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Abstract

In this work, Transformed AutoEncoder (TAE) is proposed towards using mask-
free encoder and transformed decoder for effective self-supervised learning with
consistent encoder for downstream tasks. Specifically, TAE feeds a full input x into
an encoder, and then feeds the randomly masked output patch tokens along with
a parameter embedding eTs of a random spatial transformation Ts into a decoder.
Next, TAE requires the decoder to predict the pixels or the semantic feature of the
transformed target Ts(x). This mask-free encoder pre-training differentiates TAE
from the existing masked image modeling frameworks in two aspects. First, TAE
is training-tuning consistent, i.e. taking a full input image for both encoder pre-
training and fine-tuning, while the MAE family takes masked input for pre-training
while non-masked input for fine-tuning. Secondly, TAE enjoys high encoder archi-
tecture compatibility to popular ViTs, CNNs and MLP-based networks, compared
to MAE with its masking strategy on encoder. Furthermore, the design of trans-
formed decoder in TAE is unique, and can be used as an extra training objective by
most existing algorithms for self-supervised learning to further boost performance.
Extensive experiments well verified the effectiveness of TAE and its variants.

1 Introduction

Self-supervised learning (SSL) [1–13] aims to train a highly transferable deep model on unlabeled
data by solving a well-designed pretext task which can generate pseudo targets for the task itself.
Among current SSL approaches, the performance of the recently proposed masked image modeling
frameworks [14–18], e.g. MAE [14] and data2vec [18], has surpassed that of “end-to-end supervised
learning" by a significant margin on classification, object detection and segmentation tasks, and
its success is increasingly scaled to other tasks thanks to its compatibility and effectiveness. For
pre-training phase, as shown in Fig. 1a, MAE feeds a randomly masked input image into an encoder,
and then requires a decoder to reconstruct the pixels or features of the masked patches from the latent
representation of the encoder and mask tokens. One can observe that the core of this framework is
the masking on the encoder input, which unfortunately causes inconsistency between the pre-training
and fine-tuning phases. Specifically, for the encoder, the input is a masked or incomplete one in the
pre-training phase, while it is complete without mask in the fine-tuning phase. This inconsistency
may impair the performance of the masked image modeling frameworks. Moreover, though being
well compatible to the vision transformers (ViT) [19, 20] encoder, the masking strategy on the
encoder input employed by MAE prohibits the pre-training of other popular and effective encoder
architectures, e.g. CNN [21, 22], MLP-based architectures [23, 24], or others [25, 26]. As these
popular architectures cannot handle incomplete input due to convolutions & pooling operations in
CNNs, or fully-connected layers in MLP-based architectures.

In this work, for the first time, we propose a self-supervised mask-free encoder pre-training framework,
termed as Transformed Transformed AutoEncoder (TAE). The core idea of TAE is to defer the mask

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



encoder

…

masked 
crop

reconstruction
target

decoder mask 
tokens

(a) Masked Autoencoder

encoder

…

input
crop

transformed
reconstruction

target

decoder transformtransform
encoding

(b) Transformed Autoencoder

Spatial 
Transform

input crop

transformed target

input crop
in patches

transformed 
target in patches

(c) Patch correspondence in TAE

Figure 1: Comparison between MAE and our TAE.

on the encoder input of the MAE-like framework to the decoder input while enhancing the encoder to
learn the data semantics and patch interdependencies by injecting spatial transformations.

2 Transformed Autoencoder

In this section, we will elaborate on the proposed Transformed Autoencoder (TAE) for mask-free
encoder pre-training. As shown in Fig. 1b, TAE uses an encoder f to encode a full input image
crop x into a set of latent patch tokens z, and then adopts a decoder g to recover the spatially
transformed pixels Ts(x) of the input x from randomly masked latent patch tokens z and the
parameter embeddings of the spatial transformation Ts along with learnable mask tokens.

TAE Decoder. Our decoder g consists of a series of standard transformer blocks. In the following,
we introduce how our decoder processes the latent patch tokens z given by the encoder f .

To begin with, we randomly select a spatial transformation Ts for an image x, and encode the
hyper-parameters σ of Ts into an embedding eTs via a 2-layered MLP: eTs = MLP(σ) ∈ Rd, where
d denotes the dimension of the latent patch tokens z. Here to implement spatial transformation Ts,
we use homography transformation with 8 degrees of freedom.

