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Abstract

Self-supervised pre-training based on instance discrimination has fueled the recent
advance in label-efficient object detection. However, existing studies focus on
pre-training only a feature extractor network to learn transferable representations
for downstream detection tasks. This leads to the necessity of training multiple
detection-specific modules from scratch in the fine-tuning phase. We argue that the
region proposal network (RPN), a common detection-specific module, can addition-
ally be pre-trained towards reducing the localization error of multi-stage detectors. In
this work, we propose a simple pretext task that provides an effective pre-training for
the RPN, towards efficiently improving downstream object detection performance.
We evaluate the efficacy of our approach on benchmark object detection tasks,
including autonomous driving and common objects. In comparison with multi-stage
detectors without RPN pre-training, our approach is able to consistently improve
downstream task performance, with largest gains found in label-scarce settings.

1 Introduction

Image-level representation learning based on instance discrimination has proven highly effective as a
general model for transfer learning, successfully transferring to diverse downstream tasks [17, 14, 4, 9].
Object detection poses a fundamental and challenging computer vision problem, and solving it
successfully requires combination of (1) finding object locations, and (2) classifying located objects.
Popular contemporary supervised object detection commonly tackles this by employing multi-stage
architectures that suggest object proposals (locations) which a sequential network must then recognise.
In contrast, most existing self-supervised pre-training for object detection tasks focus solely on solving
component (2); through approximation of a classification loss [26, 27, 5, 25]. This leads to situations
where classification-related architectural components receive gradient updates from both unlabeled
(pre-training) and labeled (fine-tuning) data, while localization-related components receive gradient
updates only from labeled data. We conjecture that such training setups are sub-optimal for overall
performance, especially in cases offering only limited labeled data.

A promising recent design principle involves encouraging alignment between pretext task and down-
stream task. SoCo [25] achieves state-of-the-art performance by pre-training model components consist-
ing of feature extractor and detector head components. Our insight into the importance of localization-
based errors motivate us to extend these pre-training concepts, to further evaluate whether model com-
ponents based on region proposal networks (RPN) [19] can provide meaningful performance improve-
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Figure 1: Qualitative comparison on the SODA10M dataset [15]. Top: All models successfully
detect the cars on the right hand side but our ADePT model is the only one to find the truck on the
left hand side. Bottom: Dark background and low illumination make successful detection challenging.
BYOL [14] and SwAV [3] fail to detect all three vehicles. While SoCo [25] and ADePT both
successfully capture all three vehicles with high confidence, SoCo hallucinates an object on the right
hand side. Best viewed with digital zoom.

ment, particularly in situations with few labelled instances. Directly addressing the aforementioned
localization error issues has, until now, remained largely missing from self-supervised approaches.

Towards this we develop a fully aligned self-supervised pre-training approach for object detection,
named Aligned Detection Pre-Training (ADePT). In contrast to supervised detection training setups,
ADePT does not require: (a) ground-truth class labels; classification is approximated by treating
cropped regions as individual classes and solving an instance discrimination task, and further does
not require: (b) ground-truth bounding boxes; we will show that location labels can be successfully
approximated via unsupervised region proposals, generated by heuristic algorithms. We instantiate
the latter idea in this work using selective search [21].

Through evaluation of our ideas, we aim to answer the following research questions: Q1. Can the
inclusion of RPN module pre-training reduce (commonly high) localization-based detection error
terms? Q2. Does principled alignment of pretext and downstream tasks improve overall performance?
Q3. Does such alignment enable and benefit more label-efficient scenarios?

We evaluate ADePT on the recent autonomous driving benchmark SODA10M [15] and the standard
detection task MS COCO [18]. We find that ADePT consistently provides stronger downstream
detection performance over several seminal self-supervised pre-training baselines, especially in
domains containing only limited labeled data (e.g. when only 1% and 10% of labels are available).

2 Method

In this section, we focus on the details for our novel RPN pre-training strategy, the first contribution
of this work, and defer remaining architectural model details to Appendix.

