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Abstract

In self-supervised learning, multi-granular features are heavily desired though
rarely investigated, as different downstream tasks (e.g., general and fine-grained
classification) often require different or multi-granular features, e.g. fine- or
coarse-grained one or their mixture. In this work, for the first time, we propose an
effective MUIti-Granular Self-supervised learning (Mugs) framework to explic-
itly learn multi-granular visual features. Mugs has three complementary granular
supervisions: 1) an instance discrimination supervision (IDS), 2) a novel local-
group discrimination supervision (LGDS), and 3) a group discrimination super-
vision (GDS). IDS distinguishes different instances to learn instance-level fine-
grained features. LGDS aggregates features of an image and its neighbors into a
local-group feature, and pulls local-group features from different crops of the same
image together and push them away from others. It provides complementary in-
stance supervision to IDS via an extra alignment on local neighbors, and scatters
different local-groups separately to increase discriminability. Accordingly, it helps
learn high-level fine-grained features at a local-group level. Finally, to prevent
similar local-groups from being scattered randomly or far away, GDS brings sim-
ilar samples close and thus pulls similar local-groups together, capturing coarse-
grained features at a group level. By only pretraining on ImageNet-1K, Mugs sets
new SoTA linear probing accuracy 82.1% on ImageNet-1K and improves previous
SoTA by 1.1%. It also surpasses SoTAs on other tasks, e.g. detection.

1 Introduction

The family of self-supervised learning (SSL) approaches [4, 8,9, 12, 19, 21, 24] aims to learn highly
transferable unsupervised representation for various downstream tasks by training deep models on
a large-scale unlabeled dataset. To this end, a pretext task, e.g. jigsaw puzzle [29], is elaborately
designed to generate pseudo labels of unlabeled visual data which are then utilized to train a model.
Since unlabeled visual data are of huger amount and also much cheaper than the manually annotated
data, SSL has been very popularly adopted for visual representation learning recently [4, 8, 18, 19,
21, 26, 44], and is showing greater potential than supervised learning approaches for representation
learning.

Motivation. In practice, various downstream tasks in SSL field often require different granular fea-
tures, e.g. coarse- or fine-grained features. For instance, general classification downstream tasks
distinguish a category from other categories and typically desire coarse-grained features, while fine-
grained classification often discriminates subordinate categories and needs more fine-grained fea-
tures. Actually, many downstream tasks highly desire multi-granular features. Take the classifica-
tion task on ImageNet-1K [16] as an example. One needs coarse-grained features to distinguish a big
category, e.g. dog, from other categories, e.g. bird and car, and also requires fine-grained features to
discriminate different subordinate categories, e.g. Labrador and poodle in the dog category. But this
important multi-granularity requirement is ignored in the current state-of-the-art SSL approaches,
including contrastive learning family [21, 23] and clustering learning family [3, 7].
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Figure 1: Overall framework of Mugs. (a) shows the overall framework. For each image, Mugs
respectively feeds its two crops into backbones of student and teacher. Next, it uses three granular
supervisions from instance, local-group and group levels. “sg” denotes stop-gradient. (b) shows the
pipeline of local-group modules in both student and teacher. It averages all patch tokens, and then
finds top-k neighbors from memory buffer. Next, it uses a transformer to aggregate the average and
its k neighbors to obtain a local-group feature (class token) and feeds it into a local-group head.

Contributions. In this work, we propose an effective MUIti-Granular Self-supervised learning
(Mugs) framework to explicitly learn multi-granular visual features. It adopts three complementary
granular supervisions: 1) instance discrimination supervision (IDS), 2) local-group discrimination
supervision (LGDS), and 3) group discrimination supervision (GDS). IDS distinguishes instances
via scattering different instance features separately, and thus supervises instance-level fine-grained
feature learning. To capture the higher-level fine-grained feature which is also called the “local-
group feature”, Mugs proposes a novel and effective LGDS. LGDS aggregates the features of an
instance and its few highly similar neighbors into a local-group feature through a small transformer.
Then it brings local-group features of different crops from the same image together and pushes them
far away for others. LGDS provides complementary instance supervision to IDS, since it enforces
different crops of the same image to have highly similar neighbors, which is an extra challenging
alignment; 2) it encourages highly similar instances to constitute small local-groups and scatters
these groups separately, enhancing discrimination. Finally, GDS is designed to avoid the cases that
similar local-groups are scattered randomly or far away. GDS brings similar samples together and
thus pulls similar local-groups close, capturing coarse-grained features at a (semantic) group level.
With these supervisions, Mugs learns multi-granular features which often enjoy better generality
and transferability on diverse downstream tasks than single-granular features.