Then we randomly mask the latent patch tokens z by replacing the selected masked tokens with a
shared and learned mask token [14, 27]. Next, we add positional embeddings to all tokens in z to
tell the locations of all tokens in the vanilla image x. Finally, we concatenate the hyper-parameter
embedding eTs of Ts to each token in z so as to tell each token what spatial transformation is
performed. Actually, we also explore directly adding eTs to each token in z, which works equally
well as shown in our experiments. Then we feed z into the decoder g to obtain the prediction y′.

Reconstruction Target. Regarding the reconstruction target in TAE, as shown in Eqn. (1), there
are two possible solutions: i) we recover a spatially transformed pixels y in the image x; and ii) we
reconstruct a spatially transformed semantic feature y of the image x.

y =

{
Ts(x), if the target is pixel reconstruction;
Ts(f

′(x)), if the target is feature reconstruction;
(1)

where f ′ is the exponentially moving average of f . Now we are ready to define the training loss of
TAE as minf,g

∑
ℓ(yi,y

′
i) where yi denotes the i-th token in y. Here the loss function ℓ measures

the discrepancy between the prediction y′
i and the ground truth yi, e.g.. the mean-square-error (MSE),

cosine distance and KL Divergence.

The spatial transformation Ts on the reconstruction target is a key component in TAE. It helps the
encoder to better learn the dependency among different patches in an image and also enhances data
semantics learning. Specifically, as illustrated in Fig. 1c, TAE needs to first partition the encoder
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input into the non-overlap patches to tokenize them into a series of patch tokens z, which are then fed
into the Autoencoder to obtain a series of patch pixels y′ for predicting a spatially transformed target
Ts(x). Since the encoder input x differs from the target Ts(x) due to the spatial transformation Ts, the
spatial partition for the patch tokens z in the encoder and decoder distinguishes from the one in the
target Ts(x). This means that there is no exact one-to-one correspondence between the patches in the
patch tokens z and the target Ts(x). Actually, as shown in Fig. 1c, the content of one token in z can
be separated into several nearby patches in Ts(x). Therefore, the prediction content of one token in y
actually comes from several nearby patches in z. This indicates that TAE encoder and decoder need
to exchange sufficient information among tokens for fusing several nearby token patches together
to achieve small reconstruction loss. This accordingly induces patch dependency learning and also
enhances learning of data semantics. Moreover, by applying masks on the decoder input, some of
the necessary nearby tokens may be masked. This further boosts the encoder to exchange sufficient
information among tokens such that each unmasked token in the decoder has contained enough
information of other tokens and the decoder can use them to well predict the masked patches.

Table 1: Fine-tuning classification accuracy (%) on ImageNet-1K. All methods are pre-trained for
300 epochs, and fine-tuned with class label supervision for 200 epochs on ImageNet-1K.

Supervision RGB pixel values Unsupervised feature
Method MAE [28] SimMIM [15] TAE (ours) MAE-like data2vec [18] TAE (ours)
Mask at encoder 75% 60% 0% 75% 60% 0%

ViT-Small 80.8 80.5 80.7 81.2 80.9 81.0
ResNet-50 - 78.0 78.4 - Failed 77.8
MLPMixer-B/16 - 79.1 79.3 - 78.5 78.8

2.1 Discussion

Now we are ready to emphasize the three advantages of our proposed TAE.

Firstly, with the mask-free encoder pre-training mechanism, for both pre-training and and fine-tuning
phases, TAE always feeds the full input image crop into the encoder. In this way, the TAE encoder
always sees the whole picture of the input, and thus can consistently process the input tokens.
Differently, for the MAE-like framework, the encoder input is masked in the pre-training phase but
not masked in the fine-tuning phase, which causes inconsistency between the two phases.

Secondly, TAE encoder can be well compatible to many popular and effective network architectures,
including not only ViTs but also CNNs and MLP-based networks. This compatibility also comes
from the mask-free strategy on the TAE encoder. In contrast, the previous MAE-like framework is
often not suitable for non-ViT architectures and suffers from an architecture compatibility issue due
to convolutions & pooling operations.

