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Abstract

For unsupervised pretraining, mask-reconstruction pretraining (MRP) approaches,
e.g. MAE [1] and data2vec [2], randomly mask input patches and then reconstruct
the pixels or semantic features of these masked patches via an auto-encoder. Then
for a downstream task, supervised fine-tuning the pretrained encoder remarkably
surpasses the conventional “supervised learning" (SL) trained from scratch. How-
ever, it is still unclear 1) how MRP performs semantic (feature) learning in the
pretraining phase and 2) why it helps in downstream tasks. To solve these prob-
lems, we first theoretically show that on an auto-encoder of a two/one-layered
convolution encoder/decoder, MRP can capture all discriminative semantics of
each potential semantic class in the pretraining dataset. Then considering the fact
that the pretraining dataset is of huge size and high diversity and thus covers most
semantics in downstream dataset, in fine-tuning phase, the pretrained encoder can
capture as much semantics as it can in downstream datasets, and would not lost
these semantics with theoretical guarantees. In contrast, SL only randomly captures
some semantics due to lottery ticket hypothesis. So MRP provably achieves better
performance than SL on the classification tasks. Experimental results testify to our
data assumptions and also our theoretical implications.

1 Introduction
In this work, we are interested in the recently proposed mask-reconstruction pretraining (MRP) of Self-
supervised learning (SSL) families [3, 4], e.g. MAE [1] and data2vec [2]. The core idea of this MRP
family is to randomly mask patches of the input image and then reconstruct pixels or semantic features
of these masked patches via an auto-encoder. After pretraining on a large-scale unsupervised dataset,
MRP fine-tunes the encoder on a specific downstream task to learn more task-specific representations.
This pretraining mechanism generally enjoys remarkable test performance improvement and superior
generalization ability on the same downstream task than “supervised learning". Actually, it also
reveals better fine-tuning performance than other SSL approaches, including contrastive learning [5, 6]
and clustering learning [7, 8]. Although MRP is seeing increasingly applications, the theoretical
reasons for the superiority in test performance of MRP over end-to-end SL are rarely investigated.
Most existing theoretical works [9–12] focus on analyzing contrastive learning, and few works study
MRP which differs much from contrastive learning.

Contributions. In this work, we provide a theoretical viewpoint to understand the semantic (feature)
learning process of MRP. Moreover, we analyze test performance of MRP to show its superiority over
supervised learning on the downstream classification tasks. Our contributions are highlighted below.

Firstly, based on the multi-view data assumption from [13] where multi/single discriminative seman-
tics exist in multi-view/single-view data, we prove that on an auto-encoder with a two/one-layered
convolution encoder/decoder, the pretrained encoder in MRP can capture all the discriminative
semantics of each semantic class in the pretraining dataset. Moreover, a convolution kernel in the
encoder captures at most a semantic. These properties benefit the downstream tasks.
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Secondly, we theoretically show that after fine-tuning on the downstream dataset, MRP enjoys
superior test performance to that of end-to-end supervised learning on the downstream classification
tasks. Assuming pretraining and downstream datasets share the same distribution, we prove that after
fine-tuning, MRP achieves higher test accuracy for both multi-view and single-view test data. than
the result in [13], which shows conventional SL only has a half test accuracy on single-view data.

2 Problem Setup
Here we first introduce “multi-view” data assumption introduced in [13], and then present the
pretraining framework of mask-reconstruction pretraining (MRP). In this work, we use O,Ω,Θ
to hide constants w.r.t. k, and Õ, Ω̃, Θ̃ to hide polylogarithmic factors w.r.t. k. We use poly(k)

(polylog(k) ) to denote Θ(kC) (Θ(logC k)) with constant C > 0. [n] denotes {1, 2, . . . , n}.

Multi-View Data Distribution The mathematical formulation is similar to [13]. Assume that there
are k semantic classes, and each data pair is denoted by (X, y), where X=(x1, x2, . . . , xP )∈(Rd)P

has P patches, and y ∈ [k] is the label ofX . Then suppose there are multiple discriminative semantics
(features) associated with each semantic class. For simplicity, here we say two semantics and define
the two semantical vectors as vi,1, vi,2 ∈ Rd for each class i ∈ [k]. Note, the analysis technique
can also be extended to multiple semantics. Denote the set of all discriminative semantics of the
k classes as V = {vi,1, vi,2}ki=1. We further assume semantic vectors are orthonormal. Now we
introduce the multi-view distribution Dm and single-view distributions Ds, where samples from Dm

have multiple semantics, samples from Ds has only a single main semantic. Let Cp be a universal
constant, s be a universal parameter to control feature sparsity, σp = 1√

dpolylog(k)
be a parameter to

control magnitude of random noise, and γ be a parameter to control the feature noise.

Definition 1 (Multi-view data [13]). Data distribution D consists of data from multi-view data Dm

with probability 1−µ and from single-view data Ds with probability µ. We define (X, y)∼D by
randomly uniformly selecting a label y∈ [k] and generating data X as follows.

1) Sample a set of semantics V ′ uniformly at random from {vi,1, vi,2}i ̸=y each with probability s
k .

2) Denote V(X) = V ′ ∪ {vy,1, vy,2} as the set of semantic vectors used in data X .
3) For each v ∈ V(X), pick Cp disjoint patches in [P ] and denote it as Pv(X) (the distribution of
these patches can be arbitrary). We denote P(X) = ∪v∈V(X)Pv(X).

4) If D = Ds is the single-view distribution, pick a value l̂ = l̂(X) ∈ [2] uniformly at random.
5) For each p ∈ Pv(X) for some v ∈ V(X), given semantic noise αp,v′ ∈ [0, γ], we set

xp = zpv +
∑

v′∈V
αp,v′v′ + ξp,

where ξp ∈ N (0, σpI) is an independent random Gaussian noise. The coefficients zp ≥ 0 satisfy

• For “multi-view” data (X, y) ∈ Dm,
∑

p∈Pv(X) zp ∈ [1, O(1)] and
∑

p∈Pv(X) z
q
p ∈

[1, O(1)] for an integer q ≥ 2, when v ∈ {vy,1, vy,2}, zp is uniformly distributed over
Cp patches and the marginal distribution of

∑
p∈Pv(X) zp is left-close.

• For “single-view” data (X, y) ∈ Ds, when v = vy,l̂,
∑

p∈Pv(X) zp ∈ [1, O(1)],∑
p∈Pv(X) z

q
p ∈ [1, O(1)] for q ≥ 2. When v = vy,3−l̂,

∑
p∈Pv(X) zp ∈ [ρ,O(ρ)] (here we

set ρ = k−0.01 for simplicity). zp is uniformly distributed over Cp patches.
•
∑

p∈Pv(X) zp ∈ [Ω(1), 0.4] when v ∈ V(X) \ {vy,1, vy,2}, and the marginal distribution of∑
p∈Pv(X) zp is right-close.

6) For each p ∈ [P ]\P(X), with an independent random Gaussian noise ξp ∼ N (0, γ
2k2

d I),

xp =
∑

v′∈V
αp,v′v′ + ξp,

where each αp,v′ ∈ [0, γ] is the semantic noise.

Intuitively, multi-view data Dm refers to the data with multiple semantics distributed over patches
plus some noise from other semantics and background noise, while only a single main semantic exists
in single-view data Ds. Their mixed distribution D can well characterize realistic data.

MRP Framework. We analyze both representative MRP, Teacher-Student frame-
work and MAE (shown in Appendix Fig. 7) and here we mainly show the former.
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Figure 1: Teacher-Student framework studied in this work.

Formally, in Fig 1, we implement the
encoder in student network by a two-
layer convolution smoothed ReLU
network with km kernels denoted by
wr ∈ Rd, r ∈ [km]. The teacher
network shares the same architecture
with the encoder of student network
with parameters ŵr, r ∈ [km]. De-
note output of the student network as

h′(X) = [h′1(X), h′2(X), . . . , h′km(X)], where h′r(X) = br
∑

p∈[P ]
ReLU(⟨wr, xp⟩).

The output of teacher network h(X) is similar with h′(X) by using ŵr, r ∈ [km] and no decoder
layer. Here ReLU is a smoothed ReLU [13]: for an integer q ≥ 2 and a threshold ϱ = 1

polylog(k) ,

ReLU(z) = 0 if z ≤ 0, ReLU(z) = zq

qϱq−1 if z ∈ [0, ϱ] and ReLU(z) = z − (1− 1/q)ϱ if z ≥ ϱ.

Pretraining of MRP on Pretext Task. In the pretraining, for the linear student decoder, we set its all
parameters as br = c(θ) = 1

θ for simplicity. Now we define the empirical mean squared pretraining
loss: L(H; ϵ) = 1

2N

∑
n∈[N ]

∑
r∈[km] ∥ĥr(Xn)−h′r(ϵXn)∥22, whereN is the number of data points

for pretraining and ϵX = (ϵ1x1, ϵ2x2, . . . , ϵPxP ) where ϵi is an independent Bernoulli variable with
Pr(ϵi = 1) = θ. We use gradient descent to update student encoder parameters with learning rate η
and update teacher by ŵ(t)

r =τw
(t)
r (τ > 1) following MRP [2, 4].

Fine-tuning of MRP on Classification Downstream Tasks. Here we consider a classification
downstream task. Specifically, we fine-tune the pretrained student encoder with an extra linear layer
using N2 labeled samples. We fine-tune the network by minimizing the empirical cross-entropy loss:

Ldown(F ) =
1

N2

∑
n∈[N2]

− log
eFy(X)∑

j∈[k] e
Fj(X)

, where Fi(X) =
∑

r∈[km]
ui,rhr(X), i ∈ [k].

Here ui,r, r ∈ [km], i ∈ [k] denotes the weights of the extra linear layer. Then we adopt the gradient
descent to fine-tune the kernels wr of the pretrained encoder and update the parameters ui,r with
respective learning rate η1 and η2 (η1 < η2).

3 Main Results
Here we first reveal the semantic feature learning process of mask-reconstruction pretraining (MRP),
and then theoretically show why MRP helps downstream classification tasks.
Semantic Learning Process of Pretraining Here we mainly show that pretraining can capture the
whole semantics V in pretraining dataset by showing that the correlation scores between semantics
and kernels of the student encoder gradually increase during training process. We define

M(0)
i,l :=

{
r ∈ [km] :⟨w(0)

r ,vi,l⟩ ≥Λ
(0)
i,l (1−O(1/ log k))

}
, where Λ(t)

i,l := maxr∈[km][⟨w(t)
r , vi,l⟩]+.

Here Λ(t)
i,l denotes the highest positive correlation score between the l-th semantic vi,l of the i-th class

and all the km kernels w(t)
r at t-th iteration. ForM(0)

i,l , it is composed of the kernels which have

slightly smaller correlation scores than the maximum score Λ
(0)
i,l at the initial stage.

Assumption 1. (1) The pretraining dataset Z have N samples which are i.i.d. drawn from the
distribution D defined in Definition 1 and let N ≥ poly(k). (2) Each kernel w(0)

r (r ∈ [km])

is initialized by a Gaussian distribution N (0, σ2
0I) with σ0 = O(1/

√
k). Moreover, m satisfies

m ∈ [polylog(k),
√
k].

We use Gaussian initialization as it is the standard initialization used in practice. Note, for pretraining,
we do not use any labels. Theorem 1 states the semantic learning process in MRP.
Theorem 1. Suppose Assumption 1 holds and learning rate η≤ 1

poly(k) in gradient decent steps.

After T = poly(k)
η iterations, for sufficiently large k, the learned kernels {w(T )

r }r∈[km] satisfy the
following properties with high probability.

1) Under Teacher-Student framework, when q ≥ 3, for every vi,l ∈ V and every (X, y) ∈
Z , (a) Λ

(0)
i,l ∈ [Ω̃(σ0), Õ(σ0)], Λ

(T )
i,l ∈ [1/polylog(k), Õ(1)] and r∗ ∈ M(0)

i,l , where r∗ =

3



argmaxr∈[km][⟨w
(T )
r , vi,l⟩]+. (b) For each r ∈M(0)

i,l , ⟨w(T )
r , vi′,l′⟩ ≤ Õ(σ0) when (i, l) ̸= (i′, l′).

(c) For each r /∈M(0)
i,l , ⟨w(T )

r , vi,l⟩ ≤ Õ(σ0).
2) Under MAE framework, when q ≥ 4, the properties (a)-(c) also hold.

See the proofs of Teacher-Student framework in Appendix E and of MAE framework in Appendix G.
Theorem 1 states that for both frameworks, the pretrained model can capture all semantics. But MAE
needs slightly restrictive assumption, since larger q compresses small semantic noises more heavily
to better separate the true semantics from semantic noises. Theorem 1 (a) shows that for those kernels
winning the lottery ticket at the random initialization stage (i.e. kernels w(0)

r ∈M(0)
i,l ), at least one of

them would win out through the course of training and capture the semantic vi,l. Specifically, the
correlation score of any semantic vi,l will increase from Õ(1/

√
k) to the range [1/polylog(k), Õ(1)].

For Theorem 1 (b) and (c), they mainly guarantee some kinds of corresponding relations among
kernels and semantics: a kernel captures at most a semantic. Specifically, Theorem 1 (b) indicates
that for these kernels wr inM(0)

i,l which mainly capture the semantic feature vi,l, they actually only
capture little information of other semantics vi′,l′ where vi′,l′ ̸= vi,l. Theorem 1 (c) shows that for
these kernels wr /∈M(0)

i,l , they keep losing the lottery ticket during training, and only capture little
information of semantic vi,l. So the multiple semantics captured by the encoder kernels is separated
and not involved with each other. This property is very important for downstream fine-tuning.

Benefit Justification of MRP on Downstream Classification Tasks Here we analyze performance
of MRP on downstream classification task by following fine-tuning process as shown in Sec 2.
Assumption 2. (1) The downstream dataset Zdown ofN2 samples is i.i.d. drawn from the distribution
D defined in Definition 1. Let N2 ≥ k. (2) We initialize u(0)i,r , i ∈ [k], r ∈ [km] by 0 and initialize

w
(0)
r by the pretrained encoder w(T )

r .
Theorem 2 (Test performance analysis). Suppose Assumption 2 holds. When F (·) is either the
student encoder in Teacher-Student framework or the encoder in MAE with an extra linear layer, by
fine-tuning F (·) with N2 labeled samples, for any new data point (X, y)∼D, F (·) satisfies

Pr(X,y)∼D

[
Fy(X) ≥ maxj ̸=y Fj(X) + Õ(1)

]
≥ 1− e−Ω(log2 k),

where Fy(X) denotes the y-th element in F (X), i.e. the predicted probability for the class y.

See its proof in Appendix F. Theorem 2 guarantees that no matter for single-view or multi-view
data (X, y) ∼ D, the fine-tuned classifier F (·) correctly predicts the label y with high probability.

Figure 2: Visualization of
ResNet50 [14] respectively trained
by supervised learning and MRP.

This is because intuitively, as proved in Theorem 1 (a), after
pretraining, for each discriminative semantic vi,l in the semantic
set V , at least a kernel wr in the pretrained student encoder can
capture it. This means that even at the beginning of the fine
tuning, the encoder in the function F (·) is already capable
to discover and grab all semantics in V . Compared with the
results in [13, Theorem 1] which show that the supervised
trained model F (T )

SL has only about 50% accuracy on single-
view data whose ratio among all data is µ, we show the superior
performance of MRP. Discussions on other downstream tasks
are shown in Appendix H. We also use experimental results to
validate our assumptions and part of results are shown in Fig. 4 (full results in Appendix A). For
each pair, the left figure is given by the supervised model, while the right figure comes from the
pretrained model. By comparison, the pretrained model often captures more kinds of semantics than
the supervised model.
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This supplementary document contains the main proofs for two main theorems
in the NeurIPS’22 workshop submission entitled “Towards Understanding Why
Mask-Reconstruction Pretraining Helps in Downstream Tasks”. It is structured as
follows. Appendix A first provides experimental results to compare the learnt se-
mantics between the conventional supervised learning and the mask-reconstruction
pretraining. In Appendix B, we present the necessary assumptions and main results
on semantic learning process of mask-reconstruction pretraining. In Appendix C,
we introduce the main ideas to prove our main results. In Appendix D, we show
some technical results. Then we prove Theorem B in Appendix E. Finally, we
show the performance on downstream classification tasks (proof of Theorem F.1)
in Appendix F. We prove the similar results under MAE framework and have a
discussion on BEiT in Appendix G. We have a discussion on other downstream
tasks in Section H.

A Experimental Results and Details

Assumption Investigation. To verify our “multi-view" data assumption, we investigate whether
there are multiple discriminative semantics for some classes in ImageNet [15]. To this end, we use
the widely used Eigen-CAM [16] to visualize which part of an image plays a key role in deciding its
predicted class. We follow the default setting in Eigen-CAM and use the network parameters of the
forth block to compute the project of an image in ResNet50 [14] released by PyTorch Team1. As
shown in Fig. 3, though ResNet50 predicts all the car images correctly, Eigen-CAM locates different
class-specific regions, e.g. car front, side window, car nose, taillight, and wheel, for different images.
It indicates the existence of multiple independent discriminative semantics in a semantic class and
validates our “multi-view" data assumption.