We follow common two-stage object detector architectural design that consists of three main
architectural components: a feature extractor, an RPN and a detector head. The training of the feature
extractor and detector head follows a BYOL-style contrastive learning strategy [14], where two
networks with identical architectures are denoted online and target networks, respectively. In the
training phase, coarse bounding boxes are first generated by selective search [21]. The input image
and generated bounding boxes are then used to generate three augmented views (augmentation details
provided in Appendix B). These views are passed through the feature extractor and the resulting
features are fed to the RPN to generate region proposals. In this way we uniquely train the RPN to
regress the selective search bounding boxes. The refined features are then extracted from the learned
proposal regions using “RoIAlign” [16]. Analogous to BYOL, the refined features are fed through the
detector head, projector, predictor and subsequently contrasted in the detector loss which follows the
SoCo formulation and is defined in Appendix B. The total loss is a combination of the RPN and detector
losses, together pre-training the entire architecture. The online network receives gradient updates while
the target network is maintained as the exponential moving average (EMA) of the online network. In
the inference phase, only the target branch is kept and the prediction is made by feeding an input image
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Figure 2: Diagram of ADePT. Our proposed contribution involves self-supervised pre-training of
the RPN component. The feature extractor (backbone + FPN) and detector head are also trained in
self-supervised fashion where three augmented views of the same region in the original image are
passed through an online branch (blue) and a target branch (purple), respectively to form a contrastive
detector loss. Further pipeline details are found in Appendix B.

through the target feature network, the RPN, and the target detector head sequentially. Our complete
ADePT pipeline is illustrated in Fig. 2. Further RPN training details can be found in the Appendix.

3 Experiments

We aim to evaluate pre-trained models in terms of the quality of their transferable representations. Firstly,
following previous work [25], we consider the autonomous driving dataset SODA10M [15], along with
detection of common objects in MS COCO [18]. In addition to the results presented in the main paper,
the Appendix also presents results for few-shot object detection, a challenging small-scale data setting,
as well as ablation studies to better understand credit assignment and constituent component attributions.

Experimental Setup: Our experimental setting follows [25]. For fair comparison, all SSL methods
are pre-trained using ImageNet [7] under identical settings. We examine the transferablity of learned
representations by fine-tuning pre-trained weights on multiple downstream tasks. We fine-tune with
stochastic gradient descent and a batch size of 16 split across 8 GPUs.

We compare our proposed approach with recent alternative SSL methods. Among the considered
baselines, three representative baselines3 are BYOL [14], a seminal SSL baseline based on an
online-target encoder architecture and image-level contrastive loss; SwAV [3] based on contrastive
learning and clustering; SoCo [25], the state-of-the-art. Both SoCo and ADePT leverage a BYOL-style
training strategy in terms of the online-target encoders setup and instance-wise discrimination pretext
task (contrastive learning). SwAV serves as an alternative contrastive learning baseline in contrast
to BYOL. In addition, we quote further common baselines reported in previous work [25, 15], such
as MoCo [17], SimCLR [6], DenseCL [24], and DetCo [26].

We first consider the SODA10M dataset [15] which consists of driving scenes. The dataset contains six
object classes with bounding box annotations, namely: {car, truck, pedestrian, tram, cyclist, tricycle}
where the training set consists of only 5000 images captured from a single city in clear weather,
during the day. We train a Cascade R-CNN object detector [2] with ResNet50-FPN backbone for 3726
iterations on the full (labeled) training set of 5000 images. We then evaluate using the 5000 image
validation set where varying weather conditions, cities and periods of the day are present, making
for a challenging object detection test with potential domain shifts.

Next, we consider the MS COCO dataset [18] and use the train2017 subset, containing ∼118k
images for training. We train a Mask R-CNN [16] detector with a ResNet50-FPN backbone for 90000
iterations. Eighty object categories are annotated with both bounding box and instance segmentation
labels, allowing evaluation of the object detection and instance segmentation tasks. Further, we
simulate two label-scarce settings under this dataset and additionally train using 10% and 1% of the
training set respectively, for 9000 iterations in each case. The transfer learning performance of the

3For these three baseline SSL methods, the results are achieved by directly running the given source code
under the corresponding experimental setups for fair comparison.
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Pre-training SODA10M COCO COCO 10% COCO 1%
Method Architecture Epochs APbb APbb APmk APbb APmk APbb APmk