Thirdly, TAE with transformed image reconstruction is actually a very general framework and is
orthogonal to many SSL families, such as MAE-like frameworks and contrastive learning methods [13,
29–33]. One can combine TAE with other SSL approaches to enjoy merits of both sides. Indeed, our
experimental results in Sec. 3 show that integrating the transformed image reconstruction task in TAE
with the MAE-like framework, e.g.MAE, can improve their performance.

3 Experiments

3.1 Experiment Settings

Following existing works [15, 18, 28], we perform pre-training on the ImageNet-1k [34] dataset.
The spatial input dimension is 224× 224 for all backbone models. We pre-train each model for 300
epochs with a total batch size 2,048 distributed on 16 GPUs, using AdamW [35] optimizer with
weight decay at 0.05. For learning rate, we warmup during the first 20 epochs to 0.00015 per 256
batch size, followed by a cosine decay schedule. We apply horizontal flipping and random resized
cropping of scale [0.2, 1.0] as the default data augmentation for all experiments.

For evaluating the performance on ImageNet for pre-trained models, we follow the common practice
of end-to-end fine-tuning settings in similar works [28, 36] by applying layer-wise learning rate
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decay [37]. We perform fine-tuning of 200 epochs for ViT-Small [38], ResNet-50 [39] and MLPMixer-
B/16 [23], and 100 epochs for ViT-Base [38].

3.2 Effectiveness of Transformed Autoencoder

For evaluating the effectiveness of the proposed TAE framework, we compare different backbone
models pre-trained and fine-tuned under the same settings with different methods. The implementation
of TAE does not apply masking of any kind on the encoder. MAE [28] and SimMIM [15] are two
similar methods that also aim to reconstruct pixel values. We mask 60% and 75% of tokens at the
encoder for SimMIM and MAE respectively. Note that as MAE removes tokens before the decoder,
it can only work with ViT, but not with CNNs or MLP based models which require regular and
fixed spatial shape to perform convolution or spatial-MLP operation. Table 1 shows the fine-tuning
accuracies of different self-supervised learning methods on 3 different types of backbone models.
Without using masks at the encoder, our TAE can perform similarly or even favourably on ViT-S,
ResNet-50, and MLPMixer-B/16 than MAE and SimMIM. Notably, the MLPMixer-B/16 model pre-
trained with our TAE can achieve 79.3% accuracy on, higher than the 79.1% obtained by SimMIM,
and significantly better than the supervised trained baseline at 76.4% [23].

We further evaluate the performance of TAE with unsupervised features as the reconstruction target.
Similar to data2vec [18], we use the exponential moving average (EMA) of the encoder as the teacher
network to extract the unsupervised features as the reconstruction target. We set the initial momentum
parameter τ = 0.99, which is increased to 1 during training with a cosine schedule following [40].
Here we also compare with another MAE-like variant for pre-training ViT, by removing some
tokens at the encoder, and adds back a corresponding number of mask tokens at the decoder. The
difference between this variant and standard MAE [28] training is that here the reconstruction target
is unsupervised features extracted by an EMA encoder, rather than RGB pixel values. As shown in
the right section of Table 1, our TAE works well on different backbones with the unsupervised feature
as targets, without any masking on the encoder.

3.3 Ablation studies

Here we study the effects of proposed changes of the Transformed Autoencoder. We first ablate the
proposed spatial transformation. As we can see, there is a non-trivial drop in performance from 80.7%
to 80.3% and 81.0% to 80.7% when using the RGB and unsupervised feature as targets respectively.
We also evaluate the vanilla autoencoder setting with no masking or any form of transformations for
the two types of targets. Our proposed TAE can outperform vanilla AE by 1.2% and 1.0% respectively
with the RGB and unsupervised feature as reconstruction targets.

Table 2: Ablation studies of TAE pre-training for ViT-S/16 on ImageNet-1K.

Variant Top-1 Acc (%)
RGB Unsup. Feat.

