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Abstract

Self-supervised learning (SSL) shows impressive performance in many tasks lack-
ing sufficient labels. In this paper, we study SSL in time series anomaly detection
(TSAD) by incorporating the characteristics of time series data. Specifically, we
build an anomaly detection algorithm consisting of global pattern learning and
local association learning. The global pattern learning module builds encoder and
decoder to reconstruct the raw time series data to detect global anomalies. To
complement the limitation of the global pattern learning that ignores local asso-
ciations between anomaly points and their adjacent windows, we design a local
association learning module, which leverages contrastive predictive coding (CPC)
to transform the identification of anomaly points into positive pairs identification
in contrastive learning. Motivated by the observation that adjusting the distance
between the history window and the time point to be detected directly impacts
the detection performance in the CPC framework, we further propose a skip-step
CPC scheme in the local association learning module which adjusts the distance
for better construction of the positive pairs and detection results. The experimental
results show that the proposed algorithm achieves superior performance on multiple
benchmark datasets in comparison with 11 state-of-the-art algorithms.

1 Introduction
Time series anomaly detection (TSAD) is one of the challenging tasks in many real-world applications
like server monitoring, process control, influenza detection, and so on [1; 2; 3; 4; 5]. Traditional
methods usually use feature engineering to generate features and then design feature-based detec-
tion algorithms to achieve anomaly detection. As real systems become more and more complex,
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Figure 1: The model structure of the proposed time series anomaly detection algorithm, which
consists of two major modules: an autoencoder global pattern learning module and a skip-step
CPC-based local association learning module.

feature engineering becomes more difficult and traditional methods fail to achieve good detection
performance. Deep learning (DL) is a powerful technique for feature learning, which directly extracts
features from the data and reduces the efforts in the design of hand-crafted features. Generally,
building a successful deep learning model requires a large amount of labeled data. Unfortunately,
labeled anomaly data is very limited for time series data, which motivates us to seek a method for
anomaly detection using unlabeled data more effectively.

Recently, self-supervised learning (SSL), which allows for learning representations without ground-
truth labels, has exerted great power in the fields of computer vision and natural language processing.
Contrastive learning (CL) is an important branch of SSL, and it has been applied widely in image
classification tasks [6]. The key idea behind CL is to minimize the distance between similar samples
and maximize the distance between dissimilar samples. Similar samples are usually obtained through
data augmentation or context sampling, and such samples are defined as positive samples in CL. On
the contrary, dissimilar samples are negative samples. Recently, CL has also been adopted in time
series analysis. Due to the space limitation, we summarize the related work on time series anomaly
detection and the application of contrastive learning in time series in Appendix A.1.

In this paper, we investigate contrastive learning for time series anomaly detection. We observe
that due to the rarity of anomalies in time series, it is difficult to use anomaly points to construct
positive pairs in the contrastive learning framework straightforwardly. In other words, the contrastive
loss will be large when the constructed positive sample pairs contain anomaly points. Based on this
observation, we introduce contrastive predictive coding (CPC) [7] to the TSAD task. The CPC aims
to learn representations by predicting the future in latent space through a given history window. The
distance between history window and future time points is an important factor affecting the detection
results because different distances represent different positive pairs. Therefore, we study how positive
samples are constructed and propose a skip-step CPC that is more suitable for the TSAD task.

Based on the previous analysis, we propose a new TSAD algorithm consisting of two major modules:
an autoencoder (AE) global pattern learning module and a skip-step CPC-based local association
learning module. The global pattern learning module tries to reconstruct the raw data through an
encoder and a decoder, in which the anomaly points have significantly larger reconstruction errors. A
limitation of the global module is that it ignores local associations between anomaly points and their
adjacent windows. To address this issue, a local association learning module is designed to leverage
contrastive predictive coding (CPC) to transform the identification of anomaly points into positive
pairs identification tasks in contrastive learning. The final anomaly score is then calculated by fusing
the global anomaly score and local anomaly score, where each time point is determined as normal or
abnormal with a threshold.