Scratch R50-FPN - 25.4 26.4 44.0 - - - -
Supervised R50-FPN 90 32.9 38.2 35.4 - - - -
MoCo [17] R50-FPN 200 32.3 38.5 35.1 - - - -
SimCLR [6] R50-FPN 200 32.8 - - - - - -
SwAV [3] R50-FPN 200 33.9 38.5 35.4 - - - -
BYOL [14] R50-FPN 300 - 40.4 37.2 - - - -
DenseCL [24] R50-FPN 200 34.3 40.3 36.4 - - - -
DetCo [26] R50-FPN 200 34.7 40.1 36.4 - - - -
BYOL [14] R50-FPN 1000 41.4 40.6 36.7 24.5 23.2 13.0 12.5
SwAV [3] R50-FPN 800 42.4 40.1 36.4 24.3 23.1 12.9 12.7
SoCo [25] R50-FPN-Head 100 43.3 41.8 37.3 28.2 25.5 15.0 13.9
ADePT (separate) R50-FPN-RPN-Head 100 43.2 41.9 37.6 28.6 25.9 15.3 14.1
ADePT (joint) R50-FPN-RPN-Head 100 43.6 41.8 37.5 28.6 25.8 15.3 14.2

Table 1: Pre-trained ResNet50 models evaluated on object detection (APbb / AP50bb) and instance
segmentation (APmk) tasks using MS COCO and SODA10M. All methods are pre-trained on
ImageNet. For the upper table, we directly quote performance reported in the cited articles. A Mask
R-CNN detector is used in each case. The lower table reports our experimental results, where the
detector is Mask R-CNN for MS COCO and Cascade R-CNN for SODA10M, respectively.

learned representations is then evaluated using the MS COCO val2017 image subset. We report the
metrics APbb for object detection and APmk for instance segmentation.

Results: The performance is reported in Table 1. We observe that our separately trained model
consistently offers moderate improvements upon SoCo and other baselines in both object detection and
instance segmentation metrics on MS COCO. We attribute improvements in both tasks to predominantly
be due to our reduced localization error (see Appendix) and model sensitivities to related concepts. The
joint training strategy provides overall competitive performance with SoCo on MS COCO, but achieves
state-of-the-art performance on the challenging SODA10M benchmark. Generally, with smaller
fine-tuning datasets (MS COCO), the performance gap between ADePT and SoCo becomes larger. In
comparison with the performance of SoCo, this partially answers our Q1 and we conclude that RPN
pre-training provides a practical solution towards improving SSL performance. We provide further
insight towards Q1 in an error analysis ablation study in the Appendix. Our results also resolve Q2: the
alignment between the pretext task and downstream task can bring improvement to overall performance.

Table 1 results might allow one to argue that absolute performance gains, observed when pre-training
the RPN, are small. However MS COCO and SODA10M are large datasets (e.g. 1% of MS COCO
contains ∼1.18K images). We thus conjecture that fine-tuning all model weights, in the investigated
settings, may benefit SoCo and other SSL baselines disproportionately. With large-scale labeled data
available, the RPN component (randomly initialized for SoCo and other baselines) can be deemed
easier to fine-tune in comparison with both feature extractor and detector heads, due to the relatively
small number of learnable parameters. To explore this point further, we design a few-shot detection
experiment (Appendix), to better understand the contribution of RPN pre-training. The results
from it show strong benefit from such pre-training. Together our results answer Q3: pre-training all
architectural components improves label efficiency.

4 Conclusion

In this work we present ADePT, a self-supervised learning strategy that pre-trains the region proposal
network (RPN) in a multi-stage detector. The alignment of both architecture and learning objectives
result in improved downstream task performance. Through empirical study, we showed that (A1) RPN
pre-training can reduce localization error, (A2) the alignment between the pretext and downstream tasks
improve the overall performance, and (A3) RPN pre-training affords benefit to label-efficient scenarios.
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A Algorithmic Details

A.1 Architecture

The convolutional backbone of a multi-stage R-CNN architecture [13] firstly generates representations
of an input image. Regions of interest (RoI) are then derived from these representations using a region
proposal network (RPN). Regions identify where objects may be located and the model subsequently
employs a detection head (i.e. RoI) in order to classify the same, shared, representations.

