corresponding to the singular
values σ2

z − σ2
c) are larger.

Note that Lemma 7 does not require that σ2
c = 0, only that σ2

c ≪ σ2
s. Thus, holds even when the

standard definition of zc (with zero conditional variance) is relaxed. We can use the above insight to
determine dc (note that this can differ based on the output dimensionality):

Proposition 2 (Gradient spectrum determines dc). The component-wise singular values of the
gradient spectrum eq. (5) can be used to determine dc, more precisely, the number of latent dimensions
that encode (mostly) content variables.

Proof. The proof follows trivially from Lemma 7, since content dimensions have larger norms in the
gradient.

Furthermore, we can use this insight to propose a heuristic how to scale the different gradients such
that they will have the same order of magnitude:

Proposition 3. The temperature for zc should be τ c ∼
√
αc = σc/σs if τ s = 1.

Proof. Our goal is to achieve a spectrum with appr. the same singular values. For this, we need:

σ2
z − σ2

c/αc

σ2
z − σ2

s

∼ 1 (16)

1−
σ2

c/αc

σ2
z

∼ 1− σ2
s

σ2
z

(17)

1

αc
∼ σ2

s

σ2
c

(18)

If we use τ to induce this equalizing effect, then τ ∼ √αc = σc/σs
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Consequences for the optimal loss. Under our assumptions, in the M →∞ regime, the temporal
dynamics of W is given by eq. (5). For this to be the zero matrix 0, both matrix terms need to be
singular (Lemma 3). This implies that–by Assum. 4–W needs to be 0. However, in this case LCL

is not minimal. Using the linear model from Assum. 1—i.e., z = Wx—, we calculate LCL for
W = 0 :

LCL0 =
∑
i

∑
j ̸=i

− log
1

1 +M
= (M + 1)M log (1 +M) ,

which is clearly suboptimal. Thus, collapsing all dimensions is not a preferable solution. In the
following, we will point out an inductive bias in LCL that shows that i) a collapsed solution achieves
the optimum of eq. (4); and ii) the collapsed solution has a lower LCL than the optimal solution,
which we define as the inverse of the GT matrix W−1

GT .

D Proofs
D.1 Proof of Prop. 4

Proposition 4 (zs-collapse achieves optimal LCL). When Im (WX ) = Zc and Ker (W) = Zs

then LCL achieves its optimum under the linear model of Assum. 1

Proof. Assuming zs collapse means that rank (W) = dc and that the norm containing the positive
pairs, ∥zi − z̃i∥2, in eq. (4) is zero, yielding:∑

i

∑
j ̸=i

− log
1

1 +
∑

j ̸=i exp
(
−∥zi−zj∥2

2

) . (19)

Rewriting the norm as a weighted inner product results in:

∥zi − zj∥2 = (xi − xj)
T
WTW (xi − xj) . (20)

Now we show that there is a construction of the inferred weight W such that the loss goes to zero,
achieving its optimum. For this, we investigate the degrees of freedom of manipulating W while
maintaining dimensionality collapse for zs—however, for our reasoning, it will be sufficient to show
that there is a single construction admissible by these degrees of freedom. Scaling and rotation does
not alter the inferred covariance of the latent space (i.e., we could consider a new matrix in the form of
W← RDW, where R is a rotation and D a diagonal scaling matrix). We will consider scaling by
a diagonal matrix D and show that there exist a D such that LCL goes to zero. Namely, select a new
W← DW such that at least (D)ii →∞ : ∀i ∈ {1, . . . , dc} (as W has rank dc, the diagonal values
corresponding to the style dimensions do not matter). In this case, as the term −∥zi − zj∥2 goes to
minus infinity, the exponential goes to 0 and, finally, yields LCL = 0, concluding the proof.

It remains to be seen whether the optimal W (i.e., the inverse of the ground-truth DGP matrix,
denoted by WGT) can have a lower loss value. We show that dimensionality collapse can decrease
the loss value (note that rotation will not change the loss value):
Corollary 1 (WGT suboptimal when dc > 0). The optimum of LCL w.r.t. W is not its true value
when dc > 0.