Results on CNN. We investigate the performance of MRP on CNNs. We use the recently proposed
SimMIM [3], a representative MRP, on ResNet50. We use SimMIM rather than MAE [1], as MAE
removes the masked patches before encoder but the convolution operations in CNN encoder cannot
handle masked input, while SimMIM replaces the masked patches by a mask token and can use
CNNs. Then we use ResNet50 (4-layered transformer) to implement the encoder (decoder). Next,
we pretrain for 300 epochs on ImageNet, and fine-tune pretrained ResNet50 for 100 epochs on
ImageNet. Table 1 reports the top-1 accuracy on ImageNet, and shows that on ResNet50, MRP
improves supervised training by a large margin. Moreover, we fine-tune our pretrained ResNet50 on
transfer learning classification downstream task on VoC07 and detection task on VoC07+12. The
results show that CNNs pretrained by MRP generalizes well on various downstream tasks and indeed
often surpasses supervised baselines. These results accord with our theoretical implications that
MRP can help downstream tasks by enjoying superior performance than conventional SL. Actually,
some works, e.g. [17, 18], also empirically find that CNNs pretrained by MRP can generalize well
on various downstream tasks, e.g., detection and segmentation. Specifically, [18] showed that on

1https://pytorch.org/hub/pytorch_vision_resnet/
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Figure 3: Visualization of ResNet50 [14] trained by conventional supervised learning. We use Eigen-
CAM to localize class-specific image regions which tell why the model predicts the image as the
corresponding class. Though ResNet50 predicts all car images correctly, it actually locates different
regions, e.g. front, side window, car nose, taillight, and wheel, for different images, indicating multiple
independent semantics for each class and thus the “multi-view" data assumption.

Figure 4: Visualization of ResNet50 [14] respectively trained by supervised learning and MRP. We
use Eigen-CAM to localize class-specific image regions. For each pair, the left figure is given by
the supervised model, while the right figure comes from the pretrained model. By comparison, the
pretrained model often captures more kinds of semantics than the supervised model.

ResNet50, MRP achieves 38.0 mIoU on ADE20K semantic segmentation task and greatly improves
the 36.1 mIoU of supervised learning baseline. See these results in its Table 3 (b). Indeed, Table 4
in work [17] also demonstrates that on VoC07+12 detection task, COCO detection task and COCO
instance segmentation tasks, ResNet50 pretrained by MRP respectively achieves 64.4 AP75, 42.1
APbb

75 and 36.4 APmk
75 , while supervised ResNet50 respectively achieves 58.8 AP75, 41.2 APbb

75 and
35.2 APmk

75 .

Table 1: Performance on Various Downstream Tasks. We use official MRP setting to train ResNet50.
Downstream Tasks Classification

Acc. (%) on ImageNet Detection
AP75 on VOC07+12 Transfer learning

Classification Acc. (%) on VOC07
Supervised Training 76.2 58.8 87.5

MRPs 78.0 63.2 91.1

Finally, we use Eigen-CAM to localize class-specific image regions for both models trained by
supervised learning (SL) and MRP. For each pair in Fig. 4, the left image is the visualization of SL,
while the right one is from MRP. More results on other classes are shown in Fig. 5. By comparison,
MRP often captures several discriminative semantics in an image, e.g. front window and door
handle in the first pair, while SL only grabs a semantic, e.g. front window in the first pair. See similar
observations on transformer in the following. These results accord with our theory that the advantages
of MRP come from its stronger capacity to capture more kinds of class semantics in the pretraining.

Visualization under Transformer backbone. Besides ResNet, we further provide visualization
results on Transformer [19] to display the localize class-specific image regions for both models
trained by SL and MRP. For each group in Fig. 6, the left image is the visualization of SL, while the
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(a) airplane

(b) yawl

Figure 5: Class-specific visualization of ResNet50 [14] trained by MRP. For each pair, the left figure
is given by supervised model, while the right figure comes from the pretrained model. By comparison,
pretrained model often captures more kinds of semantics than supervised model.

middle one is from MAE [1] and the right one is from data2vec [2]. Here we directly use the official
released ViT-base models [19] of SL2, MAE3 and data2vec4.

Then one can observe that both MAE and data2vec usually capture several discriminative semantics
in an image, while SL only captures a semantic. For example, in the first comparison group, SL only
captures one side of car tail. In contrast, MAE grabs two sides of car tail, and data2vec locates both
two sides of car tail and captures more, including the car wheel and car window. These results are
consistent with the results on ResNet50. All these results show the generality of the implication of
our theory on MRP.

B Main Result on Semantic Learning Process of Mask-Reconstruction
Pretraining

In this section, we first show the main result on semantic learning process mask-reconstruction pre-
training (MRP). To introduce our main result, we first characterize the kernels at random initialization
and during the training process. We first define

Λ
(t)
i,l := max

r∈[km]
[⟨w(t)

r , vi,l⟩]+,

2For official trained SL model, you can download it at https://github.com/facebookresearch/deit/
blob/main/README_deit.md.

3For official trained MAE model, you can download it at https://github.com/facebookresearch/
mae/blob/main/FINETUNE.md.

4For official trained data2vec model, you can download it at https://github.com/facebookresearch/
fairseq/tree/main/examples/data2vec.
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Figure 6: Class-specific visualization of ViT-base [19] trained by MRP. For each group, the left image
is the visualization of supervised model, while the middle one is from MAE and the right one is from
data2vec. By comparison, the model trained by MAE and data2vec often captures more kinds of
semantics than supervised model.

where w(t)
r denotes the r-th convolution kernel of the student encoder at the t-th iteration. Here Λi,l

is the largest positive correlation score between the l-semantic vi,l of i-th class and all the km kernels
w

(t)
r . We also define

M(0)
i,l :=

{
r ∈ [km] : ⟨w(0)

r , vi,l⟩ ≥ Λ
(0)
i,l

(
1−O

( 1

log k

))}
.

Here the setM(0)
i,l is formed by the kernels which have slightly smaller correlation scores than the

maximum score Λ
(0)
i,l at the intial stage. If a kernel wr is not inM(0)

i,l , it means that the magnitude of

vi,l inside the random initialization w(0)
r is non-trivially lagging behind, comparing to other kernels.

Later we will prove that through the course of training, those kernels wr will lose the lottery and not
learn anything useful for feature vi,l.

We also have some properties of kernels at initialization (t = 0). The following lemma has been
proved in [13, Fact B.1.]. [The size ofM(0)

i,l at initialization] With high probability at least 1 −
e−Ω(log5 k), we have |M(0)

i,l | ≤ m0, where m0 := O(log5 k).

Then to show our main result, we need some assumptions on the parameters and an induction
hypothesis. [Parameter Assumption] The parameters introduced in the paper need to satisfy the
following conditions:

• ϱ is the threshold for the smoothed ReLU activation. We assume ϱ = 1
polylog(k) .

• q ≥ 3 and σq−2
0 ≤ 1

k .

• γ controls feature noise. γ ≤ Õ
(
σ0

k

)
.

• s controls feature sparsity. s = Θ(polylog(k)).

• N ≥ ω̃
(

k

σ2q−1
0

)
,
√
d ≥ ω̃(k/σ2q−1

0 ),
√
d ≥ ω̃(k5/2/η1/q) and P ≤ σ−q+1/2

0 .

• polylog(k) ≤ m ≤
√
k.

• η ≥ 1
kq(q−2) and η ≤ 1

poly(k) .

• c(θ) = 1
θ .

• τ is the parameter controls the update of weights of Teacher network. τ = 1 + 1−θ
Cpθ

+

Θ( 1
t1/q+1

).
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The following induction hypothesis is important as it shows the main properties of kernels during the
training course. For every vi,l ∈ V , for each r ∈M(0)

i,l , for every (X, y) ∈ Z ,

(a) For every p ∈ Pvi,l
(X), we have

⟨w(t)
r , xp⟩ = ⟨w(t)

r , vi,l⟩zp + õ(σ0).

(b) For every p ∈ P(X) \ Pvi,l(X), we have

|⟨w(t)
r , xp⟩| ≤ Õ(σ0).

(c) For every p ∈ [P ] \ P(X), we have

|⟨w(t)
r , xp⟩| ≤ Õ(σ0γk).

For every r /∈ ∪i∈[k],l∈[2]M
(0)
i,l , for every (X, y) ∈ Z ,

(d) for every p ∈ P(X), |⟨w(t)
r , xp⟩| ≤ Õ(σ0).

(e) for every p ∈ [P ] \ P(X), |⟨w(t)
r , xp⟩| ≤ Õ(σ0γk).

Moreover, for every vi,l ∈ V:

(f) Λ
(t)
i,l ∈ [Ω̃(σ0), Õ(1)].

(g) for each r ∈M(0)
i,l , ⟨w(t)

r , vi,l⟩ ≥ −Õ(σ0).

(h) for each r /∈M(0)
i,l , ⟨w(t)

r , vi,l⟩ ≤ Õ(σ0).

Now we have the following result on the semantic learning process of MRP. [Semantic learning
process of MRP] Suppose Assumption B holds. By running the gradient descent step in (2) with
learning rate η ≤ 1

poly(k) , after T = poly(k)
η iterations, for sufficiently large k > 0, Induction

Hypothesis B holds for all iterations t = 0, 1, . . . , T with high probability.

Differences from the work [13]. We use the similar multi-view data assumption 1 as [13], since
we find it is a reasonable and practical assumption and it is helpful in proving what we actually have
learned in the masked-reconstruction based pretraining. Besides, we also adopt the same network
(two-layer CNNs with smoothed ReLu activation function) in [13] as our encoder. It is mainly for
easy to compare the supervised learning results in [13] and self-supervised results proved by us. This
can better illustrate the benefits of self-supervised pretraining.

But there are three main differences between our works and [13], including network architecture,
objective loss and teacher. For network architecture, MRP contains both encoder and decoder, while
supervised learning in [13] only considers the encoder. As for objective loss, MRP is a reconstruction
loss of a masked input, while supervised learning in [13] uses distillation loss and cross-entropy loss
of a non-masked input. Finally, in terms of teacher, MRP uses an online teacher whose parameters are
changed along with training and thus is more dynamic and complex, while supervised learning in [13]
uses a well-trained teacher whose parameter is fixed and thus gives a fixed target of an image. These
three big differences cause the different lottery tickets winning or losing process during the training
courses. This point can be observed in different practical intuition from our Induction Hypothesis B
and from Induction Hypothesis B.3 of [13]. In our Induction Hypothesis B, no semantic features will
lose the lottery tickets, while in [13] some of semantic features will be missed during the training
courses. Based on different Induction Hypothesis, analysis of mask-reconstruction pretraining is
non-trivial which is one part of our novel contributions.

Another part of our contributions is that after pretraining, we further need to show the test performance
on downstream classification task. In this part, we use the same cross-entropy loss as [13], which is
also popularly adopted in supervised training. But different from [13], which simply fixed the linear
coefficients of output of convolution kernels of the encoder (backbone) by 1, here we need to train
the weights of an extra linear layer and fine-tune the weights of convolution kernels of the encoder at
the same time (see (12) in Appendix F).
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C Proof Overview of Theorem B

In this section, we introduce the main steps to prove Theorem B. The proof of Theorem B includes
two process. First, when t ≤ T0, where T0 = Θ( k

ησ2q−2
0

) and when t ∈ [T0, T ], where T − T0 ≤

Õ(
kT

1/q
0

η ).

C.1 Initial Stage

The initial stage of the training process is defined as the training iterations t ≤ T0, where T0 =

Θ( k

ησ2q−2
0

). In this stage, kernels inM(0)
i,l will focus on learning semantic vi,l. More formally, we

will prove that at least one of kernels inM(0)
i,l will capture the semantic vi,l, i.e.,

max
r∈M(0)

i,l

⟨w(T0)
r , vi,l⟩ ≥ ϱ =

1

polylog(k)
.

This indicates that the maximum correlation between kernels insideM(0)
i,l and semantic vi,l will

grow.

Next, since the kernels insideM(0)
i,l have captured the main correlations with semantic vi,l, what

about the kernels outsideM(0)
i,l ? To answer this question, we will show that for wr /∈M(0)

i,l ,

⟨w(T0)
r , vi,l⟩ ≤ Õ(σ0) = Õ

( 1√
k

)
,

which means that the correlations with semantic vi,l will keep small. For those kernels that the
magnitude of vi,l is lagging behind at initialization, it will loss the lottery and capture little semantic
vi,l.

Furthermore, will those kernels insideM(0)
i,l capture other semantic vj,l′ ̸= vi,l? The answer is no.

So to show this point, we also prove that for r ∈M(0)
i,l ,

⟨w(T0)
r , vj,l′⟩ ≤ Õ(σ0), ∀ vj,l′ ̸= vi,l.

Besides, the kernels will also not be influenced by the noises, i,e., for all r, r ∈ [km], for every
p ∈ [P ],

⟨w(T0)
r , ξp⟩ ≤ Õ

(
1

poly(k)

)
.

C.2 Convergence Stage

In this stage, when t ∈ [T0, T ], since part of kernels have won the lottery, its correlations with
corresponding semantic will continue to hold in this stage. But in this stage, the gradient will become
small which drives the learning process to converge.

The intuition here is that, when the correlation between weights and its corresponding semantics
grows over the threshold ϱ, the gradients will become to be small. That is when the kernels learned
the corresponding semantic, the increasing in the correlation will be small and thus drive the learning
process to converge. We will show that after t ≥ T0,

⟨∇
w

(t)
r
L(H), vi,l⟩ ≤ Õ

(
1

T
1/q
0

)
= Õ

(
1

poly(k)

)
, for wr ∈M(0)

i,l .

While the gradients with other semantics (semantics not captured by this kernels) keep to be smaller.
In this way, the correlation between weights and its corresponding semantics will not grow too large
and we will show that

max
r∈M(0)

i,l

⟨w(T )
r , vi,l⟩ ≤ Õ(1).
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D Some Technical Results

In this section, we first show the gradient and its approximations. We also state some consequences
from our Induction Hypothesis B. They all are useful in our later proof of the main results.

D.1 Gradients and its approximations

Recall

L(H;X, ϵ) =
1

2

∑
r∈[km]

( ∑
p∈[P ]

ReLU(⟨ŵr, xp⟩)−
∑
p∈[P ]

c(θ)ReLU(⟨wr, ϵpxp⟩)
)2

.

and

L(H;X) = Eϵ[L(H;X, ϵ)] =
1

2

∑
r∈[km]

( ∑
p∈[P ]

ReLU(⟨ŵr, xp⟩)−
∑
p∈[P ]

ReLU(⟨wr, xp⟩)
)2

+
1

2

(
1

θ
− 1

) ∑
r∈[km]

∑
p∈[P ]

(
ReLU(⟨wr, xp⟩)

)2
.

The derivation of above loss function is shown as follows. For simplicity of clarification, we denote
ŷr,p = ReLU(⟨ŵr, xp⟩) and yr,p = ReLU(⟨wr, xp⟩). Then the loss function is

L(H;X, ϵ) =
1

2

∑
r∈[km]

[( ∑
p∈[P ]

ŷr,p

)2

− 2
∑
p∈[P ]

ŷr,p
∑
p∈[P ]

c(θ)ϵpyr,p +

( ∑
p∈[P ]

c(θ)ϵpyr,p

)2]
.

Because 1) we set c(θ) = 1
θ and 2) each ϵp is i.i.d. Bernoulli and E[ϵp] = θ, we obtain

Eϵ

[
2
∑
p∈[P ]

ŷr,p
∑
p∈[P ]

c(θ)ϵpyr,p

]
= 2

∑
p∈[P ]

ŷr,p
∑
p∈[P ]

yr,p.

We also have

Eϵ

[( ∑
p∈[P ]

c(θ)ϵpyr,p

)2]
=

1

θ2
Eϵ

[( ∑
p∈[P ]

ϵpyr,p

)( ∑
p∈[P ]

ϵpyr,p

)]

=
1

θ2
Eϵ

[( ∑
p∈[P ]

ϵpyr,p

)(∑
p′ ̸=p

ϵp′yr,p′

)]

+
1

θ2
Eϵ

[( ∑
p∈[P ]

ϵpyr,p

)(∑
p′=p

ϵp′yr,p′

)]

=
1

θ2
Eϵ

[ ∑
p∈[P ]

∑
p′ ̸=p

ϵpϵp′yr,pyr,p′

]
+

1

θ2
Eϵ

[ ∑
p∈[P ]

∑
p′=p

ϵpϵp′yr,pyr,p′

]
(a)
=

( ∑
p∈[P ]

yr,p

)(∑
p′ ̸=p

yr,p′

)
+

1

θ

[( ∑
p∈[P ]

yr,p

)(∑
p′=p

yr,p′

)]

=

( ∑
p∈[P ]

yr,p

)(∑
p′

yr,p′

)
+

(
1

θ
− 1

)[( ∑
p∈[P ]

yr,p

)(∑
p′=p

yr,p′

)]

=

( ∑
p∈[P ]

yr,p

)(∑
p′

yr,p′

)
+

(
1

θ
− 1

)[ ∑
p∈[P ]

y2r,p

]
where (a) is because Eϵ[ϵpϵp′ ] = θ2 when p ̸= p′ as we assume the variable in ϵ is independent
Bernoulli variable with Pr(ϵp = 1) = θ and Eϵ[ϵpϵp′ ] = θ when p = p′. Combining the above
results, we have

L(H;X) = Eϵ[L(H;X, ϵ)] =
1

2

∑
r∈[km]

( ∑
p∈[P ]

ŷr,p −
∑
p∈[P ]

yr,p

)2

+
1

2

(
1

θ
− 1

) ∑
r∈[km]

∑
p∈[P ]

y2r,p,
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which is our result.