By only pretraining on ImageNet-1K, our Mugs sets a new state-of-the-art (SoTA) 82.1% linear
probing accuracy on ImageNet-1K and surpasses the previous SoTA, i.e. iBOT [43], by a large
margin 1.1%. Besides, on several downstream tasks, e.g. detection, Mugs also beats previous SoTAs.

2 Multi-granular self-supervised learning

Overall Framework. We propose a simple but effective Mugs framework to learn multi-granular
features which can better satisfy different granular feature requirements of various downstream tasks
and thus enjoy higher transferability and generality than single-granular features. As shown in Fig. 1
(), given an image &, Mugs uses augmentations 7' and 7° to obtain its two crops z; and x5. Next,
it respectively feeds «; and @2 into the teacher and student backbones, and obtains their correspond-
ing features y; and y2 which contain class and patch tokens. Finally, Mugs builds three granu-
lar supervisions: 1) instance discrimination supervision for instance-level fine-grained features, 2)
local-group discrimination supervision for high-level fine-grained features at a local-group level, 3)
group discrimination supervision for coarse-grained semantic features at a (semantic) group level.
Accordingly, Mugs can learn multi-granular features and better handles as many downstream tasks
as possible, in contrast with SSL. methods that only consider single-granular features, e.g. MoCo
for instance discriminative fine-grained features and deepclustering/DINO for group-discriminative
coarse-grained features.

Instance discrimination supervision (IDS). With this supervision, Mugs regards each instance as
a unique class which is our finest level of granularity. Accordingly, it pulls the random crops of the



same instance together and pushes other crops away via the following InfoNCE (MoCo) loss [30]
eXp(COS(Zl,ZQ)/Tm) (1)
exp(cos(z1, z2)/Tin) + ZzeBinexp(Cos(zg, 2)/Tin)’

where y§/ y5 is class token in y1/y2, z1 = ki, (y{), 22 = pin(hi,(y5)) with heads hj, and k. Buffer
Bi, stores the negative instances of zs, and is updated by the minibatch features {21} of teacher.

Linstance (T1, T2) = — log

Local-group discrimination supervision (LGDS). As aforementioned, fine-grained features are
often insufficient for diverse downstream tasks, e.g. classification, due to lack of sufficient high-
level data semantics. To learn higher-level fine-grained features, also called “local-group features”
here, Mugs proposes a novel and effective local-group supervision.

As shown in Fig. 1 (a), for crop x; of image &, teacher backbone outputs y; which contains class
token y§ and patch tokens y!. Similarly, Mugs feeds another crop s into student to obtain y2 with

class/patch token y$/y5. Next, Mugs respectively averages the patch tokens 3} and y) to obtain y}
and y5 shown in Fig. 1 (b). Meanwhile, Mugs uses a buffer By, to store historical {y}} and {y5}.

Next, for 3/} and y5, Mugs respectively finds their own top-k neighbors {3/ ;}+_, and {5 ;}}_, from
buffer By,. Finally, it uses a transformer to aggregate the average token and its k£ neighbors as

k k

yT = g;ransformer(yi; {yll,i}izl) and y; = gtsransformer(yé; {yé,i}izl)' (2)

Here g}, nsrormer (Y15 {94 p }¥_,)is a 2-layered vanilla ViT with output (class) token y;. Since y} comes
from g and its neighbors {y’l’i}f:1 which together constitute a local group of y1, ¥} is called “local
group feature”. Finally, Mugs pulls these local-group features y] and y3 from the same instance
close and pushes away the local-group features of other instances by using following InfoNCE loss
eXp(COS(Zl,ZQ)/Tlg) 3)

exp(cos(z1, z2)/7_1g)+ZzeBigeXP(COS(227 z)/mg)’

ﬁlocal—group(ml ,@2)=—log

where z1 = h{g(yf) and z2 =pig (R, (y3))- h{g and hj, are two projection heads and py, is a prediction
head. Buffer Bfg stores the historical local-group features {yj } produced by teacher.

