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Abstract

In Self-Supervised Learning (SSL), it is known that frequent occurrences of the
collision in which target data and its negative samples share the same class can
decrease performance. Especially in real-world data such as crawled data or robot-
gathered observations, collisions may occur more often due to the duplicates in the
data. To deal with this problem, we claim that sampling negative samples from the
adaptively debiased distribution in the memory makes the model more stable than
sampling from a biased dataset directly. In this paper, we introduce a novel SSL
framework with adaptive Duplicate Elimination (DUEL) inspired by the human
working memory. The proposed framework successfully prevents the downstream
task performance from degradation due to a dramatic inter-class imbalance.

1 Introduction

In Self-Supervised Learning (SSL), there is a possibility
that target data and its negative samples’ class information
are partially duplicated during the sampling process. This
phenomenon is called collision and it leads to the degrada-
tion of the latent space’s representability [} 2]. When data
is provided in the real world such as crawled images from
the web or robot-gathered vision data, the agent may face
many duplicates and they can cause collisions frequently.

Human working memory (3,13, [14] has a Central Exec-
utive System (CES) which manages the limited memory
efficiently to enhance the task performance. Some of the
major roles of CES are as follows: inhibition of dominant
signals and updating recent signal in memory [13]. In
this paper, we claim that a more efficient memory with an
adaptive controller akin to the human working memory is
essential to reduce the collisions for more robust training
with a biased dataset.
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Figure 1: Visualization of Observation
If the dataset is biased with a class cmax, rep-
resentations of other classes (green) come
closer to the opposite of zZmax (purple).

In this paper, we first evaluate the previous SSL frameworks’ robustness when the data is highly
biased with a specific class. Based on the results, we introduce a novel SSL framework with adaptive
Duplicate Elimination (DUEL) to imitate human working memory. The proposed framework performs
training of the feature extractor and removing the most duplicated data from the memory with the
current feature extractor simultaneously. We compare our proposed framework to previous popular
frameworks in a biased dataset adapted from the common vision dataset.
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2 Related Work

The main difference between the Self-Supervised Learning frameworks is the method of selecting
the negative samples. SImCLR [4} 5] uses other data in the same batch as negative samples. MoCo
[LO, [7] has the external memory to store representative information. BYOL [8]] and SimSiam [6] can
be trained with only positives for training by using bootstrapping.

Recently, there were analyses on the relationship between Noise Contrastive Estimation (NCE) loss
and supervised loss. Ash et al. [[1] found that the upper bound of the supervised learning loss can be
derived with two different terms: NCE loss without collisions and intra-class variances. They claimed
when the collision occurs frequently, it may increase the intra-class variance and loosen the upper
bound. Awasthi et al. [2] followed the formulas from Ash et al. [1] and proved the representations
which optimizes the NCE loss form the simplex Equiangular Tight Frame (ETF).

Definition 1 (Simplex-ETF). The normalized representations zi,---,z; and their classes
c1, -+, ¢k € C form simplex-ETF when they satisfy the following property.
1 ci = ¢y
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In this work, we used the simplex-ETF to analyze the robustness of SSL frameworks.

3 Analysis on InfoNCE Loss with Biased Dataset

In this section, we analyze which shape the representations form to optimize the NCE loss with a
biased dataset by expanding previous works’ approaches [1, 2, [11]]. Let a dataset D contain a pair
of data x and its implicit class ¢, d = (z, é) ~ D. The implicit class ¢ has its marginal distribution
¢ ~ p. In general, the positive sample d™ has the same class ¢ as d and negative samples d,, are
drawn in the i.i.d. manner from the same distribution p. NCE loss is derived as below.

Exce(f) = Eg g - [E({F@)T (F¥) — Fla) V)] @)

f is the feature extractor which projects the data = onto a hypersphere. £ is a logistic loss function
¢(v) =log(1 + > exp(—wv;)) which is widely used recently.

3.1 Gradient of Representation on NCE Loss with Biased Distribution

Let a class cax Occurs more frequently than others. Then the probability of choosing ¢pax 1S Pmaxs
and otherwise ppin = 1‘2‘)2“;" . In practice, representations of data with each class form the clusters

whose mean vectors represent the ETF-like shape. If mean vectors get closer to each other, the chance
of overlapping among them will increase and it will decrease the downstream task performance.