We define

Φr(X) :=
∑
p∈[P ]

ReLU(⟨ŵr, xp⟩)−
∑
p∈[P ]

ReLU(⟨wr, xp⟩).

Fact 2.1 (Gradients). Given the data point (X, y) ∈ D, for every wr, r ∈ [km],

−∇wr
L(X) =

∑
p∈[P ]

(
Φr(X)−

(1
θ
− 1
)
ReLU(⟨wr, xp⟩)

)
ReLU

′
(⟨wr, xp⟩)xp.

where ReLU
′

is the gradient of ReLU. Besides, we set ŵ(t)
r = τw

(t)
r .

We define several error terms that will be used in our proofs.

Definition 2.

Vr,i,l(X) = I{vi,l∈V(X)}
∑

p∈Pvi,l
(X)

ReLU
′
(⟨wr, xp⟩)zp,

V̂r,i,l(X) = I{vi,l∈V(X)}
∑

p∈Pvi,l
(X)

ReLU
′
(⟨wr, xp⟩),

Wr,i,l(X) =
(1
θ
− 1
)
I{vi,l∈V(X)}

∑
p∈Pvi,l

(X)

ReLU(⟨wr, xp⟩)ReLU
′
(⟨wr, xp⟩)zp,

Ŵr,i,l(X) =
(1
θ
− 1
)
I{vi,l∈V(X)}

∑
p∈Pvi,l

(X)

ReLU(⟨wr, xp⟩)ReLU
′
(⟨wr, xp⟩),

∆r,i,l(X) = Ivi,l∈V(X)

∑
p∈Pvi,l

(X)

[
ReLU(⟨ŵr, xp⟩)− ReLU(⟨wr, xp⟩)

]
.

Ui,l(X) = I{vi,l∈V(X)} · Õ(σ
(2q−1)
0 ).

We also define some small terms for easy of notation.

Definition 3.

E1 = Õ(σ
(q−1)
0 )(γ + σp)s, E2 = Õ((σ0γk)

(q−1))(γ + σp) · P,

E3 = Õ(σ
(2q−1)
0 )(γ + σp)s, E4 = Õ((σ0γk)

(2q−1))(γ + σp) · P.
E5 = Õ(σq

0) · (s+ 1), E6 = Õ((σ0γk)
q) · P.

We have the following lemma to approximate the gradient. We first approximate the term Φr(X).
[Bounds on Φr(X)] Suppose Assumption B holds and Induction Hypothesis B holds at iteration t.
Then for every vi,l ∈ V , for every r ∈M(0)

i,l , for every (X, y) ∈ Z ,

Φr(X) = ∆r,i,l(X)± E5 ± E6.
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Proof of Claim D.1. Using the induction hypothesis B, for every vi,l ∈ V , for every r ∈M(0)
i,l , for

every (X, y) ∈ Z ,

Φr(X) =
∑
p∈[P ]

ReLU(⟨ŵr, xp⟩)−
∑
p∈[P ]

ReLU(⟨wr, xp⟩)

= Ivi,l∈V(X)

∑
p∈Pvi,l

(X)

[
ReLU(⟨ŵr, xp⟩)− ReLU(⟨wr, xp⟩)

]
+

∑
p∈P(X)\Pvi,l

(X)

[
ReLU(⟨ŵr, xp⟩)− ReLU(⟨wr, xp⟩)

]
+

∑
p∈[P ]\P(X)

[
ReLU(⟨ŵr, xp⟩)− ReLU(⟨wr, xp⟩)

]
(a)
= Ivi,l∈V(X)

∑
p∈Pvi,l

(X)

[
ReLU(⟨ŵr, xp⟩)− ReLU(⟨wr, xp⟩)

]
± Õ(σq

0) · (s+ 1)± Õ((σ0γk)
q) · P,

where (a) is as Cp is a universal constant.

[Approximations of gradients] Suppose Assumption B holds and Induction Hypothesis B holds at
iteration t. Then for every vi,l ∈ V , for every r ∈M(0)

i,l , for (X, y) ∈ Z ,

(a)
⟨−∇wr

L(X), vi,l⟩ = Vr,i,l(X)∆r,i,l(X)−Wr,i,l(X) + ∆r,i,l(X)(E1 + E2)− E3 − E4
± (Vr,i,l(X) + V̂r,i,l(X)(γ + σp))(E5 + E6)± (E5 + E6)(E1 + E2)

(b) for vj,l′ ̸= vi,l (note that vj,l′ ̸= vi,l means that when j = i, l′ ̸= l or j ̸= i),

|⟨−∇wr
L(X), vj,l′⟩| =

(
V̂r,i,l(X)∆r,i,l(X)− Ŵr,i,l(X)

)
(γ + σp)± V̂r,i,l(X)(E5 + E6)(γ + σp)

± Ur,j,l′(X) + ∆r,i,l(X)(E1 + E2)± (E5 + E6)(E1 + E2)− E3 − E4.

Proof of Claim D.1. We first prove (a). Using the induction hypothesis B and the fact Cp is a
universal constant, we have that for vi,l ∈ V , for every r ∈M(0)

i,l , we have

⟨−∇wrL(X), vi,l⟩

=
∑
p∈[P ]

(
Φr(X)−

(1
θ
− 1
)
ReLU(⟨wr, xp⟩)

)
ReLU

′
(⟨wr, xp⟩)⟨xp, vi,l⟩

= I{vi,l∈V(X)}
∑

p∈Pvi,l
(X)

(
Φr(X)−

(1
θ
− 1
)
ReLU(⟨wr, xp⟩)

)
ReLU

′
(⟨wr, xp⟩)(zp + αp,vi,l + ⟨vi,l, ξp⟩)

+
∑

p∈P(X)\Pvi,l
(X)

(
Φr(X)−

(1
θ
− 1
)
ReLU(⟨wr, xp⟩)

)
ReLU

′
(⟨wr, xp⟩)(αp,vi,l + ⟨vi,l, ξp⟩)

+
∑

p∈[P ]\P(X)

(
Φr(X)−

(1
θ
− 1
)
ReLU(⟨wr, xp⟩)

)
ReLU

′
(⟨wr, xp⟩)(αp,vi,l + ⟨vi,l, ξp⟩)

= I{vi,l∈V(X)}
∑

p∈Pvi,l
(X)

(
∆r,i,l(X)−

(1
θ
− 1
)
ReLU(⟨wr, xp⟩)

)
ReLU

′
(⟨wr, xp⟩)zp

± Vr,i,l(X)(E5 + E6)± V̂r,i,l(X)(E5 + E6) · (γ + σp)

+ (∆r,i,l(X)± E5 ± E6 − Õ(σq
0)) · Õ(σq−1

0 ) · (γ + σp) · (s+ 1)

+ (∆r,i,l(X)± E5 ± E6 − Õ((σ0γk)
q)) · Õ((σ0γk)

q−1) · (γ + σp) · P
= Vr,i,l(X)∆r,i,l(X)−Wr,i,l(X) + ∆r,i,l(X)(E1 + E2)
± (Vr,i,l(X) + V̂r,i,l(X)(γ + σp))(E5 + E6)± (E5 + E6)(E1 + E2)− E3 − E4
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Now we show (b). Using the induction hypothesis B, for vi,l ∈ V , for every r ∈ M(0)
i,l , when

vj,l′ ̸= vi,l, we have

⟨−∇wrL(X), vj,l′⟩

=
∑
p∈[P ]

(
Φr(X)−

(1
θ
− 1
)
ReLU(⟨wr, xp⟩)

)
ReLU

′
(⟨wr, xp⟩)⟨xp, vj,l′⟩

= I{vi,l∈V(X)}
∑

p∈Pvi,l
(X)

(
Φr(X)−

(1
θ
− 1
)
ReLU(⟨wr, xp⟩)

)
ReLU

′
(⟨wr, xp⟩)(αp,vj,l′ + ⟨vj,l′ , ξp⟩)

+ I{vj,l′∈V(X)}
∑

p∈Pv
j,l′

(X)

(
Φr(X)−

(1
θ
− 1
)
ReLU(⟨wr, xp⟩)

)
ReLU

′
(⟨wr, xp⟩)(zp + αp,vj,l′ + ⟨vj,l′ , ξp⟩)

+
∑

p∈P(X)\{Pvi,l
(X)∪Pv

j,l′
(X)}

(
Φr(X)−

(1
θ
− 1
)
ReLU(⟨wr, xp⟩)

)
ReLU

′
(⟨wr, xp⟩)(αp,vj,l′ + ⟨vj,l′ , ξp⟩)

+
∑

p∈[P ]\P(X)

(
Φr(X)−

(1
θ
− 1
)
ReLU(⟨wr, xp⟩)

)
ReLU

′
(⟨wr, xp⟩)(αp,vj,l′ + ⟨vj,l′ , ξp⟩)

=
(
V̂r,i,l(X)∆r,i,l(X)− Ŵr,i,l(X)

)
(γ + σp)± V̂r,i,l(X)(E5 + E6)(γ + σp)

± Ur,j,l′(X) + ∆r,i,l(X)(E1 + E2)± (E5 + E6)(E1 + E2)− E3 − E4.

D.2 Some Results from Induction Hypothesis B

D.2.1 Growth of Λ(t)
i,l

The following claim shows about at which iteration Λ
(t)
i,l will be greater than the threshold ϱ in the

definition of smooth ReLU function. Suppose Assumption B holds and induction hypothesis B holds
at iteration t. For every vi,l, suppose Λ

(t)
i,l ≤ ϱ. Then we have

Λ
(t+1)
i,l = Λ

(t)
i,l + Θ̃

(η
k

)
ReLU(Λ

(t)
i,l )ReLU

′
(Λ

(t)
i,l ).

Proof of Claim D.2.1. Recall that Λ(t)
i,l := maxr∈[km][⟨w

(t)
r , vi,l⟩]+. We choose any r ∈ [km] that

makes ⟨w(t)
r , vi,l⟩ ≥ Ω̃(σ0). Now we show the updates. We know that

⟨w(t+1)
r , vi,l⟩ = ⟨w(t)

r , vi,l⟩+ ηE(X,y)∼Z [⟨−∇wr
L(X), vi,l⟩]

Using Claim D.1, we have

⟨−∇wrL(X), vi,l⟩ = Vr,i,l(X)∆r,i,l(X)−Wr,i,l(X) + ∆r,i,l(X)(E1 + E2)− E3 − E4
± (Vr,i,l(X) + V̂r,i,l(X)(γ + σp))(E5 + E6)± (E5 + E6)(E1 + E2)

Recall the definition of Vr,i,l,∆r,i,l,Wr,i,l. As we assume Λ
(t)
i,l ≤ ϱ and based on our definition of

smooth ReLU function, we could simplify the above inequalities by only keeping the main increasing
term as

⟨ − ∇wr
L(X), vi,l⟩ = ∆r,i,l(X)Vr,i,l(X)−Wr,i,l(X).
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This equation is obtained by setting ⟨w(t)
r , vi,l⟩ ≥ Ω̃(σ0) and compare its order with the remaining

term. It is indeed the main increasing term. For (X, y) ∈ Z , we have

Vr,i,l(X) =I{vi,l∈V(X)}ReLU
′
(⟨w(t)

r , vi,l⟩)
∑

p∈Pvi,l
(X)

zqp (1)

∆r,i,l(X) =I{vi,l∈V(X)}ReLU(⟨w(t)
r , vi,l⟩)

∑
p∈Pvi,l

(X)

(τ q − 1)zqp, (2)

Wr,i,l(X) =I{vi,l∈V(X)}ReLU(⟨w(t)
r , vi,l⟩)ReLU

′
(⟨w(t)

r , vi,l⟩)
(1
θ
− 1
) ∑

p∈Pvi,l
(X)

z2qp (3)

Then

∆r,i,l(X)Vr,i,l(X)−Wr,i,l(X) =
∑

p∈Pvi,l
(X)

zqp

 ∑
p′∈Pvi,l

(X)

(τ q − 1)zqp′ −
(1
θ
− 1
)
zqp


× I{vi,l∈V(X)}ReLU(⟨w(t)

r , vi,l⟩)ReLU
′
(⟨w(t)

r , vi,l⟩).
According to our choice of τ and zp is uniformly distributed over Cp patches, when (X, y) ∈ Zm

and i = y or (X, y) ∈ Zs and i = y and l̂ = l, we have

E(X,y)∈Z

 ∑
p∈Pvi,l

(X)

zqp

 ∑
p′∈Pvi,l

(τ q − 1)zqp′ −
(1
θ
− 1
)
zqp

 I{vi,l∈V(X)}

 ∈ [Ω(1), O(1)].

When (X, y) ∈ Zs and i = y and l̂ = 3− l, we have

E(X,y)∈Zs

 ∑
p∈Pvi,l

(X)

zqp

 ∑
p′∈Pvi,l

(τ q − 1)zqp′ −
(1
θ
− 1
)
zqp

 I{vi,l∈V(X)}

 ∈ [Ω(ρ), O(ρ)].

When (X, y) ∈ Z and i ̸= y, we have

E(X,y)∈Z

 ∑
p∈Pvi,l

(X)

zqp

 ∑
p′∈Pvi,l

(τ q − 1)zqp′ −
(1
θ
− 1
)
zqp

 I{vi,l∈V(X)}

 ∈ s

k
[Ω(1), O(1)].

Combining all above results, we have

⟨w(t+1)
r , vi,l⟩ = ⟨w(t)

r , vi,l⟩+ Θ̃
(η
k

)
ReLU(⟨w(t)

r , vi,l⟩)ReLU
′
(⟨w(t)

r , vi,l⟩).

Using Claim D.2.1, and Ω̃(σ0) ≤ Λ
(0)
i,l ≤ Õ(σ0), we have the following result: Suppose Assump-

tion B holds and Induction Hypothesis B holds for every iteration. Define T0 := Θ̃
(

k

ησ2q−2
0

)
. We

have that when t ≥ T0, it satisfies Λ(t)
i,l ≥ Θ

(
1

polylog(k)

)
.

Proof of Claim D.2.1. Using the result in D.2.1 and beginning from Λ
(0)
i,l = Θ̃(σ0), we have that

Λ
(t)
i,l ≈ Λ

(0)
i,l

(
1 + Θ̃

(η
k

) σ2q−2
0

ϱ2q−2

)t

. (4)

Thus, when T0 = Θ̃
(

k

ησ2q−2
0

)
, we have

Λ
(t)
i,l ≈ Θ̃(σ0)e

polylog(k),

which means

Λ
(t)
i,l = Θ

(
1

polylog(k)

)
.
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E Proof of Theorem B

Before we formally show Theorem B, we need some lemmas. First, we need to prove that for
every feature vi,l ∈ V . at least one of “diagonal” correlations ⟨w(t)

r , vi,l⟩, r ∈ M(0)
i,l grows and

the “off-diagonal” correlations ⟨w(t)
r , vj,l′⟩, vj,l′ ̸= vi,l decreases. To show these, we provide

three lemmas about the lower and upper bound on ⟨w(t)
r , vi,l⟩, r ∈ M(0)

i,l and upper bound on

⟨w(t)
r , vj,l′⟩, vj,l′ ̸= vi,l, r ∈M(0)

i,l .

E.1 Diagonal correlations

The first lemma is used to obtain upper bound on Λ
(t)
i,l . Suppose Assumption B holds and Induction

Hypothesis B holds for all iterations < t. We have

∀vi,l ∈ V : Λ
(t)
i,l ≤ Õ(1).

Proof of Lemma E.1. Based on Claim D.1, we have that for every r ∈M(0)
i,l ,

⟨w(t+1)
r , vi,l⟩ = ⟨w(t)

r , vi,l⟩+ ηE(X,y)∼Z

[
Vr,i,l(X)∆r,i,l(X)−Wr,i,l(X) + ∆r,i,l(X)(E1 + E2)

± (Vr,i,l(X) + V̂r,i,l(X)(γ + σp))(E5 + E6)± (E5 + E6)(E1 + E2)− E3 − E4
]
.

When taking the positive part, we know there exists δ(t)r,i,l ∈ [0, 1] such that

[⟨w(t+1)
r , vi,l⟩]+ = [⟨w(t)

r , vi,l⟩]+ + ηδ
(t)
r,i,lE(X,y)∼Z

[
Vr,i,l(X)∆r,i,l(X)−Wr,i,l(X) + ∆r,i,l(X)(E1 + E2)

± (Vr,i,l(X) + V̂r,i,l(X)(γ + σp))(E5 + E6)± (E5 + E6)(E1 + E2)− E3 − E4
]
.