LGDS benefits Mugs from two aspects. 1) It provides complementary instance supervision to the
above IDS. It brings two local-group features yj and y3 from Z close. So to achieve small loss
Liocal-group (X1, T2), the two crops @1 and a2 of & should have very similar neighbors. Thus, besides
the crops themselves, their corresponding neighbors should also be well aligned, which is an ex-
tra challenging alignment problem and enhances local-group semantic alignment. 2) It encourages
highly-similar instances to form local-groups and scatters these local-groups separately, increasing
the semantic discrimination ability of the learnt feature. This is because a) LGDS uses a small
k (around 10) for neighbors such that samples in the same local-group are highly similar and have
small distance, helping form local-groups; 2) LGDS further pushes away local-group features of dif-
ferent instances, and thus scatters different local-groups separately. With these two aspects, LGDS
boosts higher-level fine-grained feature learning by considering the local-group structures in data.

Group discrimination supervision (GDS). This supervision is the most coarse level supervision in
Mugs. It aims to cluster similar instances and local-groups into the same big group/cluster which
could reveal more global semantics in data compared with the instance and local-group supervisions.

For the instance #, Mugs respectively feeds the class token y§ in the feature y; from teacher back-
bone and the class token y5 in y from student backbone into two group heads hy and hy. Then,
it builds a set of learnable cluster prototypes {c;};~; and computes soft pseudo clustering labels
¢ exp(o(hy(yf))-ei/mg) exp(hg(y3)-ci/7g)
P ST op(o (s (w))ei/me) STy exp (B (S) ./ )
sharpen the soft pseudo label p'. Next, similar to a supervised classification task, Mugs employs the
cross-entropy loss but with soft labels as its training 10ss Lgroup (1, Z2) = — > i~ p; log (p}) .

and pi = . Here the function o in [7] is to

Now we discuss the co-effects of the above supervisions. IDS pulls the crops of the same image
close and scatters the instance features separately on the spherical surface as shown in Fig. 1 (a),
thus learning instance-level fine-grained features. LGDS first provides complementary supervision
for IDS by encouraging crops of the same instance to have highly similar neighbors. Then, as
shown in the third sphere in Fig. 1 (a), LGDS scatters different local-groups formed by crops and
its neighbors separately to boost the semantic discrimination ability of these local-groups. This
supervision mainly learns higher-level local-group features. To avoid similar local-groups to be



Table 1: Linear probing and k-NN accuracy Taple 2:Fine-tuning accuracy (%) on 1K. All are

(%) on 1K. “1K” is short for ImageNet-1K. pretrained on 1K.
Method Pre. data Pre. Epoch Lin. k-NN
Ld Method ViT-S/16 ViT-B/16
MoCo-v3 [14] 1K 1600 746 — etho Epo.  Acc. (%) | Epo. Acc. (%)
SimCLR [10] 1K 1600 693 — -
< InfoMin Aug [33] 1K 1600  73.0 — Supervised [34]  — 79.9 — 81.8
‘2 SimSiam [13] 1K 1600 713 — BEIT [2] 800 814 800 83.4
2 BYOL [20] 1K 2000 743 — MAE [22] — — 1600 83.6
% SWAV [6] 1K 2400 753 65.7 SimMIM [39] — — 1600 83.8
~ DeepCluster [5] 1K 2400 752 — MaskFeat [36] — — 1600 34.0
DINO [7] 1K 3200 753 67.5 data2vec [1] — — 1600 84.2
MoCo-v3 [14] 600 814 600 83.2
MoCo-v3 [14] 1K 3200 734 — DINO [7] 3200 82.0 1600 83.6
© SWAV [6] 1K 3200  73.5 66.3 iBOT [43] 3200 82.3 1600 83.8
£ DINO [7] IK 3200  77.0 74.5 Mugs (ours) 3200 82.6 1600 84.3
> iBOT [43] 1K 3200 779 752 - -

Mugs (ours) IK 3200 789 75.6 Table 3: Semi-supervised accuracy (%) on 1K.
MoCo-v3 [14] 1K 1200 767 — logistic reg. | fine-tunin
B T K i A e e MR WM
=} . 6 78, SimCLRv2 [11]  RN50 || — — |57.9 681