Observation 1 (Non-convergence to simplex-ETF with biased data). The representations optimized
by the NCE loss will not converge to the simplex-ETF when the data is biased with class cyax € C.

We compute the gradient of the NCE loss with respect to each vector on the simplex-ETF with the
equation in Khosla et al. [11]]. The gradient of each case is computed as Equation 3]

aACNCE,i . {Zi : (_1 + Pmax — pmin) C; = Cmax (3)

azi —Z; + Zmax * (pmax - pmin) C; 7é Cmax

As a result, the gradient will contain a non-zero zy,,, term when ¢; # cpay. This means that all
vectors except zmax Will get closer to the —zy,,x direction after updates. This indicates that frequent
collision will disturb the training of general representation of the data. Details on this observation is
provided in Appendix [A.2] The visualization is also shown in Figure[T}

4 Adaptive Duplicate Elimination (DUEL) with Working Memory

For real-world agents such as humans, dealing with biases caused by physical accessibility is
important. The working memory solves the problem by updating recent data while reducing the
intensity of dominant information [13|[14]]. Inspired by this paradigm, we propose a memory control
policy that replaces duplicated data with current data to reduce biases in the dataset.
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Figure 2: Visualization of general DUEL framework. Our method stores various data for the negative
samples by adaptive Duplicate Elimination. A memory control policy selects the most duplicated
sample in memory (green) and replaces it with current data (purple).

4.1 Memory Control Policy (MCP)

(xnew' 6m?w)

In the perspective of working memory, both storing recent \
data and avoiding the dominance of specific information y f
are essential. This implies that the MCP should focuson - \

choosing the most duplicated data for replacement and * argmaxz ( f(x/) 1)@ # @
also needs a measurement of information to define the

replacement criterion. In this case, the agent only can get P ®e .

the cosine similarity of data pairs in SSL, so we define g . Proposed 7
a pair-wise collision probability with a score function to ® (Self:Superyised)
measure the estimated number of duplicates in memory. Figure 3: 7} . in SSL.

Definition 2 (Pair-wise collision probability). Let there be two data d; = (;,¢;) and d; = (x;, ¢;).
The probability that the implicit classes ¢; and ¢; are the same with feature extractor f and a score
function h can be defined as below.

Pr(é; = ¢j|d;, dy; f) = h(f(x ) f(;)) )

There can be various h functions that satisfy the properties of cosine similarity and probability.
This pair-wise collision probability can be applied to the MCP to compute the expected number of
duplicates of each sample in a set of data Dy, = {d;}¥_, with Equation

k
NG|Dy; £) := Y Pr(éi = &ldi, dj; f) ©)
i#]
With N (:|Dg; f) function, we can design a simple MCP to remove samples that have duplicated
information in the memory.

Definition 3 (Naive MCP). Let there be a poilcy 7, . that handles data one by one. In replacement,
the policy chooses J-th sample as arg max ; N (J|Dy; f) and replaces it with the current input.

Figure 3] shows the behavior of proposed MCP 77, .. The 7., finds the dense area (green) of the
latent space and ejects the most duplicated element (dotted outline). The sparse region (blue) is not
influenced by this replacement and it will increase or maintain the variety of the memory structure.

4.2 DUEL Framework for Biased Dataset

In DUEL framework, adaptive duplicated elimination with the model f and training of the model
parameters 6 are executed simultaneously. The procedure of our framework is shown in Figure[2]
The framework shares the training part with previous works, so main difference of our framework is
choosing the most duplicated data in memory M. For experiments, we use the DUEL framework
with 7%, in Definition 3| which selects .J-th element with the highest value of N (J|M; f,6). We use
the simple policy that processes each data on-the-fly, but there also can be more complex policies
from such as reinforcement learning that can update data in a batch at once. General DUEL algorithm
and our implementation with 7, . are shown in Appendix@



