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Abstract

Localizing defects in products is a critical component of industrial pipelines in
manufacturing, retail, and many other industries to ensure consistent delivery of
the highest quality products. Automated anomaly localization systems leveraging
computer vision have the potential to replace laborious and subjective manual
inspection of products. Recently, there have been tremendous efforts in the domain
of anomaly localization investigating self-supervised learning methods. However,
despite the advancements, there is still a gap between research and deployment of
those methods to real-world production environment. It is important to develop
an industry-friendly benchmarking framework to understand the performance of
models in a generalizable product-agnostic manner. We present a new anomaly
localization benchmarking framework that maps a product/defect type combination
to higher level descriptive abstractions capturing similar characteristics. We propose
efficient training and inference schemes considering different aspects, including an
ablation study of threshold estimation techniques. To the best of our knowledge,
this is the first anomaly localization work on developing a benchmarking framework
focusing on real-world use.

1 Introduction

Detecting defects from product images are of profound importance in industrial applications [1, 2, 3]
to maintain high product quality and ensure cost efficiency. In an industrial production setting, manual
inspection processes to detect defects can suffer from limited throughput and can be subjective with
a much slower feedback loop. Automated visual defect detection methods provide the advantages
of being fast and repeatable, have lower inspection costs and the feedback loop is faster compared
to manual processes. Given these advantages, manufacturers are keen to leverage automated visual
defect detection modules as part of quality check processes in production pipelines.

The task of anomaly localization involves assigning a pixel-level anomaly score to estimate a
segmentation map highlighting subtle anomalous regions in an image. There are some major
disadvantages of adopting a supervised approach for anomaly localization - 1) manual annotation
of defective images is expensive, 2) all possible defect types need to be known beforehand, 3)
only a limited number of defective images are available compared to the amount of defect-free
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images as industrial production processes are optimized to minimize the number of defective samples.
To alleviate these disadvantages, it is important to develop a benchmarking framework based on
self-supervised approaches.

Most of the existing anomaly localization works [4, 5, 6, 7, 8] evaluate the efficacy of their proposed
methods on individual product types from publicly available dataset like MVTec [9]. In such a
dataset, the nature of defects are product-specific and therefore, from such evaluations, we only learn
about how a proposed method works on a specific product or defect type and is hard to generalize
learnings. Therefore, the proposed methods cannot be directly implemented for real-world use as
those methods do not help a manufacturer coming with a different product having its own set of defect
types. For example, most methods have utilized only threshold-independent metrics for performance
evaluation. This is not useful during inference in a production setting where the goal is to generate
the segmentation map by masking the non-anomalous regions.

To alleviate these problems, we develop a benchmarking framework that maps a product/defect type
combination to higher level descriptive abstractions capturing similar characteristics. We summarize
the contributions of our work here:

(1) We annotate anomalous product images in a product-agnostic manner to capture higher level
human understandable descriptions.

(2) The benchmarking framework highlights the pros and cons of each individual method across
product-agnostic categories and recommend a metric for practical use. These insights, alongside the
recommended best practices, can provide guidance to practitioners on implementing a performant
anomaly localization pipeline.

(3) We perform a detailed ablation study of threshold-determination techniques and suggest optimal
solutions specific to broad product-agnostic categorization.

2 Proposed Benchmarking Framework

A typical anomaly localization pipeline consists of three phases - training, validation and inference.
An illustration is provided in appendix (Fig. 1). In the training phase, anomaly-free images are used
to train a model to learn representations from normal samples. The validation phase, requiring the
availability of few anomalous samples, computes the optimal threshold level which is used in the
inference phase to mask non-anomalous regions. The goal of the proposed benchmarking framework
is to provide guidance for efficiently building an anomaly localization pipeline for practical use. The
proposed benchmarking framework broadly consists of three building blocks - datasets, anomaly
localization methods and evaluation approaches. In this section, we describe each building block.

2.1 Product-Agnostic Dataset Categorization

It is important to understand the performance of the anomaly localization methods over different
products on a generalized setting beyond the product-specific analyses. We perform two types of
product-agnostic dataset categorization.