2 Methodology
Suppose the time series samples has C measurements with length N , and we denote by X =
(x1,x2, . . . ,xN ) ∈ RN×C , where xt ∈ RC is the observation at time t. In time series anomaly
detection, our goal is to determine whether xt is an anomaly point. Figure 1 shows the structure of
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Figure 2: Illustration of the proposed skip-step CPC scheme: (a) constructing positive pairs with
different distances; (b) the strategy for calculating local contrastive score.

the proposed time series anomaly detection algorithm. First, a single 1-D convolutional layer maps
the input time point xt to embedding space ht = Conv1d(xt), where ht ∈ Rd. Next, a temporal
convolutional network (TCN) [8] is used to further map ht to more informative representation
zt = TCN(ht). Then, the model is divided into two branches. The first branch uses MLP as a
decoder to reconstruct the raw input xt, i.e., x̂t = MLP(zt). This branch learns global information
in the data, which makes anomaly points exhibit large reconstruction errors. However, this module
ignores the local associations between anomaly points and their adjacent windows, which is very
useful for determining whether a time point is normal or abnormal [9]. Therefore, we introduce
another new branch, called Skip-Step CPC, to capture the local association between a time point
and its adjacent time window. The second branch uses an autoregressive model to summarize the
historical window Wt in the new latent space and produces a context representation ct. Unlike the
original CPC, we found that keeping a certain distance between Wt and xt can better capture local
associations.

A simple illustration is shown in Figure 2(a). We define Wd
t to be a historical window with the

distance d from xt, where d represents the number of time points between the last time point of
Wt and xt. We expect that when xt is not an anomaly point, this branch maximizes the mutual
information between the xt and the context representation of Wd

t . On the contrary, if xt is an anomaly
point, it is difficult to extract the underlying patterns in common.

Both the AE-based and Skip-Step CPC-based branches are trained to jointly optimize the final loss as
L = LAE + LCPC . (1)

The first term in Eq. (1) is the reconstruction error loss, defined as

LAE =
1

NC

N∑
i=1

C∑
j=1

(xj
i − x̂j

i )
2, (2)

where xj
i is the ground truth and x̂j

i is the output of the AE-based branch. The second term in Eq. (1)
is the InfoNCE loss LCPC , which can maximize a lower bound of mutual information [7], defined as

LCPC = EX [− log
exp(zTt W

dcdt )∑
zj∈X exp(zTj W

dcdt )
], (3)

where X is a set of N random training samples. Each sample contains a history window and a time
point. The loss in Eq. (3) is the categorical cross-entropy of classifying the positive sample correctly.

Finally, the output anomaly score for xt is calculated by fusing global and local anomaly scores as
S(t) = Slocal(t) ∗ Sglobal(t). (4)

The global anomaly score for xt is calculated by reconstruction error, defined as
Sglobal(t) = (xt − x̂t)

2. (5)

The local anomaly score for xt is computed by the cross entropy loss, as shown in Figure 2(b).
Specifically, we first make a prediction z̄t = Wdcdt , then the distribution for the time point is
computed based on the similarity between the prediction x̄t and the representations of all time points
in the predefined windows Wp. Therefore, the local contrastive score is calculated as

Slocal(t) = − log
exp(zTt z̄t)∑

zj∈Wp
exp(zTj z̄t)

. (6)
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Table 1: Results of time series anomaly detection on three popular benchmark datasets. The best
results are highlighted.

Dataset SMD PSM MSL

Metric P R F1 P R F1 P R F1

Deep-SVDD 78.54 79.67 79.10 95.41 86.49 90.73 91.92 76.63 83.58
LSTM 78.55 85.28 81.78 76.93 89.64 82.80 85.45 82.50 83.95

CL-MPPCA 82.36 76.07 79.09 56.02 99.93 71.80 73.71 88.54 80.44
ITAD 86.22 73.71 79.48 72.80 64.02 68.13 69.44 84.09 76.07

LSTM-VAE 75.76 90.08 82.30 73.62 89.92 80.96 85.49 79.94 82.62
BeatGAN 72.90 84.09 78.10 90.30 93.84 92.04 89.75 85.42 87.53

OmniAnomaly 83.68 86.82 85.22 88.39 74.46 80.83 89.02 86.37 87.67
InterFusion 87.02 85.43 86.22 83.61 83.45 83.52 81.28 92.70 86.62

THOC 79.76 90.95 84.99 88.14 90.99 89.54 88.45 90.97 89.69
TS-CP2 87.42 66.25 75.38 82.67 78.16 80.35 86.45 68.48 76.42

AnomalyTrans 89.40 95.45 92.33 96.91 98.90 97.89 92.09 95.15 93.59
Ours 91.75 97.34 94.46 98.36 98.74 98.55 90.84 94.73 92.75
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Figure 3: Anomaly detection results at different distances in the proposed skip-step CPC scheme.