Mugs (ours) 1K 1600 80.6 78.0 BYOL 1O0] L - — |33 &l
o STt X 1500 418 780 DING 7] ViESAe || 625 722 | 803 743
e 180T [43] 1K ! o iBOT [43] VITS/16 || 650 734 | 610 751
= Mugs (ours) K 1000 82.1 893 Mugs (ours)  VIT-S/16 || 669 740 | 668 768

scattered randomly or far away, GDS brings similar samples together and thus pulls similar local-
groups close, as illustrated by the last sphere in Fig. 1 (a). It is responsible to capture the coarse-
grained group features. With these three granular supervisions, Mugs can well learn three different
but complementary granular features, which are characterized by better generality and transferability
on the various kinds of downstream tasks compared with single-granular features.

3 Experiments

Due to space limitation, we defer the experimental details into Appendix B. We follow the standard
SSL pretraining setting and use Mugs to train ViT [17, 25, 32, 40, 41] on ImageNet-1K [16].

Linear Probing & KNN. For linear probing, Table 1 shows that by pretraining on ImageNet-1K,
Mugs improves corresponding SoTAs on ViT-S and ViT-B by at least 1.0%. Notably, Mugs sets a
new SoTA 82.1% on ViT-L by using ImageNet-1K, even comparable to the accuracy 82.3% pre-
trained on ImageNet-22K. For KNN, Mugs achieves the highest top-1 accuracy on all backbones.

Fine-tuning. Table 2 shows that on ViT-S and ViT-B, Mugs respectively achieves new SoTA of
82.5% and 84.3%, improving the runner-up, i.e., iBOT and data2vec, by 0.2% and 0.1% respectively.

Semi-supervised learning. Table 3 shows that with 1% or 10% training data, Mugs always sur-
passes previous SoTAs. With 1% labeled data, Mugs improves iBOT by a significant 4.9% accuracy.

Transfer learning. Table 4 shows our Mugs surpasses SoOTAs in most cases.
More extra results. Appendix B gives more results on detection, segmentation, and visualization.

Table 4: Transfer learning accuracy (%) on six datasets.
ViT-8/16 ViT-B/16

Flwrs Car

.17]
MAE o))

oL O0-V. .. — — —
MoCo-v3[14] 98.9 90.5 97.7
DINO [7§] 99.1 91.7 72.6 78.6 98.8 93.0
iBOT [43] 992 922 74.6 79.6 98.9 94.3
Mugs (ours) 99.3 928 76.4 80.8 98.9 94.0

4 Conclusion

In this work, we propose Mugs to learn multi-granular features via three complementary granu-
lar supervisions. instance discrimination supervision (IDS), local-group discrimination supervision
(LGDS), and group discrimination supervision (GDS). Instance discrimination supervision distin-
guishes different instances to learn fine-grained features. Local-group discrimination supervision
considers the local-group around an instance and then discriminates different local-groups to ex-
tract higher-level fine-grained features. Group discrimination supervision clusters similar samples
and local-groups into one cluster to capture coarse-grained global group semantics. Experimental
results testify the advantages of Mugs on several benchmark tasks.
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A Appendix

This supplementary document provides more additional experimental results and the pretraining &
fine-tuning details for the submission entitled “Mugs: A Multi-Granular Self-supervised Learning
Framework”. It is structured as follows. Appendix B provides more extra experimental results.

B More Experimental Results

Due to space limitation, we defer more experimental results to this appendix. Here we present the
performance evaluation of our Mugs on benchmark tasks, e.g. classification and delectation and
segmentation, with comparison against several representative SOTA SSL approaches.

Architectures. We test Mugs on ViT [17]. For IDS and LGDS, their projection heads are all 3-
layered MLPs with hidden/output dimension 2,048/256, and their prediction heads p;, and p;, are all
2-layered MLPs with hidden/output dimension 4,096/256. For group discrimination, its projection
heads are all 3-layered MLP with hidden/output dimension of 2,048/256. Transformers gi...«tormer
and gansformer NAVe 2 layers and have a total input token number of 9 as we set k& = 8 for the
neighbors. For three buffers (B;,, By, and B{g) and prototypes {¢; }i~,, their sizes are all 65,536.