Background Categories: We categorize each product image as with or without background. In
industrial pipelines, image acquisition processes along with product size may decide what type of
image will be input to the model. This background-type categorization is important as in practical
scenarios, a varying background can play a significant role in influencing the performance of a model.
For product images with background, there is the presence of a background, and, for product images
without background, the product itself covers all the image pixels.

Defect Categories: We propose to categorize product images into four broad product-agnostic defect
categories. This type of defect categorization allows us to compare the efficacy of different anomaly
localization methods across products instead of being product specific. While most images can be
labeled to the following defect categories, for some images, it is not straightforward to label and such
corner cases can exist. For those corner case images, we label those into more than one label.

(1) Structural: Represented by distorted or missing object parts or some damage to the product
structure. Generally, a structural defect is not a sublte defect and involves considerable damage.
Some examples of structural defects are holes, bends, missing parts, etc.
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(2) Surface: Restricted to smaller regions on the surface of the products requiring relatively lesser
repair effort, and, unlike structural defects, not always make the product unusable. Some examples of
surface defects are scratches, dents, iron rust, etc.

(3) Contamination: Contamination defects indicate the presence of some foreign material which
are not part of the original product (normal image). Some examples of contamination defects are
glue slip, dust, dirt, etc.

(4) Combined: Combination of the above three types of defects characterised by the presence of
multiple connected components in the ground truth segmentation map - for example, a hole in a
contaminated background.

We utilize two publicly available datasets (MVTec [10], BTAD [11]) to generate a product-agnostic
dataset.

MVTec Anomaly Detection Dataset (MVTec): MVTec is a comprehensive multi-object dataset
providing pixel-precise ground truth segmentation maps [10, 9]. The MVTec dataset comprises about
5.3k high-resolution color images with 15 product types.

BeanTech Anomaly Detection Dataset (BTAD): BTAD [11] is a public dataset consisting of about
1.8k high resolution images of three industrial products. BTAD has the same setting as MVTec.

Annotation: For each anomalous sample in MVTec and BTAD, considering the ground truth
segmentation map, the actual anomalous image and its corresponding normal product image are
compared to label that sample to a defect category. A team of annotators worked on this and the
entire labeling effort was manual. By utilizing a custom built UI tool, an annotator could compare the
image and map in the tool itself to select the appropriate defect category. The tool ensured that the
labeling process is efficient, accurate with faster feedback loop.

Experimental Protocol: Also, any benchmarking dataset should comprise distinct training, valida-
tion and test datasets for each product. In existing publicly available datasets [9, 11], a validation
dataset is not explicitly identified. Estimating an optimal threshold based only on anomaly-free
images does not work well [10]. Having a validation set, comprising a set of anomalous images, is
necessary for optimal threshold estimation. For each product of MVTec and BTAD, the training set
comprises defect-free images and the test set consists of both anomalous and non-anomalous images.
For the anomalous images, pixel-precise ground truth segmentation maps are provided. We take out
few examples from each test set with a split of 0.3 to create the validation set.

2.2 Anomaly Localization Method Categorization

Previous works have proposed self-supervised anomaly localization methods leveraging different
architectures. The SSL methods learn the distribution of normal images and estimate anomaly in an
anomalous image from the learned distribution. Depending on how an anomaly score map is generated,
we can categorize the methods into four broad categories: reconstruction based [12, 13, 14, 15, 4],
attribution map based [16, 17, 5], patch similarity based [6, 18, 19, 20, 21], and normalizing flow
based [22, 23, 7]. Based on the reported state-of-the-art performance of existing works, we select a
representative approach from each category:

(1) Reconstruction Based - Autoencoder (AE): Based on [4] utilizing SSIM as the loss. We train
the model so that it can learn to reconstruct an anomaly-free image as closely as possible. During
inference, an anomaly score map is generated based on the pixel-wise SSIM loss between test image
and (defect-free) reconstructed version.

(2) Attribution Map Based - Knowledge Distillation (KD): In KD [5], training is done using a
student-teacher approach to make the student network learn about normal images. During inference,
the discrepancy between the teacher and student networks’ intermediate activations is used to localize
the anomalies.