Table 1: Top-k accuracy. (CIFAR-10, %)
Top-1 Top-10
Methods Bias factor (pmax/Pmin) Bias factor (pmax/Pmin)
x1.0 x3.0 x9.0 x270 | x1.0 x3.0 x9.0 x27.0
MoCoV2[7] 31.38 3238 27.68 2378 | 84.55 84.32 81.74 78.40
SimCLR[4] 39.85 3694 3558 27.17 | 88.38 87.20 84.34 76.98
SimSiam[6] 18.55 16.14 18.72 20.11 | 76.45 73.58 76.58 78091
D-MoCo (ours) 37.12 3445 38.20 28.13 | 87.22 8548 87.59 82.99
D-SimCLR (ours) | 42.51 40.79 37.14 33.36 | 89.33 88.66 82.49 80.51

Table 2: Downstream task accuracy. (%) 030

Bias factor (pmax/Pmin) 025
x1.0 x3.0 x9.0 x27.0
MoCoV2 54.25 55.32 49.54 42.17
SimCLR 63.34 61.19 61.06 49.02

Methods
0.20

o -

Cosine Similarity

D-MoCo 58.15 56.59 62.10 52.06 0.10
(+3.9) (+1.27) (+12.56) (+9.89) 0.05
. 65.39 63.69 60.99 56.60
- 0.00
D-SImCLR | 505 (+2.50) (007) (+7.58) — Mocov2
-0.05 D-MoCo -
Table 3: Ablation: i function. (x27.0, %) i "EEmmsmsssssss=ssIIEIIES
x1 X3 X9 x27
Methods Linear Gaussian Quadratic Bias Factor
D-MoCo | 52.06 56.81 57.32 Figure 4: Average intra- (solid) and inter-class
D-SimCLR | 56.60 - - (dotted) cosine similarity. (MoCo-based)

5 Experiment

The DUEL’s ultimate goal is both effective and efficient framework which can remove duplicates in
memory adaptively and train its feature extractor at the same time. We design experiments to validate
our approach’s robustness in the biased environment.

Experiment setting. We implement the artificial dataset with biased class distribution p in Section
@ Pmax With cpax and otherwise, ppin. Both proposed and previous frameworks are compared
with various bias factors pmax/pPmin. More details on the training are explained in Appendix

Comparison with competitive frameworks. We first evalute our approach to the popular SSL
frameworks. Table|I|shows the Top-k accuracies of each model. Our approaches outperform the
previous frameworks in all environments with various bias factors. There are large gains of about 5%
in average with the bias factor x27 in both D-MoCo and D-SimCLR than their origin framework
respectively. Table[2]also shows our framework is robust in every environment including the unbiased
dataset. It implies that the processed dataset still contains implicit biases which humans hardly
discriminate, and our framework can remove them effectively. Figure [] also supports proposed
framework can extract more robust representations than original framework: average inter-class
cosine similarity of proposed model is smaller, and conversely, average intra-class similarity is bigger.

Ablation study: h function. We test our framework with several h functions: Linear (default),
Quadratic, and Gaussian. The visualizations of these functions are also shown in Appendix [A.3]
MoCo-based model performs robustly with all function types, but SImCLR-based one fails when
the function is not linear. We carefully claim that this function will affect the behavior of MCP in
early-stage learning, but more analysis is needed to prove this phenomenon.

6 Discussion

In this work, we suggest a novel framework with adaptive memory control which imitates the working
memory’s behavior. Our framework outperforms its original SSL framework, especially in a severely
biased dataset. The robustness of proposed framework supports our claim that adaptive methods in
gathering negative samples are essential for more stable SSL training.
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A Appendix

A.1 Algorithms

Algorithm T]and Algorithm 2]describe our proposed framework, called DUEL. The replacement in
the working memory can be interpreted with the decision-making problem. In this case, the decisions
with the policy are the indices of the data in the working memory. Various algorithms which can be
separated into the smaller decision-making processes (e.g. sorting or Reinforcement Learning) can
be used for the replacement procedure. Also, there is an alternative way to implement our framework:
updating memory with current data first and sampling only from memory for the training. However,
we do not conduct experiments with those setups because we avoid considerable modifications to
the previous frameworks for a fair comparison. In this work, we have shown that our framework is
general and also performs more robust than its original model, so experiments with those various
techniques will be conducted in future work.