TAE 80.7 81.0
TAE without spatial transformation 80.3 80.7
Vanilla AutoEncoder 79.5 80.0

4 Conclusion

In this work, we introduce Transformed Autoencoder (TAE), a novel and general framework for self-
supervised pre-training of vision models. Our TAE does not rely on masking at the encoder backbone
during the pre-training phase. Unlike masked image modeling methods developed for pre-training of
ViTs, our TAE framework is a general framework compatible with a wide range of vision backbone
models. Experiment results show that our TAE can perform on par with existing state-of-the-art
methods with masking at the encoder of ViTs, and favourably compared with other methods on CNN
and MLP-based backbones. Moreover, TAE is orthogonal to most exiting self-supervised learning
approaches, and can be combined with them to further boost their performance.
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5 Appendix

5.1 TAE for various Backbones

As aforementioned, TAE does not mask the encoder input, and thus can be easily used to train other
types of popular and effective architectures, including CNNs (e.g. ResNet [39]) and MLP-based
networks (e.g. MLP-Mixers [23]), etc. In principle, to pre-train a non-ViT backbone with TAE,
one can directly use this non-ViT backbone to implement the TAE encoder. But for a CNN and
MLP-based backbone, one needs to remove its global pooling and Fully Connected layers at the end
of the network if any. Besides, for a CNN, e.g. ResNet, its output feature map is often of spatial-size
7× 7 which is much smaller than the input size 224× 224. To make the output feature map preserve
more spatial details of the input image, we apply a transposed convolution to the last stage, and then
sum it with the feature map from the second last stage to form a feature map of size 14× 14. For
a MLP-Mixer, its latent patch tokens are the output of the last block like ViT without any special
operation. For TAE decoder, we always use standard transformer blocks to implement it for simplicity
and consistency. The decoder is always discarded in fine-tuning phase after pre-training.

5.2 Implementation

For spatial transformation, directly applying a transformation on the cropped image might involve
extra region(s) not included in the crop, which needs to be padded to keep a consistent size of
224× 224. Therefore we perform the transformation on the original image such that the transformed
crop takes contents from a region completely within the original image. More specifically, a base
crop xb is defined by the coordinates of its 4 vertices in the original image p0 = (xmin, ymin),
p1 = (xmax, ymin), p2 = (xmax, ymax), p3 = (xmin, ymax). We first denote the scale of the crop
to be the length of its shorter side sx = min(xmax − xmin, ymax − ymin). Then for each vertex pi,
we randomly choose a new point pti within a small squared region of size λsx centered around pi.
By default we set λ = 0.1 for experiments involving spatial transformation. We then extract the
corresponding region with the transformed vertices pt0, pt1, pt2, pt3, followed by resizing it to 224×224
to form the transformed crop. The transformation parameters are then obtained by calculating
the perspective transformation matrix between the original coordinates p0, p1, p2, p3 to the new
coordinates pt0, pt1, pt2, pt3. During pre-training, we linearly increase the probability of applying the
spatial transform from 0 to 0.5. For image crops without the spatial transform, the same original crop
is used as the reconstruction target.

For pre-training on all backbone models, we stack 3 transformer blocks as the decoder in TAE. The
total number of channels in the decoder blocks are the same as output by the encoder, and we set 32
channels per head for the multi-head self-attention layers. For masking at the decoder . We apply
two set of random masking of 50% and forward both set of masked tokens through the decoder for
reconstruction.

5.3 TAE with Masking at Encoder

As our TAE framework mainly focuses on the decoder, it is orthogonal to operations applied on the
encoder. Therefore we can combine TAE with methods applying masking at the encoder. In this work,
we experiment with applying masking on Vision Transformers by removing tokens at the beginning
of the encoder in the same style as MAE [28]. Specifically, we apply random masking of 60% on
the ViT encoders for training together with our TAE framework. For fair comparison with other
methods, we follow the standard practice of fine-tuning for 200 epochs and 100 epochs on ViT-S/16
and ViT-B/16 respectively. Results of our TAE compared to other state-of-the-art methods are shown
in Table 3. TAE pre-trained ViT-B/16 model obtains a fine-tuning accuracy of 83.4% which is the
highest among methods pre-trained for the same number of epochs. Note that CAE [41] achieves
a similar accuracy of 83.3% by using extra data during the pre-training phase, while we only use
ImageNet-1k data for pre-training.

5.4 Related Works

Self-Supervised Learning. As a representative family of self-supervised learning (SSL), contrastive
learning [13, 29–33], e.g., MoCo [29] and SimCLR [30], trains a network to bring the positive pair
together, i.e. two random crops of the same image, and push the negative pair far away, i.e. two crops
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Table 3: Results on ViT. Performance is evaluated in top-1 accuracy fine-tuned on ImageNet-1k.
All methods are pre-trained on ImageNet-1k only, except for BEiT∗ [36] and CAE∗ [41] which use
pre-trained discrete VAE by DALL-E [42] to generate the discrete tokens as training targets.