(3) Patch Similarity Based - Patch Distribution Model (PaDiM): PaDiM [6] learns a representa-
tion of the normal class using multivariate Gaussian distributions and correlations between different
semantic levels of a pretrained CNN. During inference, Mahalanobis distance is computed between
the predicted embedding and the learned distribution to compute patch-wise anomaly scores.
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(4) Normalizing Flow Based - Conditional Normalization Flow (CFLOW): CFLOW [7] models
the distribution of normal images during training by leveraging a pre-trained encoder and a CFLOW
decoder. During inference, the probability maps, estimated at different scales, are rescaled and
aggregated to estimate the final anomaly score map.

2.3 Evaluation Approach

Most of the previous works have reported results using threshold-independent metrics like AUROC
which is not ideal to estimate localization performance used to drive decision-making. These metrics
can only be used for validation and not for inference in a production setting. In high-volume
manufacturing applications, ROC curve (plotting FPR Vs TPR) is not be a reliable metric especially
when FPR values are low (resulting from high true negative) for subtle defects. In this work, we focus
on an inference-ready (threshold-dependent) metric for evaluation. Intersection Over Union (IoU)
estimates the amount of overlap between the predicted and ground truth segmentation maps. The
IoU metric is not dependent on True Negative (TN) and can therefore be a more suitable metric to
evaluate localization performance.

2.4 Threshold Estimation

We propose to estimate the thresholds using three different techniques.

ROC-T: In ROC curve, different threshold values are used to compute TPR and FPR. The threshold
which gives the maximum geometric mean of TPR and 1− FPR is considered to be the optimal
one maximizing TPR and minimizing FPR. The optimal threshold finds the balance between FPR
and TPR.

IoU-T: In the IoU curve, we plot FPR on the x-axis and IoU on the y-axis for different threshold
values. The optimal threshold is determined by maximizing the geometric mean of IoU and 1−FPR.
It tries to maximize IoU and simultaneously ensure that FPR is not high.

PR-T: In Precision Recall (PR) curve, we plot recall and precision on the x-axis and y-axis respec-
tively. To find a balance of precision and recall, F1 Score can be maximized. For each threshold value,
F1 scores are computed and the threshold corresponding to the maximum F1 score is considered to
be the optimal one.

Illustrations of threshold estimation are provided in appendix (Fig. 4).

Table 1: Product-Agnostic performance in terms of IoU for test sets of MVTec and BTAD datasets.
AE KD PaDiM CFLOW

Category Dataset ROC-T IoU-T PR-T ROC-T IoU-T PR-T ROC-T IoU-T PR-T ROC-T IoU-T PR-T
Defect Categories

Structural MVTec 0.071 0.099 0.100 0.207 0.257 0.254 0.254 0.345 0.314 0.199 0.277 0.213
BTAD 0.177 0.190 0.184 0.227 0.229 0.214 0.225 0.188 0.243 0.074 0.110 0.067

Surface MVTec 0.048 0.077 0.074 0.190 0.291 0.295 0.177 0.321 0.281 0.210 0.306 0.253
BTAD 0.118 0.130 0.124 0.028 0.038 0.042 0.058 0.013 0.023 0.204 0.224 0.171

Contami- MVTec 0.054 0.067 0.075 0.224 0.298 0.294 0.247 0.314 0.273 0.204 0.255 0.201
nation BTAD NA NA NA NA NA NA NA NA NA NA NA NA

Combined MVTec 0.078 0.126 0.116 0.215 0.244 0.223 0.249 0.331 0.304 0.257 0.271 0.155
BTAD 0.192 0.216 0.206 0.316 0.306 0.283 0.318 0.186 0.220 0.114 0.104 0.088

Background Categories
With MVTec 0.073 0.098 0.104 0.200 0.257 0.256 0.216 0.316 0.293 0.166 0.277 0.199

Background BTAD 0.062 0.071 0.068 0.169 0.199 0.200 0.190 0.149 0.241 0.071 0.098 0.059
Without MVTec 0.041 0.073 0.062 0.220 0.303 0.297 0.262 0.367 0.311 0.271 0.294 0.257

Background BTAD 0.216 0.236 0.227 0.077 0.072 0.066 0.098 0.041 0.034 0.271 0.287 0.220