Pretraining setup. We pretrain Mugs on ImageNet-1K [16]. For augmentation, we adopt weak
augmentation in DINO to implement 7' in teacher, and use strong augmentation (mainly including
AutoAugment [15]) in DeiT [34] as the augmentation 7° in student. Following the multi-crop setting
in SWAV and DINO, we crop each image into 2 large crops of size 224 and 10 extra small crops of
size 96. For both large crops, we feed each of them into teacher, and use its output to supervise the
student’s output from the other 11 crops. For two-crop setting, Table 9 in Appendix B reports the
results and shows superiority of Mugs over SoTAs.

We set the neighbor number k& = 8, and thus use transformers gg,crormer @04 Gransformer- FOI pretrain-
ing, Mugs has almost the same training cost with DINO, e.g. about 27 hours with 8 A100 GPUs for
100 pretraining epochs on ViT-S/16, as our projection/prediction heads and transformers guansformer
are much smaller than the backbone.

B.1 Results on ImageNet-1K

Linear Probing. It trains a linear classifier on top of frozen features generated by the backbone,
e.g. ViT, for 100 epochs on ImageNet-1K. We follow DINO and iBOT, and use SGD with different
learning rates for different models. Table 1 shows that by pretraining on ImageNet- 1K, Mugs consis-
tently outperforms other methods on different backbones of various sizes. Specifically, Mugs respec-
tively achieves 78.9% and 80.6% top-1 accuracy on ViT-S and ViT-B, and improves corresponding
SoTAs by at least 1.0%. Notably, on ViT-L, by only pretraining on ImageNet-1K, Mugs sets a new
SoTA accuracy of 82.1%, even comparable to the accuracy 82.3% pretrained on ImageNet-22K.

KNN. Table | shows that for all backbones, Mugs achieves the highest top-1 accuracy on ImageNet-
1K. It respectively makes 0.4%, 0.9%, and 2.3% improvement on ViT-S, ViT-B and ViT-L over the
runner-up, showing the advantages of multi-granular representation in Mugs.

Fine-tuning. It fine tunes the pretrained backbone with a linear classifier. Following iBOT, we use
AdamW with layer-wise learning rate decay to train ViT-S/ViT-B/ViT-L for 200/100/50 epochs on
ImageNet-1K. Table 2 reports the classification results, in which “Supervised” means randomly ini-
tializing model parameters and training scratch. On ViT-S and ViT-B, Mugs respectively achieves
new SoTA of 82.5% and 84.3%, improving the runner-up, i.e., iBOT and data2vec, by 0.2% and
0.1% respectively. Note, the reconstruction frameworks, e.g. MAE, have unsatisfactory linear prob-

Table 9: Linear probing accuracy (%) and k-NN accuracy (%) on ImageNet-1K without multi-
crop augmentation (left) and with multi-crop augmentation (right). “Epo” is the effective pretraining
epochs adjusted by number of views processed by the models following [43].

Method Para. Epo. Lin. k-NN Method Para. Epo. Lin. k-NN
DINO 21 3200 73.7 700 DINO 21 3200 77.0 74.5
iBOT 21 3200 762 724 iBOT 21 3200 779 152
Mugs 21 3200 76.9 73.1 Mugs 21 3200 78.9 75.6
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(a) T-SNE visualization of the learned feature by ViT-B/16
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(b) 4 clusters (2 images per cluster) in electric ray (“brown” in (a)) (c) 2 clusters in hammerhead (“orange”)
Figure 2: T-SNE visualization of the learned feature by ViT-B/16. We show the fish classes in
ImageNet-1K, i.e., the first six classes , e.g. hammerhead (“brown”) and electric ray (“orange”). (b)
and (c) respectively visualizes brown and orange clusters in Mugs. See more examples in Appendix.

ing performance and thus are included in Table 1. Moreover, this fine-tuning setting needs much
higher extra training cost, and also destroys model compatibility for deployment.

Semi-supervised learning. We use 1% or 10% training data of ImageNet-1K to fine tune the pre-
trained backbones. Following iBOT, we consider two settings: 1) training a logistic regression
classifier on frozen features; and 2) fine-tuning the whole pretrained backbone. Table 3 shows that
for both 1% and 10% training data, Mugs surpasses previous SoTAs. Notably, under fine-tuning
setting with 1% labeled data, Mugs improves iBOT by a significant 4.9% accuracy.