Algorithm 1 DUEL Framework
Model : feature extractor f, memory M, memory control policy 7.
Input : biased dataset D, batch size B, learning rate 7, intial memory M,
Output : Trained parameter 6*
0 «+ 90
M MO
while 6 is not converged do
{(dn, &)}, « sample(D)
L Lnee({dvy iy Ady Yoy Ady 3y UM f,0)
0 < 0 — Optimizer(VgL,n)
forb € {1,--- ,B} do
M~ MU {db}
J < argmaxj mp(M, J; f,0)
M M/{ds}
end for
15: Tme — UpdatePolicy (my,.)
16: end while
17: 0* + 6

—_
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Algorithm 2 DUEL Framework with naive MCP
Model : feature extractor f, memory M
Input : biased dataset D, batch size B, learning rate 7, intial memory M
Output : Trained parameter 6*
0« 90
M Mo
while 6 is not converged do
{(dy, d )}, + sample(D)
L Lnee({dy iy {dy Yoy {dy Yl UM f,0)
0 < 0 — Optimizer(VgL,n)
forb € {1,--- ,B} do
J <+ argmaxj N(J|M; f,0) in Equation[3] > naive MCP ..
M = (MU {dy})/{ds}
end for
: end while
00
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A.2 Proofs

Observation 1 (Non-convergence to simplex-ETF with biased dataset). Let the representation of
data form simplex-ETF. Then representations will not converge to the simplex-ETF when the data is
biased with specific class cmax-

Proof. In Khosla et al. [11]], the authors formulated the gradient of the NCE Loss. We ignored the
temperature parameter 7 for the ease of formulation.

0L _ S 5Py —Xip)+ Y zPin 6)

Zi 3 .
peP(i) neN (i)

Let ¢; = cmqe. In this case, Py, X, and P;,, can be computed as below. Note that the P;, and P;,
is the same with p and n each.

pt—p — exp(1) X, :L 7
P Tlpmaezp(1) + (L — pma)eap(—1/1CD} "~ s @
P = R 6xp(_1/|c|) (8)

~ E{pmaxeap(1) + (1 — pumax)eap(—1/IC))}
Then the gradient of z; can be derived as

oL,

= kpmaxzi | PT — P> ©)

821‘ kpmax .

neN (i)

By the property of the ETF, the sum of all different vectors is 0.
=z kpmax <P+ - ) -z kpminp_ (10)
kpmax

= Zi(kpmaxp+ - kpminP_ - 1) =z kP—(_l + Pmax — pmin) (] 1)

So the gradient of the loss function is parallel to the feature vector when ¢; = cpax. However, if
¢; 7 Cmax, the gradient will be computed differently.

1) 1
Pt =p, = cxp( y Xip = —— (12)
P k{pminexp(1) + (1 — pmin)exp(—1/|C|)} b kprin
_ exp(—1/IC])
P~ =P, = (13)
' k{pmine‘rp(l) + (1 - pmin)ewp(_l/lc‘)}
oL;
b = k:pminzi <P+ — ) + P - Zn (14)
azi k,omin nEZN(i)
= Zi(kpmirlp+ - 1 - kpminpi) + Zmax * k(pmax - pmin)Pi (15)
=z (*kpi) + Zmax * kP~ (pmax - pmin) (16)

O

Theorem 1 (Safety of naive MCP). Let the latent space form a simplex ETF. Suppose that there is a
new data dye., and ), . should replace a sample with dy,e,,. Let sample chosen by 7}, . among the
pool Dy, be d ;. Let pg with the replaced pool be pg). After then replacement, pg < pq|r is satisfied
for any pool Dy,.

Proof.
pa=Y_ D Pr(ei#¢ldidj f) (17)
iog
= > A1 Pr(é; =¢jldi dj: )} (18)
g

To show pg < pgj, we show that p, increases when dpew replaces d j. During replacement, (k — 1)
samples will not be changed, so we defined Ap,; and Ap,j. to ignore the remaining ones’ relationship.
In the end, proving pg < pg|r is the same as proving Apg < Apgjr.



l) Cmax = Cnew

Let cpax be the implicit class with the maximum number of samples that share the representation. By
the definition, argmax ; N (J|Dy; f) = >, Pr(¢; = ¢5|d;, dj; f) selects an element with the class
Cmax- Cmax = Cnew Means that two data d,, ., and d ; are latent indistinguishable, so Apg = Apd|7r.

ii) émax # énew

In this case, ns, = ne,,,, > Ne,.,, 18 satisfied.