3 Results
After training each model product-wise, the trained model and validation set of each product are
utilized to compute the optimal threshold values. The models are trained using one Tesla K80 GPU
with the default hyper-parameters suggested for the modeling approaches [4, 5, 6, 7]. In the validation
phase, for each product-model combination, we compute three threshold values which are utilized
during inference to compute IoU. Product types can vary across datasets - so it is important to
summarize the performance in terms of product-agnostic categories. Table 1 shows the comparison
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of four methods using three threshold values in terms of IoU metric. From Table 1, we observe that
PaDiM demonstrates better overall performance than the other models. For structural, surface and
combined defect categories of MVTec, we find that PaDiM is followed by CLFOW and KD. And, for
the contamination category, PaDiM still performs better followed by KD and CFLOW. From BTAD,
no presence of contamination defect is detected during annotation. For structural and combined defect
categories of BTAD, PaDiM shows the best IoU scores, but for surface defects, CFLOW outperforms
the other models. From the ablation study, we observe that using IoU curve is the most efficient
threshold determination approach followed by threshold from PR curve.

For images with background, PaDiM is the best performing model for both MVTec and BTAD. When
the product images don’t have any external background, CFLOW performs better for BTAD. We
also notice that for MVTec product images without background, PaDiM outperforms KD, which is
followed closely by CFLOW.

4 Conclusion
Through product-agnostic evaluation, our analysis enables a more generalized way of comparing
model performance. Overall, PaDiM demonstrates better performance than the other three models.
We recommend that using PaDiM and estimating threshold from IoU curve is the most efficient way to
start with for a manufacturer coming with a new product. While KD and CFLOW also perform well,
comparatively, AE fails to accurately detect anomalous regions in most experiments. If computational
resource is a constraint, we recommend using KD which shows faster inference speeds in our
experiments. The insights gained from developing this framework can help practitioners in deploying
automated anomaly localization in industrial pipelines. It will also encourage other researchers to
perform new experiments using self-supervised learning approaches in similar directions. In future,
we plan to include other datasets to build on the existing defect categories by adding new defect types.
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A Appendix

Figure 1: Illustration of different phases of an anomaly localization pipeline. While the training phase
needs only anomaly-free images, validation phase requires only very few samples of anomalous
images. The optimal threshold determined during the validation phase is utilized to generate the
segmentation map from anomaly score map in the inference phase.

Figure 2: Background Categories. Sample images from MVTec [10, 9] and BTAD [11] datasets.
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Figure 3: Defect Categories. Sample labeled anomalous images from MVTec [10, 9] dataset.

Table 2: Annotation details for defect categories of each product from MVTec and BTAD. To
determine optimal threshold levels, for each product, we select a validation set (30%) from the total
number of anomalous samples shown in this table.

Dataset Product Structural Surface Contamination Combined Total

MVTec

Bottle 41 0 21 1 63
Cable 81 0 0 11 92

Capsule 50 62 0 0 112
Carpet 34 17 37 1 89
Grid 25 0 32 0 57

Hazelnut 35 35 0 0 70
Leather 37 37 18 0 92

Metal Nut 46 43 0 4 93
Pill 28 46 50 17 141

Screw 65 40 0 18 123
Tile 33 15 36 0 84

Toothbrush 20 1 3 6 30
Transistor 37 3 0 0 40

Wood 11 28 10 11 60
Zipper 69 33 0 17 119

BTAD
01 24 12 0 13 49
02 30 135 0 35 200
03 33 4 1 3 41

Including Both 699 511 208 137 1555

9



Figure 4: Illustrations of threshold estimation for MVTec product Bottle using model KD. In the
ROC and IoU curves, the vertical lines show the FPR values corresponding to the optimal thresholds.
In the PR curve, the vertical line highlights the recall value corresponding to the optimal threshold.

Figure 5: Segmentation map results for two test images from MVTec product Metal Nut with
contrasting performances in terms of IoU. The IoU scores for the top and bottom row are 0.195
and 0.335 respectively. Though the F1 values are very close for both rows and False Positve Rate
(FPR) rather increases for the bottom row, IoU value correctly indicates that for the bottom row the
performance is actually better. This shows that IoU is a more reliable metric.
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