Result Analysis. Fig. 2 uses T-SNE [35] to reveal the feature differences among MoCo-v3, DINO,
iBOT, and Mugs, in which each color denotes a unique class. The last subfigure in Fig. 2 (a)
shows that for one class, Mugs often divides it into several clusters in the feature space, e.g. 4
clusters for brown, 4 for purple, 6 for red, and 5 for blue, and scatters these small clusters in a
big class. We further visualize two clusters of Mugs in Fig. 2 (b) and (c): the four clusters in (b)
of electric ray (“brown” in (a)) respectively cluster the same small species together; hammerhead
(“orange”) has two clusters in (c) corresponding to its two poses. This partially reveals multi-
granular structures in the feature: classes are separately scattered, which corresponds to a group-
level coarse granularity; several small scattered clusters in a class show a local-group-level fine
granularity; and some separate instances in a cluster reveal an instance-level fine granularity. In
contrast, MoCo-v3, DINO and iBOT often do not show this multi-granular feature structure in Fig. 2
(a). Hence, for some challenging classes, e.g. electric ray, Mugs can well distinguish them, while
MoCo-v3, DINO and iBOT cannot. This is because instead of regarding the class as a whole, Mugs
utilizes its multi-granular supervisions to consider the multi-granular (hierarchical) data semantic
structures and divide the whole class into several easily-distinguishable clusters in the pretraining
phase. Differently, MoCo-v3, DINO and iBOT ignore the multi-granular semantic structures and
only uses one granular supervision which often could not well handle the challenging classes. Fig. 3
(a) further visualizes the self-attention of ViT-B/16. One can observe Mugs can well capture object
shapes and thus their semantics. See more details and examples in Appendix B.5.

B.2 Results on downstream tasks

Transfer learning. We fine-tune the pretrained backbone on various kinds of other datasets with
same protocols and optimization settings in iBOT. Table 4 summarizes the classification accuracy, in
which “Sup.” denotes the setting where we pretrain the backbone on ImageNet-1K in a supervised
manner and then fine tune backbone on the corresponding dataset. Table 4 shows our Mugs surpasses
SoTAs on the first five datasets and achieves comparable accuracy on the Car dataset.

Object detection & Instance segmentation. Now we evaluate Mugs on object detection and in-
stance segmentation on COCO [27]. For fairness, we use the same protocol in iBOT. Besides SSL
approaches, e.g. MoBY [38], we also compare supervised baselines, Swin-T/7 [28] with similar
model size as ViT-S/16. Table 10 shows that on detection, Mugs makes 0.4 AP" improvement over
the runner-up, i.e. iBOT. Fig. 3 (b) shows that Mugs can accurately locate and classify objects in
COCO. For instance segmentation, Mugs also improves 0.4 AP™ over the best baseline.

Semantic segmentation. We transfer the pretrained model to semantic segmentation task on the
ADE20K dataset [42]. Following iBOT, we stack the task layer in UPerNet [37] and fine-tune



(a) attention visualization (b) object detection (c) semantic segmentation
Figure 3: Visualization of pretrained ViT-B/16 (a) and ViT-S/16 (b) & (c) by Mugs.

Table 10: Object detection (Det.) & instance segmentation Table 11: Video object segmenta-

(ISeg.) on COCO & semanticseg. (SSeg.) on ADE20K. tion with ViT-B/16 on the DAVIS-
Arch.  Param, Det- 1Seg. SSeg. 2017 video dataset.
AP® AP™ mloU (T&F)m Tm Fom
Sup. [43]  Swin-T 29 481 41.7 445
M(l)DBY [38] Swin-T 29 481 415 441 DINO[7] ~ 623 607639
W Vb 2w poTi) e s
1 1 . . .
Mugs (ours) ViT-S/16 21 498 43.0 474 Mugs 63.1 614649

the whole backbone. Table 10 reports the mean intersection over union (mloU) on all semantic
categories. Mugs consistently outperforms the compared SoTAs by significant 2.0 mloU. Fig. 3 (c)
shows that Mugs can capture the object shape accurately.