Apd\Tr = Z{l - Pr(éz = énew|')} +1- Pr(énew = énew|') (19)
oy
= (ne,.,, = V{1 = h(=1/ICN} + (k = ne, ., {1 = R(1)} + 1= Pr(c; =¢é51-)  (20)
> (ng, — {1 = h(=1/IC])} + (k —ne, ) {1 — h(1)} + 1 — Pr(é; = ¢&,]) 21
:Z{lfpr(éi:éJ|')}+1*PT(5J:éJ\'):Apd (22)
vy
O

Theorem 2 (Nearly latent indistinguishable). Let two samples be nearly latent indistinguishable,
Pr(é; = ¢j|d;, dj; f) > o > 0. Then there exists the unique o* that satisfies Pr(¢; = ¢;|d;, dj; f) >
a < flzi) f(z)) > o,

roof. the definition of f, there exists ¢ € |0, | that satisfies cost = f(x; x;).
Proof. By the definition of f, th ists 6 € [0, ] that satisfi 0 Tf(xy

h(f(2:)" f(z)) = h(cos0) (23)
Note that cosine function is continuous and monotonic decreasing in the inverval [0, 7r]. Then,
h(—1) = h(cos(m)) = 0, h(1) = h(cos(0)) = 1. (24)

By the property of the continuous function, (ko cos) is continuous and monotonic decreasing function.
Let Pr(é; = ¢;|-) = aand 0 < o < 1. Then we can get a unique 6* that satisfies h(cos(6*)) = «
by using intermediate value theorem. If we set a* = cos(6*), the proposition is proved.

A.3 Details of Experiments

Training setting. To validate that the proposed frameworks are robust with biased dataset, we design
several experiments. We use only the CNN layers of the ResNet-50 [9] as the backbone. We modify
the first CNN kernel like Chen et al. [4]. We add just one linear layer for the projection layer. The
dimension of the projected vectors is 256. We use Adam optimizer [12] and Cosine scheduler [7] for
decaying learning rate. Initial learning rate is set to 0.05. We trained for 40k steps with the same
batch size 256 for each experiment. The temperature parameter 7 is set to 0.7 for all experiments. We
use fixed, weak augmentations which contain only color jittering, grayscale and horizontal filp. As
images are small, we do not apply cropping or resizing to the images.

Implementation details. To implement our proposed models, we need to connect the memory
structure to previous frameworks while not harming their properties. Designing D-MoCo is relatively
easier than D-SimCLR because MoCoV?2 already has the memory in it. We simply add the policy to
the model directly. We use memory for D-MoCo which can hold 2048 representations of images.
However, in D-SimCLR, the memory needs to hold raw images instead of their representations
because the model does not use the momentum encoder. Also, for the memory efficiency, we use the
stop gradient to the representations from the memory. D-SimCLR contains memory with 512 images.
Figure[5|shows the shape of score functions we use for the experiments. We use a gaussian kernel
h(x) = exp(—(z — 1)?/7) with temperature parameter 7 = 1 and normalize it to fit h(x) € [0, 1].

Evaluation metrics. We evaluate trained models with several metrics. Firstly, we use linear probing
as the downstream task. We train the linear layer with SGD optimizer for 100 epochs each. The
momentum for SGD is 0.9 and weight decay parameter is 10~°. Initial learning rate for this task is
0.01. We also measure the Top-k accuracies with different k-s (1,10).



Resource usage. Table ] shows the usage of time and VRAM for both the model and the memory
M. Note that D-MoCo only needs a small amount of memory and some affordable time, contrary to
its robustness against biases. D-SimCLR needs additional time because it stores images instead of
their representations and it should extract representations again with newly updated encoder.

Table 4: Resource usage. 10 Type
Time Memory I
M h Quadrgtic
ethods (h) (MB) 0.8 Gaussian-1

—— Gaussian-0.5

MoCoV2 2.7 10,415
SimCLR 4.1 15,573
SimSiam 4.0 15,541
D-MoCo 34 10,415
D-SimCLR | 7.7 19,065 02
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Figure 5: Visualization of score functions.
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