Suppose we are now at some iteration t > T0. In this stage, Λ(t)
i,l ≥ 1/polylog(k). As T0 =

Θ̃
(

k

ησ2q−2
0

)
and η ≤ 1

poly(k) , we have

∆r,i,l(X)Vr,i,l(X)−Wr,i,l(X) =
∑

p∈Pvi,l
(X)

zp

 ∑
p′∈Pvi,l

(X)

(τ − 1)zp′ −
(1
θ
− 1
)
zp


× I{vi,l∈V(X)}ReLU(⟨w(t)

r , vi,l⟩)ReLU
′
(⟨w(t)

r , vi,l⟩)

= O

(
1

t1/q

)
· I{vi,l∈V(X)}ReLU(⟨w(t)

r , vi,l⟩)ReLU
′
(⟨w(t)

r , vi,l⟩).

Using Claim D.2.1 and we also keep the main increasing term, we have

[⟨w(t+1)
r , vi,l⟩]+ ≤ [⟨w(t)

r , vi,l⟩]+ + Õ

(
η

kT
1/q
0

)
· ReLU(⟨w(t)

r , vi,l⟩)ReLU
′
(⟨w(t)

r , vi,l⟩)

≤ [⟨w(t)
r , vi,l⟩]+ + Õ

(
η

kT
1/q
0

)
· ReLU(⟨w(t)

r , vi,l⟩).

Taking the maximum on both side and as we are at t > T0, we have

max
r∈M(0)

i,l

[⟨w(t+1)
r , vi,l⟩]+ ≤ max

r∈M(0)
i,l

[⟨w(t)
r , vi,l⟩]+

(
1 + Õ

(
η

kT
1/q
0

))
.

When t ≤ T = T0 + Õ
(kT 1/q

0

η

)
, we have

Λ
(t)
i,l ≤ Õ(1).
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The second lemma is used to lower bound on ⟨w(t)
r , vi,l⟩, r ∈M(0)

i,l and indicates that the diagonal
correlations are nearly non-negative. Suppose Assumption B holds and Induction Hypothesis B
holds for all iterations < t. We have

∀vi,l ∈ V,∀r ∈M(0)
i,l : ⟨w(t)

r , vi,l⟩ ≥ −Õ(σ0).

Proof of Lemma E.1. We start with any iteration t that is ⟨w(t)
r , vi,l⟩ ≤ −Ω̃(σ0) to see how negative

the next iteration will be. Without loss of generality, we consider the case when ⟨w(t′)
r , vi,l⟩ ≤ −Ω̃(σ0)

holds for every t′ ≥ t. Now based on Claim D.1, we have

⟨w(t+1)
r , vi,l⟩ = ⟨w(t)

r , vi,l⟩+ ηE(X,y)∼Z

[
Vr,i,l(X)∆r,i,l(X)−Wr,i,l(X) + ∆r,i,l(X)(E1 + E2)− E3 − E4

± (Vr,i,l(X) + V̂r,i,l(X)(γ + σp))(E5 + E6)± (E5 + E6)(E1 + E2)
]

(a)

≥ ⟨w(t)
r , vi,l⟩+ ηE(X,y)∼Z

[
− E3 − E4 − (E5 + E6)(E1 + E2)

]
≥ ⟨w(t)

r , vi,l⟩ − η
[
E3 + E4 + (E5 + E6)(E1 + E2)

]
where (a) is because that as we assume ⟨w(t)

r , vi,l⟩ ≤ −Ω̃(σ0), we have

Wr,i,l(X) =

(
1

θ
− 1

)
I{vi,l∈V(X)}

∑
p∈Pvi,l

(X)

ReLU(⟨wr, xp⟩)ReLU
′
(⟨wr, xp⟩)zp

=

(
1

θ
− 1

)
I{vi,l∈V(X)}

∑
p∈Pvi,l

(X)

ReLU(⟨wr, vi,l⟩zp ± õ(σ0))ReLU
′
(⟨wr, vi,l⟩zp ± õ(σ0)zp

= 0,

and similar results also hold for ∆r,i,l, Vr,i,l, V̂r,i,l. This shows that when t ≤ T0,

⟨w(t+1)
r , vi,l⟩ ≥ ⟨w(t)

r , vi,l⟩ − ηÕ(σ
(2q−1)
0 ) · (γ + σp) · s2 − ηÕ((σ0γk)

2q−1) · (γ + σp)P
2

− ηÕ(σ2q−1
0 (γk)q−1) · (γ + σp)Ps

≥ −Õ(σ0)− ηT0Õ(σ
(2q−1)
0 ) · (γ + σp) · s2 − ηT0Õ((σ0γk)

2q−1) · (γ + σp)P
2

− ηT0Õ(σ2q−1
0 (γk)q−1) · (γ + σp)Ps

≥ −Õ(σ0)− Õ
(
σ2
0 +

kσ0√
d

)
− Õ

(
σ2
0 +

kσ0√
d

)
(γk)2q−1 · P 2

≥ −Õ(σ0).

When t ∈ [T0, T ], we have

⟨w(t)
r , vi,l⟩ ≥ ⟨w(T0)

r , vi,l⟩ − η(T − T0)Õ(σ
(2q−1)
0 ) · (γ + σp) · s2 − η(T − T0)Õ((σ0γk)

2q−1) · (γ + σp)P
2

− η(T − T0)Õ(σ2q−1
0 (γk)q−1) · (γ + σp)Ps

≥ −Õ(σ0).

E.2 Off-diagonal correlations

Suppose Assumption B holds and Induction Hypothesis B holds for all iterations < t. Then

∀vi,l ∈ V,∀r ∈M(0)
i,l , for vj,l′ ̸= vi,l : |⟨w(t)

r , vj,l′⟩| ≤ Õ(σ0).
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Proof of Lemma E.2. For every r ∈M(0)
i,l , using Claim D.1, we have

|⟨w(t+1)
r , vj,l′⟩| ≤ |⟨w(t)

r , vj,l′⟩|+ ηE(X,y)∼Z

[(
V̂r,i,l(X)∆r,i,l(X)− Ŵr,i,l(X)

)
(γ + σp)

+ V̂r,i,l(X)(E5 + E6)(γ + σp) + Ur,j,l′(X) + ∆r,i,l(X)(E1 + E2)

+ (E5 + E6)(E1 + E2)− E3 − E4
]

Stage I. We first consider the stage when t ≤ T0. In this stage, similar to the analysis in the proof
of Claim D.2.1, we have that

E(X,y)∼Z

[(
V̂r,i,l(X)∆r,i,l(X)− Ŵr,i,l(X)

)
(γ + σp)

]
≤ Õ

(
1

k

)
· (γ + σp)ReLU(⟨w(t)

r , vi,l⟩)ReLU
′
(⟨w(t)

r , vi,l⟩),

where Õ
(
1
k

)
is the probability of vi,l ∈ V(X), and

E(X,y)∼Z

[
V̂r,i,l(X)(E5 + E6)(γ + σp)

]
≤ Õ

(
1

k

)
· (E1 + E2)ReLU

′
(⟨w(t)

r , vi,l⟩),

and

E(X,y)∼Z

[
Ur,j,l′(X)

]
≤ Õ

(
1

k
σ2q−1
0

)
,

where Õ
(
1
k

)
is the probability of vj,l′ ∈ V(X). Thus, when t ≤ T0, we also keep the main increasin

term and obtain that

|⟨w(t)
r , vj,l′⟩| ≤ |⟨w(0)

r , vj,l′⟩|+ Õ
(η
k

)
· (γ + σp)

T0∑
t=0

ReLU(Λ
(t)
i,l )ReLU

′
(Λ

(t)
i,l ) (5)

From Claim D.2.1, we have that

Θ̃
(η
k

) T0−1∑
t=0

ReLU(Λ
(t)
i,l )ReLU

′
(Λ

(t)
i,l ) =

T0−1∑
t=0

Λ
(t+1)
i,l −

T0−1∑
t=0

Λ
(t)
i,l

= Λ
(T0)
i,l − Λ

(0)
i,l ≤

1

polylog(k)
. (6)

Putting (6) into (5), we have that for every t ≤ T0,

|⟨w(t)
r , vj,l′⟩| ≤ |⟨w(0)

r , vj,l′⟩|+ Õ

(
σ0
k

+
1√
d

)
+ Õ

(η
k

)
· (γ + σp)ReLU(Λ

(T0)
i,l )ReLU

′
(Λ

(T0)
i,l )

≤ Õ(σ0).

Stage II. In the second stage, when t ≥ T0, we have

E(X,y)∼Z

[(
V̂r,i,l(X)∆r,i,l(X)− Ŵr,i,l(X)

)
(γ + σp)

]
≤ Õ

( 1

kT
1/q
0

)
· (γ + σp)ReLU(⟨w(t)

r , vi,l⟩)ReLU
′
(⟨w(t)

r , vi,l⟩)

≤ Õ
( 1

kT
1/q
0

)
· (γ + σp),

where the first inequality is from Lemma E.1. Thus, when t ∈ [T0, T ]

|⟨w(t)
r , vj,l′⟩| ≤ |⟨w(T0)

r , vj,l′⟩|+ Õ

(
η(T − T0)
kT

1/q
0

)
· (γ + σp)

≤ |⟨w(T0)
r , vj,l′⟩|+ Õ(σ0/k) + Õ(1/

√
d)

≤ Õ(σ0)

Combining all above results, we complete our proof.
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E.3 Lottery wining: kernels insideM(0)
i,l

In this subsection, we prove that the semantic vi,l captured by kernels not inM(0)
i,l is negligible. To

prove this result, we first need a lemma from [13, Lemma C.19] that compare the growth speed of two
sequences of updates of the form xt+1 ← xt+ ηCtx

q−1
t . Let q ≥ 3 be a constant and x0, y0 = o(1).

Let {xt, yt}t≥0 be two positive sequences updated as

• xt+1 ≥ xt + ηCtx
q−1
t for some Ct = Θ(1),

• yt+1 ≤ yt + ηSCty
q−1
t for some constant S = Θ(1).

Suppose x0 ≥ y0S
1/(q−2)

(
1 + 1

polylog(k)

)
, then we must have for every A = O(1), let Tx be the

first iteration such that xt ≥ A, then

yTx ≤ O(y0 · polylog(k)).
Now we begin to prove our result. Suppose Assumption B holds and Induction Hypothesis B holds
for all iterations < t. Then

∀vi,l ∈ V,∀r /∈M(0)
i,l : ⟨w(t)

r , vi,l⟩ ≤ Õ(σ0).

Proof of Lemma E.3. When r ∈ M(0)
j,l′ , (vj,l′ ̸= vi,l), we have prove that ⟨w(t)

r , vi,l⟩ ≤ Õ(σ0) in

Lemma E.2. So we only prove the case when r /∈ ∪i∈[k],l∈[2]M
(0)
i,l .

We assume that there exists an wr′ /∈ ∪i∈[k],l∈[2]M
(0)
i,l such that induction hypothesis B (a)-(c)

holds for every (X, y) ∈ Z . We want to see if the sequence ⟨w(t)
r′ , vi,l⟩ will increase more quickly

than max
r∈M(0)

i,l

⟨w(t)
r , vi,l⟩. Under this assumption, we have that (here we also only keep the main

increasing term),

⟨w(t+1)
r′ , vi,l⟩ = ⟨w(t)

r′ , vi,l⟩+ ηE(X,y)∼Z

[
Vr,i,l(X)∆r,i,l(X)−Wr,i,l(X)

]
.

Stage I We first consider when t ≤ T0. In this stage, Λ(t)
i,l ≤ ϱ. We define two sequences. First,

we take wr∗ = argmax
r∈M(0)

i,l

⟨w(0)
r , vi,l⟩ and define xt := ⟨w(t)

r∗ , vi,l⟩ ·
(

s
qk

)1/2q 1
ϱ(2q−1)/2q . We also

define yt = max{⟨w(t)
r′ , vi,l⟩ ·

(
s
qk

)1/2q 1
ϱ(2q−1)/2q , σ0}. From Claim D.2.1, when t ≤ T0, we have

that

⟨w(t+1)
r∗ , vi,l⟩ = ⟨w(t)

r∗ , vi,l⟩+Θ
(sη
k

)
ReLU(⟨w(t)

r∗ , vi,l⟩)ReLU
′
(⟨w(t)

r∗ , vi,l⟩)

≥ ⟨w(t)
r∗ , vi,l⟩+Θ

(sη
k

) 1

qϱ2q−1
([⟨wr∗ , vi,l⟩]+)2q−1.

Let S =
(

1+C/(log(k)−C)
1+1/ log(k)

)q−2

, C > 1. We have

⟨w(t+1)
r′ , vi,l⟩ = ⟨w(t)

r′ , vi,l⟩+Θ
(sη
k

)
ReLU(⟨w(t)

r′ , vi,l⟩)ReLU
′
(⟨w(t)

r′ , vi,l⟩)

≤ ⟨w(t)
r′ , vi,l⟩+Θ

(sη
k

) 1

qϱ2q−1
([⟨w(t)

r′ , vi,l⟩]
+)2q−1S.

Set Ct = 1. Then we have that

xt+1 ≥ xt + ηCtx
2q−1
t ,

yt+1 ≤ yt + ηSCty
2q−1
t .

Besides, x0 = Λ
(0)
i,l and y0 ≤ Λ

(0)
i,l (1 − O(1/ log(k))) based on the definition ofM(0)

i,l . Here we

assume y0 ≤ Λ
(0)
i,l (1− C/ log(k)). Thus, we have

x0 ≥ y0
(
1 +

C

log(k)− C

)
= y0S

1
q−2

(
1 +

1

log(k)

)
.
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So using the result from Lemma E.3, when ⟨w(t+1)
r∗ , vi,l⟩ reaches Ω̃(1), which necessarily is an

iteration t ≥ T0, we still have that

yt ≤ Õ(y0) =⇒ ⟨w(t)
r′ , vi,l⟩ ≤ Õ(σ0).

Stage II We now consider when t ∈ [T0, T ]. In this stage, using the induction hypothesis B (d) and
(e), we have that

E(X,y)∼Z

[
⟨∇wrL(H;X), vi,l⟩

]
≤ Õ

(
1

k
σ2q−1
0

)
.

Thus,

⟨w(t+1)
r′ , vi,l⟩ ≤ ⟨w(t)

r′ , vi,l⟩+ Õ
(η
k
σ2q−1
0

)
≤ ⟨w(T0)

r′ , vi,l⟩+ Õ

(
η(T − T0)

k
σ2q−1
0

)
≤ Õ(σ0).

E.4 Noise Correlation

In this subsection, we prove that the kernels correlate small with the random noise. Suppose
Assumption B holds and Induction Hypothesis B holds for all iterations < t. For every vi,l ∈ V , for
every r ∈M(0)

i,l , for every (X, y) ∈ Z , we have

(a) For every p ∈ Pvi,l
(X), |⟨w(t)

r , ξp⟩| ≤ õ(σ0).

(b) For every p ∈ P(X) \ Pvi,l(X), |⟨w(t)
r , ξp⟩| ≤ Õ(σ0).

(c) For every p ∈ [P ] \ P(X), |⟨w(t)
r , ξp⟩| ≤ Õ(σ0γk).

Moreover, for every r /∈ ∪i∈[k],l∈[2]M
(0)
i,l , for every (X, y) ∈ Z , we have

(d) for every p ∈ P(X), |⟨w(t)
r , ξp⟩| ≤ Õ(σ0).

(e) for every p ∈ [P ] \ P(X), |⟨w(t)
r , ξp⟩| ≤ Õ(σ0γk).

Proof of Lemma E.4. For every r ∈ [km], for every (X∗, y∗) ∈ Z and every p∗ ∈ [P ], we have that

⟨−∇wr
L(X), ξp∗⟩ =

∑
p∈[P ]

(
Φr(X)−

(1
θ
− 1
)
ReLU(⟨wr, xp⟩)

)
ReLU

′
(⟨wr, xp⟩)⟨xp, ξp∗⟩.