Video object segmentation. We follow DINO and find nearest neighbors to segment objects in
the video, since one can propagate segmentation masks via retrieving nearest neighbor between
consecutive video frames. Table 11 reports the mean region similarity 7, and mean contour-based
accuracy F,, on the DAVIS-2017 video segmentation dataset [31] by using ViT-B/16. Mugs enjoys
better feature transferability than DINO and iBOT even for video segmentation.

B.3 Comparison w/o and w/ Multi-Crop Augmentation

Here we first investigate the performance Table 12: Effects of the three granular supervisions in
of Mugs without the multi-crop augmen- Mugs to the linear probing accuracy (%).

tation which is widely used in several rep-
resentative works, and further compare it 1\%‘%5 ‘M“gs ";/Soétinstance Mugs W/705[3zlocal-group Mugs ;VS/% Legroup
with other SOTA methods, include iBOT - - - -

and DINO under the same setting. Specifically, for Mugs without multi-crop augmentation, it only
uses two 224-sized crops for pretraining. The left table in Table 9 reports the results of all compared
methods without multi-crop augmentation, while the right one summarizes the results under multi-
crop augmentation setting. By comparison, one can observe that without multi-crop augmentation,
Mugs still consistently achieves the highest accuracy under both linear probing setting and KNN set-
ting. Specifically, Mugs improves the runner-up, namely iBOT, by respectively 0.8% and 0.5% under
linear probing and KNN evaluation settings. More importantly, we can observe that Mugs without
multi-crop augmentation even achieves very similar results as DINO with multi-crop augmentation.
All these results are consistent with those results in Table | in the manuscript, and well demonstrate
the superiority of Mugs over previous state-of-the-arts.

B.4 Comparison under Fine-tuning Setting

In the manuscript, we already compare Mugs with state-of-the-art approaches on the ViT-S/16 and
ViT-B/16 under the fine-tuning setting. Due to limited space, we defer the comparison among Mugs
and others on ViT-L/16 into Table 13. This setting allows us to optimize the pretrained backbone
with a linear classifier. Following BEiT [2], DINO and iBOT, we use AdamW optimizer with layer-
wise learning rate decay to train ViT-L for 50 epochs on ImageNet-1K. On ViT-L, Mugs achieves
85.2% top-1 accuracy, and surpasses all contrastive learning and clustering learning methods. One
can also observe that on ViT-L, most of the reconstruction methods achieves higher accuracy than
constrictive or clustering learning approaches, including iBOT and our Mugs. There are two possi-
ble reasons. Firstly, the reconstruction methods use much more computations for pretraining than
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Table 13: Fine-tuning classification accuracy (%) on ImageNet-1K. All methods are pretrained on
ImageNet-1K. “Epo.” is the effective pretraining epochs adjusted by number of views processed by
the models following [43].

ViT-L/16
\ Method \ Epo. Acc. (%)

Supervised [34] — 83.1

BEIT[2] 800 85.2

reconstruction MAE [22] 1600 85.9
data2vec [1] 1600 86.6

DINO [7; — —

contrastive or iBOT [43] 1000 84.8
clustering MoCo-v3 [14] 600 84.1
Mugs (ours) 1000 85.2

constrictive or clustering learning approaches. Specifically, the reconstruction family always use
224 x224-sized images to pretrain the model, while constrictive or clustering learning approaches
uses multi-crop augmentations which contains two 224-sized images and ten 96-sized images. Since
“Epo.” in Table 13 is the effective pretraining epochs adjusted by number of views processed by the
models [43] which means each 96-sized image equals to one 224-sized image in terms of the defined
“epochs”, with the same pretraining epochs, the computation cost of the reconstruction approaches
is much more. Actually, from Table 13, the reconstruction methods have much more effective pre-
training epochs than constrictive or clustering learning approaches, e.g. 1600 epochs in data2vec v.s.
1000 epochs in iBOT & Mugs, which further increases the training cost. Secondly, for large models,
using small-sized images, e.g. ten 96-sized images in multi-crop augmentations, may lead to overfit-
ting issue in contrastive or clustering learning approaches. Specifically, from Table | in manuscript
and Table 13 here, once can observe that on relatively small models, such as ViT-S and ViT-B, SoTA
contrastive learning or clustering methods, such as Mugs and iBOT, outperform the reconstruction
methods, even though the formers have much less pretraining cost as mentioned above. But on large
models, e.g. ViT-L, the superiority of SOTA contrastive or clustering learning methods disappears.
One possible reason for these inconsistent observation is that large model needs more pretraining
epochs for learning semantic features, and could suffer from over-fitting problem when using 96-
sized crops, since 1) large model is capable to memory all images as demonstrated in many works;
and 2) 96-sized crops may contain incomplete semantics of the vanilla image and lead to over-fitting
issue, especially under insufficient pretraining epochs. Note, this fine-tuning setting needs much
higher extra training cost, and also destroys model compatibility for deployment. Therefore, in this
work, we do not further push Mugs’s limits on the large models which needs huge training cost as
the reconstruction methods.