A.2 Selective Search

Prior to self-supervised pre-training, we generate unsupervised object proposals using the heuristic
selective search algorithm [21]. The algorithm relies on colour and texture similarities to segment
images of natural scenes into regions, which are subsequently merged to form the basis of the output
bounding boxes. Default parameters are used in this process, with minimum segment size defined
by min_size=10, output segment size and number by scale=500, and the Gaussian kernel size
for smoothing by σ=0.9. Each bounding box b={x,y,w,h} is represented by its centre coordinate
(x,y) and its width and height (w,h). We keep only boxes that satisfy 1

3 ≤
w
h ≤3 and 0.3≤

√
wh√
WH

≤0.8,
where W and H are the height and width of the image.

A.3 Detector Head

We train a Fast R-CNN detector head architecture [12], using a self-supervised similarity loss. Recall
our main manuscript defines a feature extractor network fθ and we then define the Fast R-CNN layers
as gθ. The standard output layers of the detector are replaced by network heads pertaining to a projector
pθ and a predictor, qθ. An “offline” encoder of the same architecture (i.e. defined as the target network
in MoCo [17]) is maintained with parameters ξ. The analogous modules; fξ, gξ, pξ are updated as
an exponential moving average of the online network parameters θ. Note that the momentum encoder
does not require a final predictor head, nor does it include RPN layers.

View Augmentation During training, an input image x is augmented in order to define three different
views; V1,V2,V3. View V1 is resized to 224×224, V2 is a random crop of V1 with a randomly selected
scale in the range [0.5, 1.0]. ViewV3 is a downsampled version ofV2, with resulting size 112×112. The
bounding boxes associated with each view are similarly scaled and shifted according to the above trans-
formations. For each view we also apply colour jitter and blurring as in BYOL [14]. The augmentations
described enables learning of scale- and translation-invariances, in a similar fashion to SoCo [25].

Detection Loss Let b={bi}Ki=1 be theK randomly chosen bounding boxes for an image as generated
by selective search. Next, given views V1, V2, V3 and each bounding box bi, we extract the object-level
representation from the backbone through the RoIAlign method [16]

hi,θ=gθ(RoIAlign(fθ(V1),bi)), (1)

h′
i,ξ=gξ(RoIAlign(fξ(V2),bi)), (2)

h′′
i,ξ=gξ(RoIAlign(fξ(V3),bi)). (3)

The projector and predictor heads are then used to create the latent representations of the views

vi,θ=qθ(pθ(hi)), v′i,ξ=pξ(h
′
i), v′′i,ξ=pξ(h

′′
i ). (4)

The full loss for the detector head contrasts the latent representations of the same proposal across
different views by maximising their similarity.

Lsim(vθ,v
′
ξ,v

′′
ξ )=

1

K

K∑
i=1

(
−·

2⟨vi,θ,v′i,ξ⟩
∥vi,θ∥2 ·∥v′i,ξ∥2

−·
2⟨vi,θ,v′′i,ξ⟩

∥vi,θ∥2 ·∥v′′i,ξ∥2

)
(5)

A symmetrical loss, that alternatively passes V1 through the momentum encoder and {V2,V3} through
the online encoder is also produced, denoted as L̄sim(vξ,v

′
θ,v

′′
θ ). The total loss to train the detector

head is then
Ldet(b,V1,V2,V3)=Lsim(vθ,v

′
ξ,v

′′
ξ )+L̄sim(vξ,v

′
θ,v

′′
θ ). (6)
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A.4 Region Proposal Network

The region proposal network (RPN) [19] component of two-stage object detectors consists of a fully
convolutional network that simultaneously predicts object bounds and objectness scores at each spatial
position. It works by placing a large number of anchor boxes on a spatial grid, from which it selects
those most likely to contain an object, while adjusting their position and size to more closely match the
object outline. The anchors are a set of fixed size / ratio rectangles, located at each point in the feature
space. The RPN feeds the features extracted from the feature extractor (denoted as “backbone + FPN”
in Fig. 2) through a set of convolutional layers to predict whether or not each such anchor corresponds
to an object, in addition to anchor deltas that offset shape and position. By suppressing overlapping
predictions and ranking the proposals by their “objectness” scores, the RPN can output a set of high
quality proposals. More formally, let the feature extractor be f , the RPN convolutional layers, c, the
objectness layer o, and anchor delta layer d. Then given an image x, the objectness scores are computed
as p=o◦c◦f(x) and the anchor deltas as t=d◦c◦f(x). The loss to train the RPN is defined as