When X ̸= X∗, we have |⟨xp, ξp∗⟩| ≤ Õ(σp) ≤ o(1/
√
d); and when X = X∗ but p ̸= p∗, we have

|⟨xp, ξp∗⟩| ≤ Õ(σp) ≤ o(1/
√
d). Therefore, we have

E(X,y)∼Z

[
⟨−∇wr

L(X), ξp∗⟩
]
= E(X,y)∈Z

[
IX=X∗⟨−∇wr

L(X), ξp∗⟩+ IX ̸=X∗⟨−∇wr
L(X), ξp∗⟩

]
.
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For the first term,

E(X,y)∼Z

[
IX=X∗⟨−∇wrL(X), ξp∗⟩

]
=

1

N
E(X∗,y∗)∼Z

[
Φr(X

∗)ReLU
′
(⟨wr, xp∗⟩)⟨xp∗ , ξp∗⟩

−
(1
θ
− 1
)
ReLU(⟨wr, xp∗⟩)ReLU′

(⟨wr, xp∗⟩)⟨xp∗ , ξp∗⟩ ± o
(

1√
d

)]
(a)
= Θ̃

(
1

N

)
E(X∗,y∗)∼Z

[
Φr(X

∗)ReLU
′
(⟨wr, xp∗⟩)

−
(1
θ
− 1
)
ReLU(⟨wr, xp∗⟩)ReLU′

(⟨wr, xp∗⟩)± o
(

1√
d

)]
= Θ̃

(
1

N

)
E(X∗,y∗)∼Z

[
Ivi,l∈V(X∗)

∑
p∈Pvi,l

(X)

[
ReLU(⟨ŵr, xp⟩)− ReLU(⟨wr, xp⟩)

]
× ReLU

′
(⟨wr, xp∗⟩)−

(1
θ
− 1
)
ReLU(⟨wr, xp∗⟩)ReLU′

(⟨wr, xp∗⟩)± o
(

1√
d

)]
where (a) is because ∥ξp∗∥22 = Θ̃(1). For the second term,

E(X,y)∼Z

[
IX ̸=X∗⟨−∇wrL(X), ξp∗⟩

]
= ±o

(
1√
d

)
Now we begin to prove (a). For every vi,l ∈ V , for every r ∈M(0)

i,l , for every p∗ ∈ Pvi,l(X
∗), using

the induction hypothesis B, when t ∈ [0, T0], we have

E(X,y)∼Z

[
⟨−∇wr

L(X), ξp∗⟩
]

= Θ̃

(
1

N

)
E(X,y)∼Z

[(
Ivi,l∈V(X∗)

∑
p∈Pvi,l

(X∗)

zq−1
p∗

( ∑
p′∈Pvi,l

(X∗)

(τ q − 1)zqp′ −
(1
θ
− 1
)
zqp∗

))

× ReLU(⟨wr, vi,l⟩)ReLU
′
(⟨wr, vi,l⟩)

]
± o

(
1√
d

)
.

Thus, we have

⟨w(t+1)
r , ξp∗⟩ ≤ ⟨w(t)

r , ξp∗⟩+ Õ
( η
N

)
ReLU(⟨wr, vi,l⟩)ReLU

′
(⟨wr, vi,l⟩) + o

(
η√
d

)
,

Now we use the results from Lemma E.1, when t ≤ T0,

⟨w(t)
r , ξp∗⟩ ≤ ⟨w(0)

r , ξp∗⟩+ Õ

(
ηT0
N

)
+ o

(
ηT0√
d

)
So when N ≥ ω̃

(
k

σ2q−1
0

)
and
√
d ≥ ω̃(k/σ2q−1

0 ), we have ⟨w(t)
r , ξp∗⟩ ≤ õ(σ0). Then when

t ∈ [T0, T ], we have

E(X,y)∈Z

[
IX=X∗⟨−∇wr

L(X), ξp∗⟩
]

= Θ̃

(
1

NT
1/q
0

)
E(X,y)∼Z

[
Ivi,l∈V(X∗)ReLU(⟨wr, vi,l⟩)ReLU

′
(⟨wr, vi,l⟩)

]
± o

(
1

N
√
d

)
.

Therefore, for t ∈ [T0, T ], we have

⟨w(t)
r , ξp∗⟩ ≤ ⟨w(T0)

r , ξp∗⟩+ Õ

(
η(t− T0)
NT

1/q
0

)
+ o

(
η(t− T0)√

d

)
≤ õ(σ0),

22



when
√
d ≥ ω̃(k5/2/η1/q).

Now we begin to prove (b). For every p∗ ∈ P(X∗) \ Pvi,l(X
∗), using the induction hypothesis B,

when t ∈ [0, T0], we have

E(X,y)∈Z

[
IX=X∗⟨−∇wr

L(X), ξp∗⟩
]

≤ Õ
( 1

N

)
E(X∗,y∗)∼Z

Ivi,l∈V(X∗)

∑
p∈Pvi,l

(X)

[
ReLU(⟨ŵr, xp⟩)− ReLU(⟨wr, xp⟩)

]
Õ(σ

(q−1)
0 )± o

(
1√
d

)
≤ Õ

( 1

N

)
E(X∗,y∗)∼Z

[
Õ(σ

(q−1)
0 )± o

(
1√
d

)]
Thus, when t ≤ T0, we have

⟨w(t)
r , ξp∗⟩ ≤ ⟨w(0)

r , ξp∗⟩+ Õ

(
ηT0
N

σ
(q−1)
0

)
+ o

(
ηT0√
d

)
≤ Õ(σ0),

when N ≥ k
σq
0

and
√
d ≥ k/σ2q−1

0 . Then when t ∈ [T0, T ], we have

⟨w(t)
r , ξp∗⟩ ≤ ⟨w(T0)

r , ξp∗⟩+ Õ

(
η(t− T0)

N
σ
(q−1)
0

)
+ o

(
η(t− T0)√

d

)
≤ Õ(σ0).

We begin to prove (c). For every p ∈ [P ] \ P(X), using the induction hypothesis B, when t ∈ [0, T0],
we have

E(X,y)∈Z

[
IX=X∗⟨−∇wr

L(X), ξp∗⟩
]
≤ Õ

( 1

N

)
E(X∗,y)∼Z

[
Õ((σ0γk)

(q−1))± o
(

1√
d

)]
.

Then the process to prove (c) is similar to the proof of (b).

To prove (d) and (e), for every p∗ ∈ P(X∗), using the induction hypothesis B, we have

E(X,y)∈Z

[
IX=X∗⟨−∇wr

L(X), ξp∗⟩
]
≤ Õ

( 1

N

)[
Õ(σ

(2q−1)
0 )± o

(
1√
d

)]
.

and for every p∗ ∈ [P ] \ P(X∗), using the induction hypothesis B, we have

E(X,y)∈Z

[
IX=X∗⟨−∇wr

L(X), ξp∗⟩
]
≤ Õ

( 1

N

)[
Õ((σ0γk)

(2q−1))± o
(

1√
d

)]
.

Following the similar process, we could also prove (d) and (e).

E.5 Proof of Theorem B

In this subsection, we will combine all lemmas and begin to prove Theorem B.

Proof of Theorem B. At iteration t, according to the data structure we defined in Definition 1, we
have

∀p ∈ Pvi,l(X) : ⟨w(t)
r , xp⟩ = ⟨w(t)

r , vi,l⟩zp +
∑
v′∈V

αp,v′⟨w(t)
r , v′⟩+ ⟨w(t)

r , ξp⟩, (7)

∀p ∈ [P ] \ P(X) : ⟨w(t)
r , xp⟩ =

∑
v′∈V

αp,v′⟨w(t)
r , v′⟩+ ⟨w(t)

r , ξp⟩. (8)

It is easy to verify the induction hypothesis B holds at iteration t = 0. Suppose induction hypothesis B
holds for all iteration < t. We have established several lemmas:

Lemma E.2 =⇒ ∀vi,l ∈ V,∀r ∈M(0)
i,l , for vj,l′ ̸= vi,l : |⟨w(t)

r , vj,l′⟩| ≤ Õ(σ0)

(9)

Lemma E.1 and Lemma E.1 =⇒ ∀vi,l ∈ V,∀r ∈M(0)
i,l : ⟨w(t)

r , vi,l⟩ ∈ [−Õ(σ0), Õ(1)] (10)

Lemma E.3 =⇒ ∀vi,l ∈ V,∀r /∈M(0)
i,l : ⟨w(t)

r , vi,l⟩ ≤ Õ(σ0). (11)
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• To prove Induction Hypothesis B(a), we plug (9) and (10) into (7), and use αp,v′ =∈ [0, γ],
|V| = 2k and |⟨w(t)

r , ξp⟩| ≤ õ(σ0) from Lemma E.4(a).

• To prove Induction Hypothesis B(b), we plug (9) and (10) into (7), and use αp,v′ =∈ [0, γ],
|V| = 2k and |⟨w(t)

r , ξp⟩| ≤ Õ(σ0) from Lemma E.4(b).

• To prove Induction Hypothesis B(c), we plug (9) and (10) into (8), and use αp,v′ =∈ [0, γ],
|V| = 2k and |⟨w(t)

r , ξp⟩| ≤ Õ(σ0γk) from Lemma E.4(c).

• To prove Induction Hypothesis B(d), we plug (11) into (7), and use αp,v′ =∈ [0, γ], |V| = 2k

and |⟨w(t)
r , ξp⟩| ≤ Õ(σ0) from Lemma E.4(d).

• To prove Induction Hypothesis B(e), we plug (11) into (8), and use αp,v′ =∈ [0, γ], |V| = 2k

and |⟨w(t)
r , ξp⟩| ≤ Õ(σ0γk) from Lemma E.4(e).

• Induction Hypothesis B (f), (g) and (h) are easily obtained from Lemma E.1, Lemma E.1
and Lemma E.3.

F Test Performance on Downstream Classification Tasks

In this section, we analyze the performance of mask-reconstruction pretraining on downstream
classification tasks to show its superiority over supervised training.

F.1 Main Results

We add an extra linear layer on the pretrained encoder. We collect labeled data points Zdown =
{(Xi, yi)}N2

i=1 ∼ D and use these labeled data points to update the weights ui,r, i ∈ [k], r ∈ [km] of
the extra linear layer and fine-tune the kernels of the pretrained encoder wr, r ∈ [km]. The output of
linear layer is denoted as Fi(X) =

∑
r∈[km] ui,rhr(X). The loss function on downstream tasks is

Ldown(F ) =
1

N2

∑
i∈[N2]

Ldown(F ;Xi, yi),

whereLdown(F ;X, y) = − log eFy(X)∑
j∈[k] e

Fj(X) . We define logiti(F ;X) = eFy(X)∑
j∈[k] e

Fj(X) . The gradient

of Ldown(F ;X, y) is

−∇ui,rLdown(F ;X, y) = (Ii=y − logiti(F ;X))hr(X).

We initialize u(0)i,r = 0, i ∈ [k], r ∈ [km] and the initialization of w(0)
r , r ∈ [km] is w(T )

r , i.e., kernels
of the pretrained encoder. We update the weights using gradient descent:

u
(t+1)
i,r = u

(t)
i,r − η2∇ui,rLdown(F ;X, y),

w(t+1)
r = w(t)

r − η1∇wrLdown(F ;X, y). (12)

We set η1 to be much smaller than η2.

The following lemma states that the induction hypothesis B still holds in the training of classification
tasks. For N2 ≥ k many samples, setting the learning rate η2 = Θ(k) and η1 ≤ Θ̃(k), after
Tdown ≥ poly(k)

η1η2
many iterations, for sufficiently large k > 0, Induction Hypothesis B holds for all

iterations with high probability.

Then we have the following theorem showing the performance of downstream classification test.
[Performance on downstream classification tasks] For N2 ≥ k many samples, setting the learning
rate η2 = Θ(k) and η1 ≤ Θ̃(k), after Tdown ≥ poly(k)

η1η2
many iterations, with high probability, we

have

24



(a) (training loss is small) for every (X, y) ∈ Zdown, i.e.,

Ldown(F ) = E(X,y)∼Zdown
[Ldown(F ;X, y)] ≤

1

poly(k)
.

(b) (test performance is good) for new data point (X, y) ∼ D, the test performance is

Pr
(X,y)∈D

[
Fy(X) ≥ max

j ̸=y
Fj(X) + Õ(1)

]
≥ 1− e−Ω(log2 k).

F.2 Proof Overview of Theorem F.1

In this subsection, we introduce the main idea to prove Theorem F.1.

F.3 Training of downstream classification models

In this subsection, we fine-tune the weights wr, r ∈ [km] of pretrained encoder of Student network
and update the weights of the linear layer ui,r, i ∈ [k], r ∈ [km].

F.3.1 Updates of ui,r

We first define several terms which will be used frequently.
Definition 4.

Zi,l(X) = Ivi,l∈V(X)

∑
p∈Pvi,l

(X)

zp,

ψr,i,l = [⟨wr, vi,l⟩]+, Ψi,l =
∑

r∈M(0)
i,l

ψ2
r,i,l, Ψi =

∑
l∈[2]

Ψi,l.

When r ∈M(0)
i,l , at t = 0, using the induction hypothesis B, we have

hr(X) = Ivi,l∈V(X)

∑
p∈Pvi,l

(X)

ReLU (⟨wr, vi,l⟩zp + õ(σ0)) + Õ(σq
0) · (s+ 1) + Õ((σ0γk)

q) · P

= [⟨wr, vi,l⟩]+ · Ivi,l∈V(X)

∑
p∈Pvi,l

(X)

zp + Õ(σq
0) · s+ Õ((σ0γk)

q) · P

= ψr,i,l · Zi,l(X) + E5 + E6.

When r /∈ ∪i∈[k],l∈[2]M
(0)
i,l , at t = 0, using the induction hypothesis B, we have

hr(X) = Õ(σq
0)(s+ 2) + Õ((σ0γk)

q) · P.

The gradients with respect to the output Fi(X) include three types.

(1) Near zero gradients For ui,r, when r /∈ ∪i∈[k],l∈[2]M
(0)
i,l ,

hr(X) = Õ(σq
0) · (s+ 2) + Õ((σ0γk)

q) · P.
which is very small. Thus, there is nearly no updates on those weights and they keep near zero, i.e.,

u
(t)
i,r ≈ 0 when r /∈ ∪i∈[k],l∈[2]M

(0)
i,l .

(2) Negative gradients For ui,r, when r ∈ M(0)
j,l , j ̸= i, we now show the gradients

−∇ui,rL(F ;X, y) for different type of data points:

(a) when y = i, for every (X, y) ∼ Zdown,

−∇ui,r
L(F ;X, y) = (1− logiti(F ;X))hr(X),

∑
p∈Pvj,l

(X)

zp ∈ [Ω(1), 0.4]
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(b) when y ̸= i but y = j, for every (X, y) ∈ Zdown,m or (X, y) ∈ Zdown,s, l̂ = l,

−∇ui,r
L(F ;X, y) = −logiti(F ;X)hr(X),

∑
p∈Pvj,l

(X)

zp ∈ [1, O(1)]

(c) when y ̸= i but y = j, for every (X, y) ∈ Zdown,s, l̂ = 3− l,

−∇ui,r
L(F ;X, y) = −logiti(F ;X)hr(X),

∑
p∈Pvj,l

(X)

zp ∈ [ρ,O(ρ)]

(d) when y ̸= i and y ̸= j, for every (X, y) ∈ Zdown,

−∇ui,r
L(F ;X, y) = −logiti(F ;X)hr(X),

∑
p∈Pvj,l

(X)

zp ∈ [Ω(1), 0.4]

(3) Positive gradients For ui,r, we now show the gradients −∇ui,r
L(F ;X, y) when r ∈M(0)

i,l for
different type of data points:

(a) when y = i, for every (X, y) ∼ Zdown,m or (X, y) ∈ Zdown,s, l̂ = l

−∇ui,r
L(F ;X, y) = (1− logiti(F ;X))hr(X),

∑
p∈Pvi,l

(X)

zp ∈ [1, O(1)].

(b) when y = i, for every (X, y) ∼ Zdown,s, l̂ = 3− l,

−∇ui,r
L(F ;X, y) = (1− logiti(F ;X))hr(X),

∑
p∈Pvi,l

(X)

zp ∈ [ρ,O(ρ)].

(c) when y ̸= i, for every (X, y) ∈ Zdown,

−∇ui,r
L(F ;X, y) = −logiti(F ;X)hr(X),

∑
p∈Pvi,l

(X)

zp ∈ [Ω(1), 0.4].

Now we begin to show the full gradients. As we assume the ratio of single-view data is µ = 1
poly(k) ,

it has little influence on the update of weights. So we ignore single-view data and only focus on
(X, y) ∈ Zdown,m. Then when r ∈M(0)

j,l , j ̸= i, we have

E(X,y)∼Zdown
[−∇ui,r

L(F ;X, y)] = E(X,y)∼Zdown

[
I{y=i}(1− logiti(F ;X))

[
0.4s

k
· ψr,j,l + E5 + E6

] ]
− E(X,y)∼Zdown

[
I{y=j}logiti(F ;X) [O(1) · ψr,j,l + E5 + E6]

]
− E(X,y)∼Zdown

[
I{y ̸=i,y ̸=j}logiti(F ;X)

[
0.4s

k
· ψr,j,l + E5 + E6

] ]
=
k − 1

k2
·
[
0.4s

k
· ψr,j,l + E5 + E6

]
− 1

k2
[ψr,j,l ·O(1) + E5 + E6]

− k − 2

k2

[
0.4s

k
· ψr,j,l + E5 + E6

]
,

where 1
k ,

1
k ,

k−2
k is the ratios for each type of data and at t = 0, we have logiti(F ;X) = 1

k , i ∈ [k]
because we initialize ui,r = 0. Therefore, if we ignore the small term, at t = 1, we have

u
(1)
i,r ≈ η2

(
0.4(k − 1)s

k3
− O(1)

k2
− 0.4(k − 2)s

k3

)
ψr,j,l +

η2(E5 + E6)
k

≈ η2
(
0.4s

k3
− O(1)

k2

)
ψr,j,l +

η2(E5 + E6)
k

< 0. (13)

26



Using this weight, we could also obtain the bounds of loss function after the update of wr, r ∈ [km]
(we will show the following inequality in (21) after we update wr):

0 ≤ 1− logity(F ;X) ≤ Õ
(
1

k

)
,

0 ≤ logiti(F ;X) ≤ Õ
(
1

k

)
, ∀i ∈ [k] \ y.