Indirect. Assume that the true W is the optimum. Scale W by a diagonal matrix D such that
it has only nonzero elements for the content dimensions—the presence of content dimensions is
crucial; otherwise, D would affect the alignment term. This does not affect the alignment term but
will increase ∥zi − zj∥2. Since the loss has form − log (a/ (a+ b)) and b will go to zero, the loss
decreases. Thus, by contradiction, our proposition holds.

D.2 Proof of Prop. 1

Proposition 1. [zs-collapse achieves optimal LCL] When Im (f (X )) = Zc and Ker (f) = Zs

then LCL achieves its optimum under the bijective encoder of Assum. 2.

Proof. We apply the same strategy as in the proof of Prop. 4 (Appx. D.1), i.e., using a low-rank
diagonal matrix D to compose a new encoder D ◦ f
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D.3 Proof of Prop. 5

Proposition 5 (The gradient rank at the optimum is at most dc if dc > 0). When there is at least one
content variable, i.e., dc > 0, the gradient of the loss has rank of at most dc at the optimum.

Proof. From Prop. 1 we know that if LCL is minimal, a D ◦ f with a low-rank diagonal D is a
possible encoder structure. Expressing the gradient of LCL at the optimum w.r.t. a weight matrix W
for any z (can be positive or negative pair as well), where we denote the intermediate representation
after f but before D as z and after D as zD:

dLCL

dW
=
∑
z,z̃

∂LCL

∂zD

∂zD

∂z

∂z

∂f

∂f

∂W
. (21)

The second item in the chain rule yields

∂zD

∂z
= D, (22)

which is constant for all latents and rank-deficient. Thus, the gradient can have a rank at most dc by
Lemma 2.

D.4 Proof of Lemma 1

Lemma 1. [Interpreting zc as class variables explain collapse on Sd−1] When zc are interpreted as
the class variables of a DGP and [1, Assums. 3.1,3.6] hold then the optimal representation minimizing
the InfoNCE loss yields collapsed zs.

Proof. Defining zc as the class variable (which is an intuitive interpretation since the augmentation
should preserve the class), [1, Thm. 3.8] applies and concludes the proof.

D.5 Proof of Prop. 6

Proposition 6 (Fixing collapse for Sd−1). Let f be a (collapsed) optimal Simplex ETF representation
(i.e., rank (Jf ) = dc), then the modified encoder fD = D ◦ f with rank (fD) = d = dc + ds and
rank (D) = dc will have a rank of dc and remain optimal w.r.t. the InfoNCE loss without collapsing.

Proof. We want to show that multiplication with a singular diagonal matrix enables f to be full-rank,
while yielding the same representation after ℓ2-normalization. Since zs is collapsed, we can assume
w.l.o.g. that zs = 0s. Assume that D = diag (Dc;Ds) , where Dc = αcIdc ,D

s = 0s ((·)|f means
the expression evaluated for a specific encoder f )

∥ẑi − ẑj∥2∣∣
f

=
∥∥ẑc

i − ẑc
j

∥∥2 (23)

∥ẑi − ẑj∥2∣∣
fD

=

∥∥∥∥D [ zi

∥Dzi∥
− zj

∥Dzj∥

]∥∥∥∥2 (24)

=

∥∥∥∥∥Dc

[
zc
i

∥Dczc
i∥
−

zc
j∥∥Dczc
j

∥∥
]∥∥∥∥∥

2

(25)

=

∥∥∥∥∥αc

[
zc
i

∥αczc
i∥
−

zc
j∥∥αczc
j

∥∥
]∥∥∥∥∥

2

(26)

= ∥ẑi − ẑj∥2∣∣
f

. (27)

Thus, we can conclude that the representation is the same, though f can be full-rank due to Lemma 2.
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Figure 3: Setup of DirectCLR, adopted from Jing et al. [11].
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Figure 4: Absolute value of the weights in the last layer of the last Conv block of the ResNet50. The
black line indicates the number of dimensions d used for training. All weights past d are driven to
zero by weight decay, as this is the only explicit training signal they receive.