B.5 More T-SNE Visualization Results

Same with Fig. 2 in the manuscript, here we use T-SNE [35] to reveal the feature differences among
MoCo-v3, DINO, iBOT, and Mugs in Fig. 5. By comparison, Mugs often can scatter the samples
from different classes more separately, while keeping the samples in the same class close in the fea-
ture space. This could means that our Mugs can better distinguish different classes than MoCo-v3,
DINO and iBOT, and thus shows higher performance. The potential reason behind this observa-
tion is explained in manuscript. That is, instead of regards the class as a whole, Mugs utilizes its
multi-granular supervisions to consider the multi-granular (hierarchical) data semantic structures
and divides the whole class into several clusters for easily discriminating in the pretraining phase.
Differently, MoCo-v3, DINO and iBOT ignore the multi-granular semantic structures and only uses
one granular supervision which often could not well handle the challenging classes.

B.6 More Attention Visualization Results

Here same with Fig. 3 in the manuscript, we visualize more self-attention map of the 12 self-attention
heads in ViT-B/16 pretrained by Mugs in Fig. 6. The first column denotes the vanilla images, while
each column of the last 12 columns denote the self-attention score maps of each individual head. The
second column combines the 12 self-attention score maps from 12 heads into one, and also sets a
threshold to remove some noises via only keeping top attention score. From these visualizations, one
can observe that by using Mugs for pretraining, the overall self-attention of 12 heads can capture
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(a) T-SNE visualization of 19 classes of insects, e.g. beetle, butterfly, stick, and cricket.
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(c) T-SNE visualization of 17 classes of various birds, e.g. junco, robin, jay, cock, and ostrich.

Figure 5: More T-SNE visualization of the learned features by ViT-B/16 trained by our Mugs. Best
viewed in color pdf file.

Figure 6: Self-attention visualization of ViT-B/16 pretrained by our Mugs. The images from left to
right respectively denote the vanilla image, the overall self-attention score of all 12 heads in ViT-B,
and the individual self-attention score of 12 heads. Best viewed in color pdf file.

the object shapes very well. For example, from the first bird image, it is even hard for human
to get the bird location at the first glance, due to the similar color of the bird and the flowers.
But the ViT-B/16 pretrained by Mugs still can well locate the bird and also capture the bird shape.
Moreover, one can also compare the attention visualization of Mugs with state-of-the-arts, e.g. iBOT.
In iBOT [43], Fig. 18 in their appendix also visualizes the self-attention map. By comparison, the
model pretrained by Mugs can better separate the object from background. These results testify that
ViT-B/16 pretrained by Mugs can capture semantics in data even without any manual labels.

B.7 More Visualization Results on Object Detection and Semantic Segmentation

In the manuscript, we already provide some object detection and segmentation examples in Fig. 3.
Here we give more examples. Fig. 7 shows more object detection examples on the COCO datasets,
where we use the ViT-B/16 pretrained by our Mugs. From these results, one can observe that Mugs
not only accurately locate the objects in the images but also precisely recognizes these objects. For
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Figure 7: Object detection visualization of ViT-B/16 pretrained by Mugs. Best viewed in color pdf
file.

Figure 8: Semantic segmentation visualization of ViT-B/16 pretrained by Mugs. Best viewed in
color pdf file.

semantic segmentation on ADE20K, Fig. § visualizes more examples. We also can find that Mugs
can capture the object shape accurately and thus well captures the semantics of an image.
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