Thus, at t = 2, we have

u
(2)
i,r ≥ η2

(
0.4s

k3
− O(1)

k2

)
ψr,j,l +

η2(E5 + E6)
k

− Õ
(η2
k2

)
ψr,j,l −

η2(E5 + E6)
k2

,

u
(2)
i,r ≤ η2

(
0.4s

k3
− O(1)

k2

)
ψr,j,l +

η2(E5 + E6)
k

+ Õ
(η2
k3

)
ψr,j,l +

η2(E5 + E6)
k2

.

So the approximation of u(2)i,r is

u
(2)
i,r ≈ −Õ

(η2
k2

)
ψr,j,l +

η2(E5 + E6)
k

.

Then for t > 2, as we continue to train to minimize the loss function, 1− logity(F ;X) will become
smaller and so as logiti(F ;X), i ∈ [k] \ y. So the main term in ui,r, i ∈ [k], r ∈ [km] is the term of
the first two updates and there is nearly no order changes on values of weights after the first two step
of gradient descent. Thus, for simplicity of analysis, we could take

u
(t)
i,r ≈ −Õ

(η2
k2

)
ψr,j,l +

η2(E5 + E6)
k

, for t ≥ 2. (14)

Similar to the former case, when r ∈M(0)
i,l , we have

E(X,y)∼Zdown
[−∇ui,rL(F ;X, y)] =

k − 1

k2
[ψr,i,l ·O(1) + E5 + E6]

− k − 1

k2

[
0.4s

k
· ψr,i,l + E5 + E6

]
Then if we ignore the small term, at t = 1, we have

u
(1)
i,r ≈ η2

(
O(1) · (k − 1)

k2
− 0.4s(k − 1)

k3

)
ψr,i,l +

η2(E5 + E6)
k

> 0. (15)

Similar to the former analysis, for simplicity of analysis, we also take that

u
(t)
i,r ≈ Õ

(η2
k

)
ψr,i,l +

η2(E5 + E6)
k

, for t ≥ 2. (16)

F.3.2 Finetuning of wr and Proof of Lemma F.1

After the update of ui,r, we then finetune wr. We have the gradients:

−∇wr
L(F ;X, y) = (1− logity(F ;X))uy,r

∑
p∈[P ]

ReLU
′
(⟨wr, xp⟩)xp

−
∑

i∈[k]\y

logiti(F ;X)ui,r
∑
p∈[P ]

ReLU
′
(⟨wr, xp⟩)xp

=

[
(1− logity(F ;X))uy,r −

∑
j∈[k]\y

logitj(F ;X)uj,r

] ∑
p∈[P ]

ReLU
′
(⟨wr, xp⟩)xp
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Diagonal correlations. For r ∈M(0)
i,l , as we initialize wr by the pretrained encoder, we have∑

p∈[P ]

ReLU
′
(⟨wr, xp⟩)⟨xp, vi,l⟩ = I{vi,l∈V(X)}

∑
p∈Pvi,l

(X)

ReLU
′
(⟨wr, xp⟩)(zp + γ + σp)

+ Õ(σq−1
0 ) · (γ + σp) · (s+ 1)

+ Õ((σ0γk)
q−1) · (γ + σp) · P.

Thus,

⟨−∇wrL(F ;X, y), vi,l⟩ = (Vr,i,l + E1 + E2)
[
(1− logity(F ;X))uy,r −

∑
j∈[k]\y

logitj(F ;X)uj,r

]
.

(17)

At t = 1, for every (X, y) ∼ Zdown, when i = y, put (13) and (15) into (17), we have

⟨−∇wr
L(F ;X, y), vi,l⟩ = η2

(
O(1)

k
− 0.4s

k2

)
(Vr,i,l + E1 + E2)(1− logity(F ;X))ψr,i,l

+ (Vr,i,l + E1 + E2) ·
η2(E5 + E6)

k

Similarly, when y ̸= i,

⟨−∇wr
L(F ;X, y), vi,l⟩ = η2

(
−O(1)

k
+

0.4s

k2

)
(Vr,i,l + E1 + E2)logiti(F ;X)ψr,i,l

+ (Vr,i,l + E1 + E2) ·
η2(E5 + E6)

k

Denote Si,l =
∑

p∈Pvi,l
(X) zp. We have

E(X,y)∼Zdown
[⟨−∇wr

L(F ;X, y), vi,l⟩] =
1

k
η2

(
O(1)

k
− 0.4s

k2

)
Si,l

k − 1

k
ψr,i,l

+
k − 1

k
η2

(
−O(1)

k
+

0.4s

k2

)
Si,l

s

k2
ψr,i,l +

η2(E5 + E6)
k

=

(
k − 1

k2
− (k − 1)s

k3

)
η2

(
O(1)

k
− 0.4s

k2

)
Si,lψr,i,l +

η2(E5 + E6)
k

.

Thus, at t = 1, we have

⟨w(1)
r , vi,l⟩ = ⟨w(0)

r , vi,l⟩+O
(η1η2
k2

)
ψr,i,l +

η1η2(E5 + E6)
k

(18)

≤ Λ
(T )
i,l +O

(η1η2
k2

)
Λ
(T )
i,l +

η1η2(E5 + E6)
k

≤ Õ(1),

when η1η2 ≤ Õ(k2). The lower bound on ⟨w(1)
r , vi,l⟩ can be easily obtained by similar methods.

Besides, for t > 1, for every (X, y) ∼ Zdown, when i = y, putting (14) and (16) into (17) and
keeping the main term, we have

⟨−∇wrL(F ;X, y), vi,l⟩ ≈ Õ
(η2
k

)
(Vr,i,l + E1 + E2)(1− logity(F ;X))ψr,i,l

+ (Vr,i,l + E1 + E2) ·
η2(E5 + E6)

k

Similarly, when y ̸= i,

⟨−∇wr
L(F ;X, y), vi,l⟩ ≈ −Õ

(η2
k

)
(Vr,i,l + E1 + E2)logiti(F ;X)ψr,i,l

+ (Vr,i,l + E1 + E2) ·
η2(E5 + E6)

k
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Suppose induction hypothesis B holds at time t. Now we have that

E(X,y)∼Zdown,m
[⟨−∇wrL(F ;X, y), vi,l⟩]
(a)

≥ Õ
(η2
k

)
ψr,i,lE(X,y)∼Zdown,m

[
I{y=i}(1− logity(F ;X))

− 0.4I{y ̸=i}logiti(F ;X)

]
+
η2(E5 + E6)

k
.

where (a) is because for y ̸= i, Vr,i,l = 0.4I{vi,l∈V(X)} ≤ 0.4, and

E(X,y)∼Zdown,s
[⟨−∇wr

L(F ;X, y), vi,l̂⟩]
(a)

≥ Õ
(η2
k

)
ψr,i,l̂E(X,y)∼Zdown,s

[
I{y=i}(1− logity(F ;X))

− 0.4I{y ̸=i}logiti(F ;X)

]
+
η2(E5 + E6)

k
.

Thus, using the result ψr,i,l ≥ 1
polylog(k) , we obtain∑

i∈[k]

⟨w(t+1)
r , vi,l⟩ ≥

∑
i∈[k]

⟨w(t)
r , vi,l⟩+ Ω̃

(η1η2
k

)
E(X,y)∼Zdown

[
(1− logity(F ;X))

]
+ η1η2(E5 + E6).

As the induction hypothesis B still holds in the training process, we have Λ
(t)
i,l ≤ Õ(1). Thus,

Tdown∑
t=1

E(X,y)∼Zdown

[
(1− logity(F ;X))

]
+ Õ

(
kTdown(E5 + E6)

)
≤ Õ

(
k2

η1η2

)
. (19)

So, if we assume induction hypothesis B holds for all iteration < t, then

⟨w(t)
r , vi,l⟩ ≤ ⟨w(1)

r , vi,l⟩+ Õ
(η1η2
k2

) t∑
t=1

E(X,y)∼Zdown

[
(1− logity(F ;X))

]
+
tη1η2(E5 + E6)

k
≤ Õ(1).

Off-diagonal correlations. For r ∈M(0)
i,l , as we initialize wr by the pretrained encoder, we have∑

p∈[P ]

ReLU
′
(⟨wr, xp⟩)⟨xp, vj,l′⟩ = V̂r,i,l(X)(γ + σp) + I{vj,l′∈V(X)}Õ(σq−1

0 ) + E1 + E2.

Thus,

⟨−∇wr
L(F ;X, y), vj,l′⟩ = (V̂r,i,l(X)(γ + σp) + I{vj,l′∈V(X)}Õ(σq−1

0 ) + E1 + E2)

×
[
(1− logity(F ;X))uy,r −

∑
j∈[k]\y

logitj(F ;X)uj,r

]
. (20)

At t = 1, for every (X, y) ∼ Zdown, when i = y, put (13) and (15) into (20), we have

⟨−∇wrL(F ;X, y), vj,l′⟩ = ((γ + σp) + I{vj,l′∈V(X)}Õ(σq−1
0 ))

×
(
η2

(
O(1)

k
− 0.4s

k2

)
(1− logity(F ;X))ψr,i,l +

η2(E5 + E6)
k

)
Similarly, when y ̸= i but y = j,

⟨−∇wrL(F ;X, y), vj,l⟩ =
(
I{vi,l∈V(X)}(γ + σp) + Õ(σq−1

0 ) + E1 + E2
)

×
(
η2

(
−O(1)

k
+

0.4s

k2

)
logiti(F ;X)ψr,i,l +

η2(E5 + E6)
k

)
.
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When y ̸= i and y ̸= j,

⟨−∇wr
L(F ;X, y), vj,l⟩ =

(
I{vi,l∈V(X)}(γ + σp) + I{vj,l′∈V(X)}Õ(σq−1

0 ) + E1 + E2
)

×
(
η2

(
−O(1)

k
+

0.4s

k2

)
logiti(F ;X)ψr,i,l +

η2(E5 + E6)
k

)
.

Therefore,
E(X,y)∼Zdown

[⟨−∇wr
L(F ;X, y), vj,l′⟩]

=
1

k
((γ + σp) + Õ(sσq−1

0 /k))η2

(
O(1)

k
− 0.4s

k2

)
k − 1

k
ψr,i,l

+
1

k

( s
k
(γ + σp) + Õ(σq−1

0 )
)
η2

(
−O(1)

k
+

0.4s

k2

)
1

k
ψr,i,l

+
k − 2

k

( s
k
(γ + σp) + Õ(sσq−1

0 /k)
)
η2

(
−O(1)

k
+

0.4s

k2

)
1

k
ψr,i,l

+
η2(γ + σp)(E5 + E6)

k

= − s
k
((γ + σp) + Õ(σq−1

0 ))η2

(
O(1)

k
− 0.4s

k2

)
ψr,i,l +

η2(γ + σp)(E5 + E6)
k

.

Thus, at t = 1, we have

⟨w(1)
r , vj,l′⟩ ≤ ⟨w(0)

r , vj,l′⟩+ Õ
(η1η2
k2

(γ + σp)
)
ψr,i,l +

η1η2(γ + σp)(E5 + E6)
k

≤ Õ(σ0),

when η1η2 ≤ Õ(k2). Suppose induction hypothesis B holds for all iterations < t. We have

⟨w(t)
r , vj,l′⟩ ≤ ⟨w(1)

r , vj,l′⟩+ Õ
(η1η2
k2

(γ + σp)
) Tdown∑

t=1

E(X,y)∼Zdown

[
(1− logity(F ;X))

]
+
Tdownη1η2(γ + σp)(E5 + E6)

k
≤ Õ(σ0)

Kernels outside ∪i∈[k],l∈[2]M
(0)
i,l . For r /∈M(0)

i,l , as we initialize wr by the pretrained encoder, we
have ∑

p∈[P ]

ReLU
′
(⟨wr, xp⟩)⟨xp, vi,l⟩ = Õ(σq−1

0 ) + E1 + E2,

which is very small and there is nearly no increase on ⟨wr, vi,l⟩. Thus, when induction hypothesis B
holds for all iterations < t, for r /∈M(0)

i,l , we have ⟨w(t)
r , vi,l⟩ ≤ Õ(σ0).

Noise correlations. For every r ∈ [km], for every (X∗, y∗) ∈ Z and every p∗ ∈ [P ], we have that

E(X,y)∼Z [IX=X∗⟨−∇wr
L(F ;X, y), ξp∗⟩] = Θ̃

( 1

N2

)
E(X,y)∼Z

[
(ReLU

′
(⟨wr, xp∗⟩ ± o(1/

√
d))

×
[
(1− logity(F ;X

∗))uy,r −
∑

j∈[k]\y

logitj(F ;X
∗)uj,r

]]
,

and
E(X,y)∼Z [IX ̸=X∗⟨−∇wrL(F ;X, y), ξp∗⟩] = ±o(1/

√
d).

For every vi,l ∈ V , for every r ∈M(0)
i,l , for every p∗ ∈ Pvi,l

(X∗), when i = y, we have

E(X,y)∼Z [I{i=y}⟨−∇wrL(F ;X, y), ξp∗⟩]

= Θ̃
( η2
N2

)
ReLU

′
(⟨wr, xp∗⟩)

(
O(1)

k
− 0.4s

k2

)
(1− logity(F ;X

∗))ψr,i,l ± o(1/
√
d)

(a)
= Θ̃

( η2
N2

)(O(1)

k
− 0.4s

k2

)
ψr,i,l +

η2(E5 + E6)
N2k

± o(η2/
√
d),
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where (a) is because 1− logity(F ;X
∗) = k−1

k at t = 0. When i ̸= y, we have

E(X,y)∼Z [I{i ̸=y}⟨−∇wrL(F ;X, y), ξp∗⟩]

= Θ̃
( 1

(k − 1)N2

)
η2

(
−O(1)

k
+

0.4s

k2

)
ψr,i,l +

η2(E5 + E6)
N2k(k − 1)

± o(η2/
√
d),

Thus, we have

E(X,y)∼Z [⟨−∇wrL(F ;X, y), ξp∗⟩] = η2(E5 + E6)
N2k2

± o(η2/
√
d),

and

⟨w(1)
r , ξp⟩ = ⟨w(0)

r , ξp⟩+
η1η2(E5 + E6)

N2k2
± o(η1η2/

√
d) ≤ õ(σ0).

Thus, when induction hypothesis B holds for all iterations < t, we have

⟨w(t)
r , ξp⟩ ≤ ⟨w(1)

r , ξp⟩+
Tdownη1η2(E5 + E6)

N2k2
± o(Tdownη1η2/

√
d) ≤ õ(σ0).

Similarly, following the similar step as in the proof of Lemma E.4, we can also prove other claims
about the noise correlations in the downstream tasks. We skip the similar steps here.

Combining all above results, we can prove the Lemma F.1.

F.3.3 Training Loss and Proof of Theorem F.1 (a)

We set η2 to be O(k). The reason why we set the step size to O(k) is in the first step, the weights of
negative parts (< 0) and positive parts (> 0) is well separated. Thus, by setting a suitable step length
η2 = O(k), we can obtain a small loss in the first update of (12). We will show that the training loss
is small in the following.

After one-step training, at t = 1, for (X, y) ∈ Zdown,m, we have

Fj(X)− Fy(X)

=

2∑
l=1

∑
r∈M(0)

j,l

(uj,r − uy,r)
(
ψr,j,l · Zj,l(X) + E5 + E6

)
+

2∑
l=1

∑
r∈M(0)

y,l

(uj,r − uy,r)
(
ψr,y,l · Zy,l(X) + E5 + E6

)
+

∑
i∈[k]\{j,y},l∈[2]

∑
r∈M(0)

i,l

(uj,r − uy,r)
(
ψr,v′ · Zv′(X) + E5 + E6

)
(a)
=

2∑
l=1

∑
r∈M(0)

j,l

(uj,r − uy,r)
(
ψr,j,l · Zj,l(X) + E5 + E6

)
+

2∑
l=1

∑
r∈M(0)

y,l

(uj,r − uy,r)
(
ψr,y,l · Zy,l(X) + E5 + E6

)
+ η2m0(E5 + E6)

= η2

2∑
l=1

∑
r∈M(0)

j,l

(
O(1) · (k − 1)

k2
− 0.4s(k − 1)

k3
− 0.4s

k3
+
O(1)

k2

)(
ψ2
r,j,l · Zj,l(X)

)

+ η2

2∑
l=1

∑
r∈M(0)

y,l

(
0.4s

k3
− O(1)

k2
− O(1) · (k − 1)

k2
+

0.4s(k − 1)

k3

)(
ψ2
r,y,l · Zy,l(X)

)
+ η2m0(E5 + E6)

= η2

(O(1)

k
− 0.4s

k2

) 2∑
l=1

∑
r∈M(0)

j,l

ψ2
r,j,l · Zj,l(X)−

2∑
l=1

∑
r∈M(0)

y,l

ψ2
r,y,l · Zy,l(X)

+ η2m0(E5 + E6)

= η2

(
O(1)

k
− 0.4s

k2

)0.4

2∑
l=1

∑
r∈M(0)

j,l

I{vj,l∈V(X)}ψ
2
r,j,l −

2∑
l=1

∑
r∈M(0)

y,l

ψ2
r,y,l

+ η2m0(E5 + E6),
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where (a) is because the third term is nearly zero. We could show the similar result for single-view
data. At t = 1, for (X, y) ∈ Zdown,s, we have

Fj(X)− Fy(X)

= η2

(
O(1)

k
− 0.4s

k2

)(
0.4

2∑
l=1

∑
r∈M(0)

j,l

I{vj,l∈V(X)}ψ
2
r,j,l −

∑
r∈M(0)

y,l̂

ψ2
r,y,l̂

− ρ
∑

r∈M(0)

y,3−l̂

ψ2
r,y,3−l̂

)
+ η2m0(E5 + E6).