E Analysis of DirectCLR [11]
Jing et al. [11] also work towards understanding the role of the projection head in contrastive
learning, and suggest a new method (DirectCLR) which they claim to not use an explicit trainable
projector. By using DirectCLR, they avoid discarding the projection head, and do not observe the
usual dimensionality collapse after the final layer. In this section, we analyze DirectCLR and show
that it, in fact, does use a trainable projector — namely the last convolutional ResNet layer — and the
linear readout is trained on top of a concatenation of the projected inputs and hidden representations.
Furthermore, our experiments show that we can get better readout performance in the DirectCLR
setting if only the hidden representations are used, as is customary in current SSL methods.

The core idea of DirectCLR is to train by applying the InfoNCE loss only to a part — denoted z —
of the final layer denoted z, and then to evaluate by performing a linear readout on the full output
—denoted r — of this layer (see Figure 3). The dimensionality z is set to d = 360, such that the
InfoNCE loss is not applied to 2048− 360 = 1688 dimensions of r for training the network.

Seemingly, DirectCLR does not use a projection head since the authors do not need to discard z
when training linear readout, and z is part of r. But to understand DirectCLR, we need to examine
what r is actually composed of: The representation r is given by r = h+ conv(h), where h is the
representation in the layer before the last convolutional block conv() of the ResNet50 model.

After examining the trained weights of the last layer in the conv() block, we find that all dimensions
which are not used for the InfoNCE loss are driven to zero by weight decay, see Fig. 4. The
dimensionality of layer4.2.conv3 is 2048 × 512, and we sum over the 512 channels; the other
modules have a dimensionality of 2048. The fact that the weights corresponding to the dimensions
not trained with the InfoNCE loss are zero, means that we can decompose r in two parts: the part
where conv(h) is zero (true for 1688 dimensions), and the part where conv(h) is trained by the
InfoNCE loss (true for 360 dimensions). Taken together, r is a concatenation of:

r = cat (h[: d] + conv(h), h[d :]) . (28)

The regular procedure for training a linear readout would be to use the representation in h, while
DirectCLR can be understood as a concatenation of the representation before the projection head
with the representation after the projection head. We examined training a linear readout on top of
h instead of r and found an improved performance of 63.1± 0.9% compared to the 61.6± 1.6%,
corroborating the hypothesis that concatenating h with z works worse than using only h.

Thus, we find that the main difference between SimCLR and DirectCLR is the architecture of the
projection head: while SimCLR uses a non-linear projection head composed of fully connected layers,
DirectCLR uses a non-linear projection head composed of convolutions. While is not clear whether
a convolutional projection head might have benefits over a fully connected one in some cases, the
DirectCLR results suggest that a convolutional projection head is actually detrimental to performance
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since their linear readout accuracy is significantly lower than what can be achieved with SimCLR
(66.5%).

In summary, we found that

1. DirectCLR uses a non-linear convolutional projector which seems to work worse compared
to the non-linear projector with fully connected layers commonly used in SimCLR.

2. DirectCLR trains linear a readout on a concatenation of the intermediate representation h
and the projector outputs z, leading to worse performance than when following common
practice and using h.
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Acronyms
GT ground truth

CL Contrastive Learning

DGP Data Generating Process

ETF Equiangular Tight Frame

i.i.d. independent and identically distributed

MLP Multi-Layer Perceptron

ND negative definite
NSD negative semi-definite

PD positive definite

SSL Self-Supervised Learning

vMF von Mises-Fisher

Nomenclature
R2 coefficient of determination
LCL contrastive loss function
Lalign alignment term in LCL

Luniform uniformity term in LCL

S hypersphere
Im image space
Ker kernel space
f encoder map X → Z
g decoder map Z → X
h composition of encoder and decoder, i.e., f ◦ g
τ temperature in LCL

Algebra
α scalar field
D diagonal matrix
J Jacobian matrix

Latents
σc std of zc
σs std of zs
z′ reconstructed latent vector
zc content latent vector
zs style latent vector
z latent vector
ẑ ℓ2-normalized latent
Zc content
Zs style
Z latents
z̃ positive latent vector
dc dimensionality of zc

ds dimensionality of zs

d dimensionality of the latent space Z
zc content latent single component
zs style latent single component
z latent single component

Observations
D dimensionality of the observation space X
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M number of negative samples
x− negative observation vector
x observation vector
X observation space
x̃ positive observation vector

Probability theory
Σ covariance matrix
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