LRPN(p,t)=
1

Ncls

Ncls∑
i=1

Lcls(pi,p
∗
i )

+λ
1

Nreg

Nreg∑
i=1

p∗iLreg(ti,t
∗
i ),

(7)

where pi is the predicted objectness probability of anchor i and p∗i is its ground-truth label. This label
is 1 if either: it has highest IoU with a ground-truth box, or it has an IoU greater than 0.7 with any box.
The objectness label is 0 if the IoU is less than 0.3, and any other anchors are ignored. The classification
loss is a log loss over the binary objectness values. Additionally, ti are the predicted anchor deltas
that adjust the position and size of the anchor. The corresponding ground-truth deltas t∗i are computed
for the ground-truth box associated with the positive anchor i. The regression loss is a smooth L1 loss
which only activates when p∗i =1 and is otherwise disabled. For further details, see [19].

A.5 Full Algorithm

Our whole detection architecture is trained in a self-supervised manner through two losses. The first
is the bounding box regression loss that trains the RPN head towards high quality proposals, and the
second is the similarity loss that drives the detection head towards discriminative features. Through
ablations on the loss terms, we find that the backbone benefits from only receiving training signal
from Ldet. By jointly training all architectural components, we arrive at a total loss of:

L(p,t,b,V1,V2,V3)=LRPN(p,t)

+ Ldet(b,V1,V2,V3).
(8)

During training, we perform stochastic gradient descent to minimize this loss.

B Training Details

B.1 Detector Head Pre-Training

We train the detector head with a scale-aware assignment strategy for assigning proposals to FPN
levels, analogous to SoCo [25]. Typical supervised object detection training uses small batch sizes
due to the large number of region proposals for each image, where K can be as high as 1000 [19]. In
our setting we require a larger batch size to train the detector with the BYOL-style similarity loss [14].
We therefore require to adjust the number of proposals that power the detector head loss. In our
experiments we set K =4, following the ablation in SoCo. The low proposal count is mitigated in
self-supervised setups through the use of multiple views and long training times.

B.2 RPN Pre-Training

The region proposal network (RPN) is trained by regressing to the bounding boxes produced by
selective search. At each iteration of training, K random boxes are selected for each image. From
that image, the feature pyramid network backbone generates a set of features {p2,p3,p4,p5} that form
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the input to the RPN. While it is common to also include the final pyramid features p6, the images
used in our self-supervised pre-training, of size 224×224, are deemed too small for the resolution
of p6 to be useful. The RPN generates a set of anchors at each level of the feature pyramid, with areas
of {242,482,962,1922}, respectively, and at three aspect ratios; {0.5,1.0,2.0}. Anchors are matched
with target bounding boxes and two losses are used to update the network parameters, a classification
log loss and a smooth L1 loss. When using RPN proposals in the detector head loss, we select the top
64 proposals before non-maximum suppression is applied, and finally the top K proposals are output.

In supervised object detection, ground-truth bounding boxes, as annotated by humans, are used to train
the RPN using the loss described in Sec. A.4. Given our self-supervised setup, we rather mitigate a lack
of ground-truth bounding boxes by alternatively considering pseudo ground-truth labels; we utilize
bounding boxes generated via an unsupervised region proposal method. We here employ the selective
search algorithm [21] for this purpose. This algorithm uses heuristic colour and texture similarity
scores to create a set of bounding boxes for an input image. These bounding boxes are pre-computed
before training and filtered such that only boxes that are large enough and within certain aspect ratio
constraints are retained (further details can be found in the Appendix). During training, we randomly
select K bounding boxes for each image in a batch, and treat them as ground-truth bounding boxes
towards providing a valid learning signal to update the RPN.

B.3 Training Strategies

In the supervised detection literature, it is common to train RPN modules either jointly, in conjunction
with other model architectural components, or separately, in a potentially alternating fashion [19].
We experiment with analogous strategies pertaining to both of these options for our alternative
unsupervised setting.