Thus, at t = 1, we have

E(X,y)∼Zdown,m

[
logity(F ;X)

]
≈
[(2s

k
− 2s2

k2

) 1

1 +
∑

i∈[k]\y e
0.4Ψi,l−Ψy

+
s2

k2
1

1 +
∑

i∈[k]\y e
0.4Ψi−Ψy

+
(
1− s

k

)2 1

1 +
∑

i∈[k]\y e
0.4s/k−Ψy

]
≥ 1− Õ

(1
k

)
, (21)

where the last inequality using the result that ψr,i,l ≥ 1
polylog(k) and ψr,i,l ≤ Õ(1) from Lemma E.1 at

initialization, |M0
i,l| ≤ O(log5 k) from Lemma B. We could obtain the similar results for single-view

data.

Finally, if we set Tdown ≥ poly(k)
η1η2

, according to (19), it is easy to verify that

1

Tdown

Tdown∑
t=1

E(X,y)∼Zdown

[
− log

eFy(X)∑
j∈[k] e

Fj(X)

]
≤ 1

Tdown

Tdown∑
t1=1

E(X,y)∼Zdown

[
1− logity(F ;X)

]
≤ 1

poly(k)
.

This implies that the training loss is small and so we prove Theorem F.1 (a).

F.3.4 Proof of Theorem F.1 (b)

In this subsection, we prove Theorem F.1 (b). For (X, y) ∼ Dm, due to our definition of data
structure in Definition 1, with probability at least 1− e−Ω(log2 k), it satisfies that for every j ∈ [k] \ y,

Fj(X)− Fy(X) ≈ O(1) ·

(
0.4

2∑
l=1

I{vj,l∈V(X)}Ψj,l −
2∑

l=1

Ψy,l

)
. (22)

and for (X, y) ∼ Ds,

Fj(X)− Fy(X) ≈ O(1) ·

(
0.4

2∑
l=1

I{vj,l∈V(X)}Ψj,l − ρΨy,3−l̂ −Ψy,l̂

)
. (23)

To prove Theorem F.1 (b), we need a lemma: For every (X, y) ∈ Zdown,

1− logity(F ;X) ≤ Õ
(
k4

s2

)
· E(X,y)∼Zdown

[1− logity(F ;X)].

(The same also hold with probability ≥ 1− e−Ω(log2 k) for every (X, y) ∼ D on the left hand side.)

Furthermore, if E(X,y)∼Zdown
[1 − logity(F ;X)] ≤ 1

k5 is sufficiently small, we have for every
j ∈ [k] \ y,

Fj(X)− Fy(X) ≤ −Õ(1).
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Proof of Lemma F.3.4. The proof of Lemma F.3.4 for multi-view data has been shown in [13, Claim
C.16]. Now we prove this lemma also holds for single-view data.

For a data point (X, y) ∈ Zdown,s, let us denote byH(X) be the set of all i ∈ [k] \ {y} such that∑
l∈[2]

∑
p∈Pvi,l

(X)

zp ≥ 0.8− 1

100 log k
,
∑
l∈[2]

∑
p∈Pvy,l

(X)

zp ≤ 1 + ρ+
1

100 log k
.

Now suppose 1− logity(F ;X) = ζ(X), then using min{1, β} ≤ 2
(
1− 1

1+β

)
, we have

min
{
1,

∑
i∈[k]\{y}

eFi(X)−Fy(X)
}
≤ 2ζ(X).

By (23) and our definition ofH(X), this implies that

min
{
1,

∑
i∈H(X)

eO(1)·(0.4Ψi−ρΨy,3−l̂−Ψy,l̂)
}
≤ 4ζ(X)

Now we define ϕ = E(X,y)∼Zdown,s
[1− logity(F ;X)], then

E(X,y)∼Zdown,s

min
{
1,

∑
i∈H(X)

eO(1)·(0.4Ψi−ρΨy,3−l̂−Ψy,l̂)
} ≤ 4ϕ

=⇒E(X,y)∼Zdown,s

 ∑
i∈H(X)

min
{1
k
, eO(1)·(0.4Ψi−ρΨy,3−l̂−Ψy,l̂)

} ≤ 4ϕ.

It equals to∑
j∈[k]

∑
i∈[k]

I{i ̸=j}E(X,y)∼Zdown,s
[I{j=y}I{i∈H(X)}] min

{1
k
, eO(1)·(0.4Ψi−ρΨy,3−l̂−Ψy,l̂)

}
≤ 4ϕ.

Note that for every i ̸= j ∈ [k], the probability of choosing a single-view sample (X, y) fromZdown,s

with y = j and i ∈ H(X) is at least Ω
(
1
k ·

s2

k2

)
. This implies∑

j∈[k]

∑
i∈[k]\j

min
{1
k
, eO(1)·(0.4Ψi−ρΨy,3−l̂−Ψy,l̂)

}
≤ Õ

(k3
s2
ϕ
)
.

Finally, using 1− 1
1+β ≤ min{1, β}, for every (X, y) ∼ Zdown,s, we have

1− logity(F ;X) ≤ min
{
1,
∑

i∈[k]\y

2eO(1)·(0.4Ψi−ρΨy,3−l̂−Ψy,l̂)
}

≤ k ·
∑

i∈[k]\y

min
{1
k
, eO(1)·(0.4Ψi−ρΨy,3−l̂−Ψy,l̂)

}
≤ Õ

(k4
s2
ϕ
)
.

This implies that when E(X,y)∼Zdown,s

[
(1− logity(F ;X))

]
≤ 1

k5 , we have

0.4Ψi − ρΨy,3−l̂ −Ψy,l̂ ≤ −Õ(1).

As we have proved in Section F.3.3 that

E(X,y)∼Zdown

[
(1− logity(F ;X))

]
≤ 1

poly(k)
,

We could set Tdown ≥ Õ
(

k7

η1η2

)
and then based on Lemma F.3.4, we have

Pr
(X,y)∈D

[
Fy(X) ≥ max

j ̸=y
Fj(X) + Õ(1)

]
≥ 1− e−Ω(log2 k).
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G Extensions on Other MRP Methods

We have prove that Theorem B holds in the above sections, which means that under the Teacher-
Student Framework, the pretraining phase can capture all semantics. In this section, we extend our
proof methods to other popular mask-reconstruction pretraining methods. Here we mainly consider
the masked autoencoder (MAE) structure [1]. For simplicity of analysis, we set the weights of the
decoder as the copy of encoder weights and add a linear layer with bi = c(θ), i ∈ [P ] to finally obtain
the recovered patches. The explicit framework is shown in Fig. 7. Denote the position encoding of

. . . . .

. . . . .

. . . . .

Encoder Decoder

. . . . .

Figure 7: Masked Autoencoder

patch p as ep ∈ RP , where at position p the element equal to 1, otherwise the element equal to 0.
Recall that ϵX = (ϵ1x1, ϵ2x2, . . . , ϵPxP ). Under this framework, the loss function is

L(H;X, ϵ) =
1

2

∑
p∈[P ]

∥∥xp − c(θ) ∑
r∈[km]

wrReLU(⟨wr, e
T
p ϵX⟩)

∥∥2
2

=
1

2

∑
p∈[P ]

∥∥xp − c(θ) ∑
r∈[km]

wrReLU(⟨wr, ϵpxp⟩)
∥∥2
2

and

L(H;X) = Eϵ[L(H;X, ϵ)] =
1

2

∑
p∈[P ]

∥∥xp − ∑
r∈[km]

wrReLU(⟨wr, xp⟩)
∥∥2
2

+
1

2

(
1− θ
θ

) ∑
p∈[P ]

∥∥ ∑
r∈[km]

wrReLU(⟨wr, xp⟩)
∥∥2
2
.

Denote

Ar,p(X) = ReLU(⟨wr, xp⟩) + ReLU
′
(⟨wr, xp⟩)[⟨wr, xp⟩]+.

We have that

Fact 2.2. Given the data point (X, y) ∈ D, for every wr, r ∈ [km],

−∇wrL(X) =
∑
p∈[P ]

Ar,p

xp − 1

θ

∑
r′∈[km]

wr′ReLU(⟨wr′ , xp⟩)

 .

To prove that under MAE framework, the pretraining can also capture all semantics, we have the
same induction hypothesis as Induction Hypothesis B but now the parameter assumption is a little
different. Our new assumptions are shown as follows: [Parameter Assumption: MAE framework]
The parameters introduced in the paper need to satisfy the following conditions:
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• ϱ is the threshold for the smoothed ReLU activation. We assume ϱ = 1
polylog(k) .

• q ≥ 4 and σq−2
0 ≤ 1

k .

• γ controls feature noise. γ ≤ Õ
(
σ0

k

)
.

• s controls feature sparsity. s = Θ(polylog(k)).

• N ≥ ω̃
(

k

σq−1
0

)
,
√
d ≥ ω̃(k/σq−1

0 ), and P ≤ σ−q+1/2
0 .

• polylog(k) ≤ m ≤
√
k.

• η ≥ 1
kq(q−2) and η ≤ 1

poly(k) .

• c(θ) = 1
θ .

Now we have the following result on the semantic learning process of MAE. [Semantic learning
process of MAE] Suppose Assumption G holds. By running the gradient descent step based on
gradient Fact. 2.2 with learning rate η ≤ 1

poly(k) , after T = poly(k)
η iterations, for sufficiently large

k > 0, Induction Hypothesis B holds for all iterations t = 0, 1, . . . , T with high probability. See its
proof in Appendix G.2.5. Similarly, we also have the result about the performance on downstream
classification tasks shown as follows. [Performance on downstream classification tasks under MAE
pretraining] For N2 ≥ k many samples, setting the learning rate η2 = Θ(k) and η1 ≤ Θ̃(k), after
Tdown ≥ poly(k)

η1η2
many iterations, with high probability, we have

(a) (training loss is small) for every (X, y) ∈ Zdown, i.e.,

Ldown(F ) = E(X,y)∼Zdown
[Ldown(F ;X, y)] ≤

1

poly(k)
.

(b) (test performance is good) for new data point (X, y) ∼ D, the test performance is

Pr
(X,y)∈D

[
Fy(X) ≥ max

j ̸=y
Fj(X) + Õ(1)

]
≥ 1− e−Ω(log2 k).

See its proof in Appendix G.2.6. Theorem G guarantees that under MAE pretraining, the pretrained
convolution kernels can capture all discriminative semantics in the data and each convolution kernel
only grab at most one discriminative semantic. Such a result accords with the result of MRP in
Theorem 1 of the manuscript. Please refer to more detailed discussion and analysis of Theorem 1
in manuscript. We also note that the assumptions under MAE framework are more strict than the
assumptions of Teacher-Student framework. In the assumptions of MAE, we need q ≥ 4, which means
we need to let the low-magnitude feature noises to be compressed much much smaller in order that we
can separate the true feature from feature noises. Then Theorem G shows that as we have captured
all semantics in the MAE pretraining phase, we can also obtain 100% accuracy with high probability
in the downstream classification tasks. Therefore, compared with supervised learning, MAE also
shows better performance on classification downstream task. This result shows the generality of our
analysis framework.

To prove Theorem G and Theorem G, we mainly follow the similar framework used to prove
Theorems 1 and Theorem 2 in the manuscript. To begin with, we first prove some auxiliary theories
based on which one can easily prove the desired results.

G.1 Some Results from Induction Hypothesis B under MAE

We first introduce some claims about the terms in the gradients. Suppose Assumption G and
Induction Hypothesis B holds at iterations t. Then for every r ∈M(0)

i,l , we have

• if p ∈ Pvi,l(X),

Ar,p(X) = Ivi,l∈V(X)ReLU(⟨wr, xp⟩) + Ivi,l∈V(X)ReLU
′
(⟨wr, xp⟩)[⟨wr, xp⟩]+.

• if p ∈ P(X) \ Pvi,l(X),

Ar,p(X) ≈ Õ(σq
0).
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• if p ∈ [P ] \ P(X),

Ar,p(X) ≈ Õ((σ0γk)
q).

We also denote

∆p(X) = xp −
1

θ

∑
r′∈[km]

wr′ReLU(⟨wr′ , xp⟩).

Suppose Assumption G and Induction Hypothesis B holds at iterations t,

• When p ∈ Pvi,l(X), we have

⟨∆p(X), vi,l⟩ = zpIvi,l∈V(X) −
1

θ

∑
r′∈M(0)

i,l

⟨wr′ , vi,l⟩Ivi,l∈V(X)ReLU(⟨wr′ , xp⟩)−
∑

r′ /∈M(0)
i,l

Õ(σ0)Õ(σq
0)

= zpIvi,l∈V(X) −
1

θ

∑
r′∈M(0)

i,l

⟨wr′ , vi,l⟩Ivi,l∈V(X)ReLU(⟨wr′ , xp⟩)± Õ(σ
q− 1

2
0 ).

• When p /∈ Pvi,l(X) but p ∈ Pvj,l′ (X) for vj,l′ ̸= vi,l, we have

⟨∆p(X), vi,l⟩ = γ ± Õ(σ
q− 1

2
0 )±

∑
r′∈M(0)

i,l

⟨wr′ , vi,l⟩Õ(σq
0)±

∑
r′∈M(0)

j,l′

Ivj,l′∈V(X)Õ(σ0)ReLU(⟨wr′ , xp⟩).

• When p ∈ [P ] \ P(X), we have

⟨∆p(X), vi,l⟩ = γ ± Õ(σq+1
0 (γk)q)±

∑
r′∈M(0)

i,l

⟨wr′ , vi,l⟩Õ((σ0γk)
q).

Now we have some claims for the gradients. The proof is just based on the result from Claim G.1 and
Claim G.1. Suppose Assumption G and Induction Hypothesis B holds at iterations t. Then for every
vi,l ∈ V , for every r ∈M(0)

i,l , for every (X, y) ∈ Z , we have

(a)

−⟨∇wrL(X), vi,l⟩

=
∑

p∈Pvi,l
(X)

Ar,p

zpIvi,l∈V(X) −
1

θ

∑
r′∈M(0)

i,l

⟨wr′ , vi,l⟩Ivi,l∈V(X)ReLU(⟨wr′ , xp⟩)


± γÕ(σq

0)± Õ(σ
2q−1/2
0 )± Õ((σ2q+1

0 )(γk)2q) · P

(b) for vj,l′ ̸= vi,l,

−⟨∇wr
L(X), vj,l′⟩

= ±
∑

p∈Pvi,l
(X)

Ar,p(γ + Õ(σ
q− 1

2
0 ))± γÕ(σq

0)± Õ(σ
2q−1/2
0 )± Õ((σ2q+1

0 )(γk)2q) · P

+
∑

p∈Pv
j,l′

(X)

Õ(σq
0)

zpIvj,l′∈V(X) −
1

θ

∑
r′∈M(0)

j,l′

⟨wr′ , vj,l′⟩Ivj,l′∈V(X)ReLU(⟨wr′ , xp⟩)

 .

Intuitions on Claim G.1. From Claim G.1, we can find that the positive-correlation gradient
−⟨∇wrL(X), vi,l⟩ has a non-small term that drive the correlation between wr and vi,l when r ∈
M(0)

i,l to increase during the training courses. How the correlation increase will be shown in Claim G.1
in the following. On the other hand, the negative correlations will keep small as the negative-
correlation gradients −⟨∇wr

L(X), vj,l′⟩ always have small terms. These intuitions are same as the
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intuitions under Teacher-Student Framework and thus we could also prove that MAE pretraining
could also capture all semantics.

Now we have the following claim shows about at which iteration Λ
(t)
i,l will be greater than ϱ. Suppose

Assumption B holds and induction hypothesis B holds at iteration t. For every vi,l, suppose Λ(t)
i,l ≤ ϱ.

Then we have

Λ
(t+1)
i,l ≈ Λ

(t)
i,l + Θ̃

(η
k

)
ReLU(⟨wr, vi,l⟩).