3 Experiments and Discussion
In this section, we evaluate our detection algorithm on three popular benchmark datasets with 11
DL-based baseline models. The detailed experimental settings are described in Appendix A.2 and the
results are summarized in Table 1. It can be observed that detection methods considering context
information of time series are more likely to achieve good performance, such as AnomalyTrans which
considers local associations. In summary, our proposed method achieves better performance than all
11 baseline models on datasets SMD and PSM, and achieves results close to the state-of-the-art on
the MSL dataset. The superiority of our model comes from incorporating both reconstruction-based
and prediction-based strategies from the global pattern and local context information perspectives to
make better decisions.

As aforementioned, adjusting the distance between the history window and the time point to be
detected in the proposed skip-step CPC scheme has a direct impact on the detection performance
in the proposed method. The underlying reason behind this is that the adjustment of the distance
essentially changes the construction of the positive pairs in the CPC framework. To illustrate it, we
conduct experiments with different distances on the three benchmark datasets and depict the results
in Figure 3. It can be observed that as the distance increases, the F1-score of SMD also increases,
and better detection performance is achieved when the distance is greater than 8. The best detection
performance for the MSL is obtained when the distance is 8. The F1-score of PSM increases first
and then remains stable, and it is least sensitive to distance. The results in Figure 3 show that we
need to set different distances to construct reasonable positive pairs under different datasets for better
anomaly detection results. Moreover, two different cases are provided in Appendix A.3 to further
illustrate the effect of different positive sample distances on anomaly detection results.

4 Conclusion and Future Work
This paper investigates the application of SSL for TSAD and we propose a new detection method that
combines the AE-based global pattern learning module and the skip-step CPC-based local association
learning module. The proposed method achieves superior performance to the state-of-the-art results.
In future, we plan to extend the current research, including the adaptive construction of positive and
negative samples and the theoretical basis of the combination of SSL and time series analysis.
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A Appendix

A.1 Related Works

A.1.1 time series Anomaly Detection

Time series anomaly detection is a very vital and challenging task in practice. Most methods use
the unsupervised learning paradigm because obtaining enough labeled data is time-consuming and
laborious. The methods can be roughly categorized into clustering-based, reconstruction-based,
prediction-based, and association-based.

The clustering-based methods detect anomalies by measuring the distance between time points and
normal pattern cluster centers. THOC [10] uses the fuses features from all intermediate layers of
dilated recurrent neural network by a differentiable hierarchical clustering mechanism and detects the
anomalies by a novel score that measures the distance in the multiple hyperspheres. The reconstruct-
based methods typically use an AE architecture to reconstruct the raw data and then detect anomalies
based on the reconstruction error [11; 12; 13]. For example, OmniAnomaly [11] captures the
normal patterns by learning their robust representations with stochastic variable connection and
planar normalizing flow and uses the reconstruction probabilities to determine anomalies. USAD
[13] proposes an encoder-decoder architecture within an adversarial training framework that allows
it to isolate anomalies while providing fast training. The prediction-based methods employ an
autoregressive model to predict the future time points and calculate the prediction error [14; 15].
For example, LNT [15] applies predictive contrastive learning (CPC) to produce good semantic
time series representations and makes predictions of the context at different time horizons. The
association-based method is a new anomaly detection approach that learns associations between a
time point and its adjacent time points. AnomalyTrans [9] proposes the transformer-based model
with a new designed anomaly-attention mechanism, which can model the prior-association and
series-association simultaneously to embody the association discrepancy, and the learned association
discrepancy is a criterion for detecting anomalies. NCAD [16] defines three kinds of windows, the
context window, the full window, and the suspect window. The model encodes the context window
and the full window using the same network and computes a distance score between them in the
embedding space. A high score is given if the instances with an anomaly are in the suspect window.
While the aforementioned algorithms mostly work in the time domain for anomaly detection, a recent
TFAD model [17] exploits both time and frequency domains, together with decomposition and data
augmentation mechanisms for performance improvement.