Method Arch. #Params Pre-train Epo. Top-1 Acc(%)
Supervised [43] ViT-S/16 21M - 79.9
MoCo-v3 [40] ViT-S/16 21M 300 81.4
BEiT∗ [36] ViT-S/16 21M 300 81.7
CAE∗ [41] ViT-S/16 21M 300 81.8
TAE (ours) ViT-S/16 21M 300 81.7

Supervised [43] ViT-B/16 85M - 81.8
MoCo-v3 [40] ViT-B/16 85M 300 83.0
BEiT∗ [36] ViT-B/16 85M 300 83.0
MAE [28] ViT-B/16 85M 300 82.9
CAE∗ [41] ViT-B/16 85M 300 83.3
TAE (ours) ViT-B/16 85M 300 83.4

from different images. BYOL [44] trains a network by only bringing two positives close to simplify
the method and also to save memory. Clustering learning [6–13] is another effective line of SSL. It
first generates pseudo labels for each sample via clustering similar samples into the same group, and
then encourages the crops of the same image to have the same pseudo label. These SSL approaches
heavily rely on the alignment of positive samples. Our proposed TAE differs with them in that it
depends on transformed image modeling to reconstruct the input image or its semantic feature.

The recently proposed masked image modeling SSL family, e.g. MAE [14] and SimMIM [15], feeds
a randomly masked input image into an encoder, and then requires a decoder to reconstruct the pixels
of the masked patches from the latent representation of the encoder and mask tokens. This mask-
reconstruction pretext task is also known as masked image modeling. Given a specific downstream
task, this SSL family fine-tunes the pre-trained encoder on the corresponding training data in a
supervised manner. Later, to boost performance, MaskFeat [45] and data2vec [18] empirically
find better performance by reconstructing the (semantic) feature, e.g. the HOG feature [16] or
network feature. PeCo [17] replaces Autoencoder with discrete VAE to learn a more semantically
perceptual codebook, which also helps learn more semantic features and thus benefits downstream
tasks. However, as aforementioned in Sec. 1, for the encoder, the input is masked for pre-training and
not masked for fine-tuning, which causes inconsistency in training and thus may impair performance.
Except ViT, other widely used encoder architectures, e.g. CNNs and MLP-based architectures, is
hardly compatible with the masking strategy on the encoder input, which limits wider application of
the MAE-like SSL family. In contrast, our proposed TAE is mask-free at the encoder and thus well
avoids the above two issues.

Equivariance Learning. Our work is also related to equivariance learning [46–56] in which the
feature changes accordingly with the transformation of the input. Hinton et al. [46] are the first to
emphasize the importance of the equivariant feature, and they proposed a transforming Autoencoder
to approximate a given transformation function. The capsule network [47] employs a group of neurons
to learn the instantiation parameters of a specific type of an object in a supervised manner and hopes
the neurons to know the object and its scaling, rotation and transformation properties. Later, many
works [49, 51, 53, 54, 56] follow the capsule network to handle spatial information in the images.
The most related work to ours is [50] where Guo et al. proposed an affine equivariant Autoencoder
that approximates affine transformation via a linear transformation and then encourages the feature
to be equivariant to the linear transform. However, Guo et al. [50] only handled equivariance on a
few specific transformations, which differs from ours that targets at general transformations. Our
TAE hopes to build a large-scale unsupervised pre-training framework which is applicable to general
network architectures, distinguishing it from these previous works.

5.5 Visualization of transformed reconstruction

To empirically verify the effectiveness of the transformed image reconstruction task, we visualize
the reconstruction results on some images as shown in Figure 2. Note that as we used per-patch
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normalized pixel values [28] as the targets during training, the actual output by TAE are not within
the standard color range for images. Therefore we calculate the mean and standard deviation for
patches in the ground-truth target to de-normalize the raw output from the model for visualization
purpose.

Figure 2: Visualization of transformed reconstruction by TAE. Reconstruction results with pre-
trained TAE model on ImageNet validation images. For each group of three figures, we shown the
original input crop to the autoencoder on the left, the transformed crop as reconstruction target in the
middle, and the reconstruction prediction by TAE on the right.
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