Proof of Claim G.1. Recall that Λ(t)
i,l := maxr∈[km][⟨w

(t)
r , vi,l⟩]+. We choose any r ∈ [km] that

makes ⟨w(t)
r , vi,l⟩ ≥ Ω̃(σ0). Now we show the updates. We know that

⟨w(t+1)
r , vi,l⟩ = ⟨w(t)

r , vi,l⟩+ ηE(X,y)∼Z [⟨−∇wr
L(X), vi,l⟩]

Using Claim G.1 and following the similar method in the proof of Claim D.1, we have

−⟨∇wr
L(X), vi,l⟩ =

∑
p∈Pvi,l

(X)

Ar,p

zpIvi,l∈V(X) −
1

θ

∑
r′∈M(0)

i,l

⟨wr′ , vi,l⟩Ivi,l∈V(X)ReLU(⟨wr′ , xp⟩)


= Ivi,l∈V(X)ReLU(⟨wr, vi,l⟩)

1− (1/θ)
∑

r′∈M(0)
i,l

ReLU(⟨wr′ , vi,l⟩)⟨wr′ , vi,l⟩


×

∑
p∈Pvi,l

(X)

(1 + q)zq+1
p .

As the term (1/θ)
∑

r′∈M(0)
i,l

ReLU(⟨wr′ , vi,l⟩)⟨wr′ , vi,l⟩ is small at the intial stage compared with

the constant 1, we have

Λ
(t+1)
i,l ≈ Λ

(t)
i,l + Θ̃

(η
k

)
ReLU(⟨wr, vi,l⟩).

Using Claim D.2.1, and Ω̃(σ0) ≤ Λ
(0)
i,l ≤ Õ(σ0), we have the following result: Suppose Assump-

tion G holds and Induction Hypothesis B holds for every iteration. Define T0 := Θ̃
(

k

ησq−1
0

)
. We

have that when t ≥ T0, it satisfies Λ(t)
i,l ≥ Θ

(
1

polylog(k)

)
.

G.2 Proof of Theorem G

G.2.1 Diagonal correlations

Suppose Assumption G holds and Induction Hypothesis B holds for all iterations < t. We have

∀vi,l ∈ V : Λ
(t)
i,l ≤ min

{√
θ

|M(0)
i,l |

, Õ(1)

}
.

Proof. Suppose we are now at some iteration t > T0. In this stage, Λ(t)
i,l ≥ 1/polylog(k). As

T0 = Θ̃
(

k

ησq−1
0

)
and η ≤ 1

poly(k) , we have

−⟨∇wr
L(X), vi,l⟩ =

∑
p∈Pvi,l

(X)

Ar,p

zpIvi,l∈V(X) −
1

θ

∑
r′∈M(0)

i,l

⟨wr′ , vi,l⟩Ivi,l∈V(X)ReLU(⟨wr′ , xp⟩)


= Ivi,l∈V(X)[⟨wr, vi,l⟩]+

1− (1/θ)
∑

r′∈M(0)
i,l

⟨wr′ , vi,l⟩2

 ∑
p∈Pvi,l

(X)

2z2p.
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Then we have

[⟨w(t+1)
r , vi,l⟩]+ ≤ [⟨w(t)

r , vi,l⟩]+ + Õ
(η
k

)
[⟨w(t)

r , vi,l⟩]+

Taking the maximum on both side and as we are at t > T0, we have

max
r∈M(0)

i,l

[⟨w(t+1)
r , vi,l⟩]+ ≤ max

r∈M(0)
i,l

[⟨w(t)
r , vi,l⟩]+

(
1 + Õ

(η
k

))
.

When t ≤ T = T0 + Õ
(
k
η

)
, we have

Λ
(t)
i,l ≤ Õ(1).

Besides, we also need

1− (1/θ)
∑

r′∈M(0)
i,l

⟨wr′ , vi,l⟩2 ≥ 0,

which means

Λ
(t)
i,l ≤

√
θ

|M(0)
i,l |

.

This condition shows that when Λ
(t)
i,l →

√
θ

|M(0)
i,l |

, the increase on the positive correlations tends to

zero and the training process becomes to converge.

Suppose Assumption G holds and Induction Hypothesis B holds for all iterations < t. We have

∀vi,l ∈ V,∀r ∈M(0)
i,l : ⟨w(t)

r , vi,l⟩ ≥ −Õ(σ0).

Proof. We start with any iteration t that is ⟨w(t)
r , vi,l⟩ ≤ −Ω̃(σ0) to see how negative the next

iteration will be. Without loss of generality, we consider the case when ⟨w(t′)
r , vi,l⟩ ≤ −Ω̃(σ0) holds

for every t′ ≥ t. Then based on Claim G.1 and when we assum ⟨w(t′)
r , vi,l⟩ ≤ −Ω̃(σ0), Ar,p = 0,

we have

⟨w(t+1)
r , vi,l⟩ ≥ ⟨w(t)

r , vi,l⟩ − γÕ(σq
0)− Õ(σ

2q−1/2
0 )− Õ((σ2q+1

0 )(γk)2q) · P.

When t ≤ T0, we have

⟨w(t+1)
r , vi,l⟩ ≥ ⟨w(t)

r , vi,l⟩ − γÕ(σq
0)− Õ(σ

2q−1/2
0 )− Õ((σ2q+1

0 )(γk)2q) · P

≥ −Õ(σ0)− ηT0(γÕ(σq
0) + Õ(σ

2q−1/2
0 ) + Õ((σ2q+1

0 )(γk)2q) · P )
≥ −Õ(σ0).

When t ∈ [T0, T ], we have

⟨w(t+1)
r , vi,l⟩ ≥ ⟨w(T0)

r , vi,l⟩ − η(γÕ(σq
0) + Õ(σ

2q−1/2
0 ) + Õ((σ2q+1

0 )(γk)2q) · P )

≥ −Õ(σ0)− η(T − T0)(γÕ(σq
0) + Õ(σ

2q−1/2
0 ) + Õ((σ2q+1

0 )(γk)2q) · P )
≥ −Õ(σ0).

G.2.2 Off-diagonal correlations

Suppose Assumption G holds and Induction Hypothesis B holds for all iterations < t. Then

∀vi,l ∈ V,∀r ∈M(0)
i,l , for vj,l′ ̸= vi,l : |⟨w(t)

r , vj,l′⟩| ≤ Õ(σ0).
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Proof. Stage I. We first consider the stage when t ≤ T0. For every r ∈M(0)
i,l , using Claim G.1, we

have

E(X,y)∼Z [−⟨∇wr
L(X), vj,l′⟩]

≤ E(X,y)∼Z

 ∑
p∈Pvi,l

(X)

Ar,p

 (γ + Õ(σ
q− 1

2
0 )) + γÕ(σq

0) + Õ(σ
2q−1/2
0 ) + Õ((σ2q+1

0 )(γk)2q) · P + Õ(σq
0)

× E(X,y)∼Z

 ∑
p∈Pv

j,l′
(X)

zpIvj,l′∈V(X) −
1

θ

∑
r′∈M(0)

j,l′

⟨wr′ , vj,l′⟩Ivj,l′∈V(X)ReLU(⟨wr′ , xp⟩)




≤ Θ̃

(
1

k

)
ReLU(⟨wr, vi,l⟩)(γ + Õ(σ

q− 1
2

0 )) + Õ

(
σq
0

k

)
.

From Claim G.1, we have that

Θ̃
(η
k

) T0−1∑
t=0

ReLU(⟨w(t)
r , vi,l⟩) = Λ

(T0)
i,l − Λ

(0)
i,l ≤

1

polylog(k)
.

Thus, when t ≤ T0,

|⟨w(t)
r , vj,l′⟩| ≤ |⟨w(0)

r , vj,l′⟩|+ γ + Õ(σ
q− 1

2
0 ) + T0Õ

(
ησq

0

k

)
≤ Õ(σ0).

Stage II. When t ∈ [T0, T ], we have

|⟨w(t)
r , vj,l′⟩| ≤ |⟨w(T0)

r , vj,l′⟩|+ Õ

(
η(T − T0)

k

)
· (ReLU(⟨wr, vi,l⟩)(γ + Õ(σ

q− 1
2

0 )) + Õ (σq
0))

≤ Õ(σ0).

G.2.3 Lottery winning: kernels insideM(0)
i,l

Suppose Assumption G holds and Induction Hypothesis B holds for all iterations < t. Then

∀vi,l ∈ V,∀r /∈M(0)
i,l : ⟨w(t)

r , vi,l⟩ ≤ Õ(σ0).

Proof. When r ∈M(0)
j,l′ , (vj,l′ ̸= vi,l), we have prove that ⟨w(t)

r , vi,l⟩ ≤ Õ(σ0) in Lemma G.2.2. So

we only prove the case when r /∈ ∪i∈[k],l∈[2]M
(0)
i,l .

We assume that there exists an wr′ /∈ ∪i∈[k],l∈[2]M
(0)
i,l such that induction hypothesis B (a)-(c) holds

for every (X, y) ∈ Z . We want to see if the sequence ⟨w(t)
r′ , vi,l⟩ will increase more quickly than

max
r∈M(0)

i,l

⟨w(t)
r , vi,l⟩.

Stage I. We first consider when t ≤ T0. In this stage, Λ(t)
i,l ≤ ϱ. We define two sequences. First, we

take wr∗ = argmax
r∈M(0)

i,l

⟨w(0)
r , vi,l⟩ and define xt := ⟨w(t)

r∗ , vi,l⟩ ·
(

s
qk

)1/(q−1) 1
ϱ . We also define

yt = max{⟨w(t)
r′ , vi,l⟩ ·

(
s
qk

)1/(q−1) 1
ϱ , σ0}. From Claim G.1, when t ≤ T0, we have that

⟨w(t+1)
r∗ , vi,l⟩ = ⟨w(t)

r∗ , vi,l⟩+Θ
(sη
k

)
ReLU(⟨w(t)

r∗ , vi,l⟩)

≥ ⟨w(t)
r∗ , vi,l⟩+Θ

(sη
k

) 1

qϱq−1
([⟨wr∗ , vi,l⟩]+)q.
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Let S =
(

1+C/(log(k)−C)
1+1/ log(k)

)q−2

, C > 1. We have

⟨w(t+1)
r′ , vi,l⟩ = ⟨w(t)

r′ , vi,l⟩+Θ
(sη
k

)
ReLU(⟨w(t)

r′ , vi,l⟩)

≤ ⟨w(t)
r′ , vi,l⟩+Θ

(sη
k

) 1

qϱq−1
([⟨w(t)

r′ , vi,l⟩]
+)qS.

Then following the same process as the proof of Lemma E.3, we have

⟨w(t)
r′ , vi,l⟩ ≤ Õ(σ0).

The proof of Stage II is also similar to Lemma E.3.

G.2.4 Noise correlation

As our noise correlation result is similar to Lemma E.4, we don’t repeat it here but just prove it holds
under MAE framework and under our new parameter assumptions.

Proof of Lemma E.4 under MAE framework. For every r ∈ [km], for every (X∗, y∗) ∈ Z and every
p∗ ∈ [P ], we have that

⟨−∇wr
L(X), ξp∗⟩ =

∑
p∈[P ]

Ar,p

⟨xp, ξp∗⟩ − 1

θ

∑
r′∈[km]

⟨wr′ , ξp∗⟩ReLU(⟨wr′ , xp⟩)

 .

When X ̸= X∗, we have |⟨xp, ξp∗⟩| ≤ Õ(σp) ≤ o(1/
√
d); and when X = X∗ but p ̸= p∗, we have

|⟨xp, ξp∗⟩| ≤ Õ(σp) ≤ o(1/
√
d). Therefore, we have

E(X,y)∼Z

[
⟨−∇wr

L(X), ξp∗⟩
]
= E(X,y)∈Z

[
IX=X∗⟨−∇wr

L(X), ξp∗⟩+ IX ̸=X∗⟨−∇wr
L(X), ξp∗⟩

]
.

Now we begin to prove (a). For every vi,l ∈ V , for every r ∈M(0)
i,l , for every p∗ ∈ Pvi,l(X

∗), using
the induction hypothesis B, when t ∈ [0, T0], we have that for the first term,

E(X,y)∼Z

[
IX=X∗⟨−∇wr

L(X), ξp∗⟩
]

=
1

N
E(X∗,y∗)∼Z

Ar,p∗

⟨xp∗ , ξp∗⟩ − 1

θ

∑
r′∈[km]

⟨wr′ , ξp∗⟩ReLU(⟨wr′ , xp∗⟩)

± o( 1√
d

)
± õ(σ0)ReLU(Λ(t)

i,l )


For the second term,

E(X,y)∼Z

[
IX ̸=X∗⟨−∇wr

L(X), ξp∗⟩
]
= ±o

(
1√
d

)
± õ(σ0)ReLU(Λ

(t)
i,l )

Thus, we have

⟨w(t+1)
r , ξp∗⟩ ≤ ⟨w(t)

r , ξp∗⟩+ Õ
( η
N

)
õ(σ0)ReLU(Λ

(t)
i,l ) + o

(
η√
d

)
+ õ(ησ0)ReLU(Λ

(t)
i,l ),

Now we use the results from Lemma G.2.1, when t ≤ T0,

⟨w(t)
r , ξp∗⟩ ≤ ⟨w(t−1)

r , ξp∗⟩+ õ(ησ0)ReLU(Λ
(t)
i,l ) + o

(
η√
d

)
≤ ⟨w(0)

r , ξp∗⟩+ õ(ησ0)

T0−1∑
t=0

ReLU(Λ
(t)
i,l ) + o

(
ηT0√
d

)
≤ õ(σ0).

So when N ≥ ω̃
(

k

σq−1
0

)
and
√
d ≥ ω̃(k/σq−1

0 ), we have ⟨w(t)
r , ξp∗⟩ ≤ õ(σ0). Therefore, for

t ∈ [T0, T ], we have

⟨w(t)
r , ξp∗⟩ ≤ ⟨w(T0)

r , ξp∗⟩+ Õ

(
η(t− T0)

N

)
+ o

(
η(t− T0)√

d

)
≤ õ(σ0),

when
√
d ≥ ω̃(k). Following the similar process, we could also prove (b)-(e).
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G.2.5 Proof of Theorem G

Theorem G can be easily obtained following the similar steps in the proof of Theorem B when we
have Lemma G.2.1-Lemma G.2.3.

G.2.6 Proof of Theorem G

Theorem G can be easily obtained following the same steps in the proof of Theorem F.1 in Section F.

G.3 Discussion on BEiT methods

We have proved that the pretraining phase can capture all semantics both under Teacher-Student
framework and MAE framework. Now we have a discussion on BEiT framework [20]. For BEiT, if
we regard the pretrained encoder of BEiT as a fixed teacher and stuck an additional layer to map the
patch token feature of BEiT encoder to discrete pseudo label, then this setting becomes very similar
to our setting. The only different is the BEiT encoder (teacher) is fixed, while our teacher encoder is
learned online (updated along with the weights of the student). Since there are a lot of similarities
between these two frameworks, our proof methods can naturally extend to BEiT with the suitable
choices of additional layers.

H Discussion on Other Downstream Tasks.

Besides classification downstream task, our conclusion could intuitively generalize to other down-
stream tasks, e.g. transfer learning and detection, because in the pretraiing phase, our encoder have
provably captured all semantic features in each images.

For transfer learning, the representative task is classification task Tcls [1, 21] which pretrains a model
on a large-scale unlabeled data Dpre and then fine-tunes the pretrained model on a classification
downstream dataset Dfine. Denote the semantic set of dataset Dfine as V ′. We discuss this transfer
learning case by case. 1) When the datasetsDfine andDpre share the same semantic set V ′ (i.e. V ′=V)
but can have different data distribution (e.g. different ratio of single- and multi-view data), following
the similar proof process of Theorem 2, the fine-tuned model can also obtain high classification
accuracy on downstream task Tcls. 2) If Dfine and Dpre share some semantics (i.e. V ′∩V ̸=∅), then
after pretraining, MRP still can capture all these shared semantics V ′∩V and the fine-tuning also grabs
these shared semantics as proved in Theorems 1 and 2. So for samples in Dfine with shared semantics,
MRP can improve their classification performance since MRP can well distinguish all these shared
semantics; for remaining samples in Dfine, the fine-tuning process would capture their semantics at
random and share the same semantic learning process with conventional supervised learning. Thus,
MRP can still improve the overall classification performance, especially for the practical case where
pretraining dataset Dpre is often much larger than downstream dataset Dfine and thus the semantics V
in Dpre indeed cover the semantics V ′ in Dfine (i.e. V ′⊂V).

For object detection downstream task, it has two targets: 1) finding the bounding boxes of possible
objects, and 2) classifying bounding boxes. For bounding box detection, since a) the encoder
pretrained by MRP can grab all semantics and b) the desired bounding boxes should contain semantics,
the encoder can detect the bounding boxes precisely, at least does not lose many bounding boxes of
objects. In contrast, supervised learning often randomly captures semantic features [13] and thus
cannot well detect bounding boxes. For the second target, i.e. classification, we can draw similar
results on the transformer learning classification task that MRP often performs better than supervised
learning. So by considering the advantages of MRP over supervised learning on the two targets in
object detection, MRP should expect better performance than supervised learning.
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