We train ADePT under both the aforementioned “separate” and “joint” training strategies. We train
each model for 100 epochs using 8× NVIDIA V100 GPUs. Training takes ∼3 days and ∼4.5 days
on ImageNet [7] for each strategy, respectively.

Separate Training We pre-train only the RPN component of the network. The feature extractor (back-
bone + FPN) and detector head are initialized from a SoCo baseline, pre-trained for 100 epochs. We use
the LARS optimiser with a learning rate of 0.1 annealed to 0 with a cosine scheduler for 100 epochs.

Joint Training The joint training setup uses both the RPN loss as described in Eq. 7 and the detector
loss (defined in Appendix B) that pre-trains the feature extractor and detector head. This strategy
enables self-supervised training of the entire multi-stage architecture including: feature extractor,
detector head and RPN from random initialization. We use the LARS optimiser with a learning rate
of 0.1 annealed to 0 with a cosine scheduler for 100 epochs. The RPN model layers are updated using
the LRPN loss term (Eq. 7), exclusively.

ADePT Setting COCO COCO 10% COCO 1% SODA10M
Loss Proposals APbb APmk APbb APmk APbb APmk APbb

LDet+LRPN SS + RPN 6.784 6.528 0.003 0.002 0.001 0.000 36.853
LDet SS + RPN 0.564 0.771 0.020 0.018 0.015 0.019 0.006
LDet+LRPN SS 41.158 37.002 27.783 25.073 14.508 13.332 43.168
LDet SS 41.677 37.342 28.576 25.794 15.161 13.938 43.570

Table 2: Ablations on ADePT joint training show that the backbone benefits slightly from only
receiving the detector head loss signal and that the RPN proposals tend to destabilize detector head
training. SS: selective search.

B.4 Analysis of Joint Training

In contrast to separate training, we note that joint training can be affected by several confounding
factors. Namely ADePT consists of two component losses; firstly the RPN pre-training loss, LRPN
(Eq. 1 in the main paper) and secondly the self-supervised loss that pre-trains the feature extractor
and detector head (denoted as LDet - see Appendix B for further details). During joint-training, the
feature extractor is affected by both of these losses, while the detector head may receive proposals
from either: solely selective search or selective search in conjunction with the RPN. In Table 2, we
investigate how to best combine the component losses and the proposal-generation options.
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We find that, compared with the quality of proposals, the loss signal to the feature extractor has
limited effect on the performance, while a lone LDet offers improved performance over LDet+LRPN.
Additionally, as the RPN module is learning, by inspection we find that intermediate proposals are
often noisy, which introduces a destabilising effect to the detector head loss. This causes the models
trained with RPN proposals to fail on downstream tasks, leading us to consider only selective search
proposals in LDet. Our joint training ADePT model corresponds to the final row of Table 2.

C Further Experiments

Pre-training Split 1 Split 2 Split 3
Method Architecture K=1 K=2 K=3 K=5 K=10 K=1 K=2 K=3 K=5 K=10 K=1 K=2 K=3 K=5 K=10

N
ov

el SoCo [25] R50-FPN-Head 0.56 1.00 0.94 1.91 2.96 0.19 0.73 1.26 2.29 1.68 0.12 1.52 1.22 1.48 3.42
ADePT (separate) R50-FPN-RPN-Head 1.60 2.32 1.64 1.17 3.52 1.69 1.94 2.07 1.85 3.74 3.03 2.13 1.42 3.56 3.56
ADePT (joint) R50-FPN-RPN-Head 2.14 1.23 1.24 1.93 2.91 2.53 0.59 2.80 5.55 4.18 1.07 1.47 1.43 2.05 5.72

A
ll

SoCo [25] R50-FPN-Head 1.14 0.99 1.26 1.50 2.89 0.68 1.53 1.12 1.49 3.23 0.96 1.23 2.08 1.83 4.45
ADePT (separate) R50-FPN-RPN-Head 1.72 1.35 1.63 2.25 4.53 1.61 1.87 1.91 4.42 3.70 1.60 1.91 2.51 2.42 4.45
ADePT (joint) R50-FPN-RPN-Head 1.62 1.20 1.41 2.59 4.20 2.04 1.60 2.35 4.52 4.31 0.68 1.07 1.39 1.68 4.60

Table 3: Few-shot object detection performance (mAP50) on the PASCAL VOC dataset. Following
the same protocol as [11], we evaluate the few-shot fine-tuned model weights on three different splits
of novel classes (top) and novel + base classes (bottom). The detector is a Faster R-CNN and the
model weights are pre-trained using ImageNet in a self-supervised fashion. Our approach consistently
outperforms the SoCo baseline by a large margin. K denotes K-shot detection task.