A.1.2 Supervised Contrastive learning in time series

As one of the SSL methods, CL has been widely adopted in time series analysis. Categorizing by the
generation of positive and negative samples, the paradigms roughly include the temporal-context-
based, augmentation-based, mixture-based, and time-frequency-based methods.

The idea behind the temporal-context-based methods [18; 19] is an assumption that given an anchor (a
window or a time point), the windows (or time points) adjacent to it are more likely to be the positive
samples. The windows (or time points) far away from it should be negative samples. Augmentation-
based methods employ data augmentation techniques to generate the required positive and negative
samples rather than sampling directly from the data. These methods basically follow the learning
paradigm of SimCLR [6], but design new augmentation approaches for time series data, such as DTW-
based augmentation [20] and randomly sample segments and exchange locations [21]. More data
augmentation approaches for time series can be found in [22]. The mixture-based methods combine
context-based and augmentation-based methods, making the model learn informative representations.
The recent works include TS2vec [23] and TSTCC [24]. The last method is the time-frequency based
method that applies the CL framework not only in the time domain but also in the frequency domain.
BTSF [25] incorporates the spectral information in feature representation and devises a novel iterative
bilinear temporal-spectral fusion to explicitly encode the affinities of abundant time-frequency pairs.
CoST [26] is a new representation learning framework that comprises both time domain and frequency
domain contrastive losses to learn discriminative trends and seasonal representations.
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A.2 Experimental Settings

We evaluate our method on three datasets. (1) SMD (Server Machine Dataset) [11] is a new 5-
week-long dataset and is collected from a large Internet company with 38 dimensions. (2) MSL
(Curiosity) [14] is a spacecraft anomaly detection dataset and it has 55 dimensions. (3) PSM (Pooled
Server Metrics) [27] is collected internally from multiple application server nodes at eBay with
26 dimensions. We use random sampling to obtain training samples, and each sample contains a
historical window and a future window. The historical window is with a fixed size of 50 and the
future window is set to 20 for all datasets. The time points are labeled as anomalies if their anomaly
scores are larger than the predefined threshold θ. The widely-used adjustment strategy [11; 9] that an
anomaly segment is considered correctly detected as long as any point in this segment is detected
is adopted in this paper. We use precision P , recall R, and F1-score F1 as evaluation metrics.
F1-score is the harmonic mean of precision and recall. A high value indicates better performance.
We compare our model with 11 DL-based methods, including Deep-SVDD , LSTM , CL-MPPCA ,
ITAD , LSTM-VAE , BeatGAN , OmniAnomaly , InterFusion , THOC, TS-CP2, and AnomalyTrans.
The results of the baselines are collected from [9].

A.3 Case analysis

We take the most distance-sensitive dataset as an example, i.e., SMD. The distances are set to 0 and
19, respectively. The first is the false negative and false positive detection case as shown in Figure 4.
We observe that local contrastive scores exhibit different patterns at anomaly locations when different
distances of positive samples are given. Although the reconstruction error score is correct when the
distance is 0, the wrong local score leads to false negative detection. on the contrary, the local score
is correct when the distance is 19, which means the model learns the correct pattern. If we only use
the global reconstruction score, it would result in a false positive detection (a spike with right circles
in Figure 4). Therefore, the correct local contrastive score and correct global reconstruction score
amplify the final anomaly score, making the anomalous time points easier to detect. The second is a
case that contains both true detection and false positive detection, as shown in Figure 5. In this case,
we observed that although the local detection module provides the correct score at distance 0, it also
leads to excessively large scores (spikes with right circles) elsewhere, detecting some normal points
as anomaly points. However, the local anomaly score only shows a larger value at the location of the
anomaly when the distance is 19.
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Figure 4: Case 1 of the distance studies in the proposed skip-step CPC scheme. Left figure: false
negative around time index 110 and false positive around time index 180 under distance=0. Right
figure: the correct results are obtained under distance=19.
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