C.1 Few-shot Evaluation

Experimental Setup: In addition to the transfer evaluation protocol described previously in Sec. 3, we
further realize a new protocol to evaluate the performance of self-supervised learning under scenarios
that exhibit extreme label-scarcity. The proposed protocol is inspired by the benchmark few-shot
object detection evaluation convention adopted in [23, 11]. Few-shot object detection tasks consist
of a set of base classes and a set of novel classes, where base classes have abundant labels and yet
novel classes are provided with only few labels. Without loss of generality, we take [23] as an example.
There are two training stages in [23], namely, a base training stage and a few-shot fine-tuning stage.
During base training, standard supervised training is performed, and in the few-shot fine-tuning stage,
the model is expected to learn to detect the novel classes given only K labelled instances for each
class of interest, i.e. a K-shot learning task. In this work, we alternatively abandon the base training
stage and pre-train the model (Faster R-CNN with a ResNet50 backbone + FPN) on ImageNet [7],
i.e. no labelled data are involved in the first stage. Then, following [23, 11], we fine-tune the model
via K-shot training [22, 20]. Finally we use a proxy evaluation task to assess both representation
and fast adaptation capabilities of the pre-trained model weights. We note that such proxy evaluation
protocols are commonly adopted in representation learning, e.g. [17, 6, 8], where only the last layer
is fine-tuned with other layers fixed. As SoCo remains unable to pre-train an RPN component, towards
fair comparison, we instead opt to fine-tune their entire model.

We perform the proposed few-shot evaluation on the PASCAL VOC dataset [10]. We follow the fine-
tuning and evaluation setup in [23]. We use the trainval07+12 set with the same data splits as [23]
and report object detection performance on the test07 set, using the standard VOC metric; i.e. mAP50.

Results: In Table 3 we report our few-shot learning results. We observe that ADePT can consistently
outperform SoCo in the considered K={1,2,3,5,10} settings. Note, the unsupervised pre-training
is performed on ImageNet, i.e. VOC data are only seen in the few-shot fine-tuning stage. This
proxy evaluation evidences that ADePT has the ability to learn more useful representations than
SoCo and shows better potential for fast-adaptation tasks, with few labels. With small K, the
self-supervised pre-training in effect plays a critical role in the few-shot learning through the provision
of strong initialisation. In comparison with Table 1, we highlight that the performance gain with RPN
pre-training becomes yet larger. Furthermore, in Table 3, the performance gain of RPN pre-training
is larger, specifically, for the novel classes c.f . the base classes, where only base classes are seen during
the fine-tuning stage. This suggests that RPN pre-training aids the learning of representations that can
quickly adapt to new tasks. Finally, we can provide some initial evidence towards answering Q3: RPN
pre-training, with architectural alignment, is capable of bringing benefit to label-efficient regimes.
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Figure 3: Localization errors contribute significantly to overall detection error rates. The effect can
be observed by evaluating recent SSL approaches BYOL [14], SwAV [3], SoCo [25], here using the
MS COCO dataset [18]. Models are pre-trained on ImageNet [7] and fine-tuned on MS COCO using
Mask R-CNN [16]. Our ADePT method reduces the dominant localization error term. Full results
are found in Table 4.

Based on the results in Table 1 and Table 3, we note that, although both of our training strategies
can show improvement over SoCo, performance between our separate and joint training models is
largely comparable in the majority of the investigated scenarios. The former strategy requires lower
computation-cost, which may lead to it being favoured in practical situations.

C.2 Ablation Studies

C.2.1 Stratification of Error Types

Object detection is a complex task with a multitude of potential error types. Such errors can be
categorised and quantified by tools such as TIDE [1]. In Table 4, we stratify these errors for the
detection models fine-tuned on the full MS COCO dataset. The error types, from left to right are;
classification (Cls), localisation (Loc), duplicates (Dupe), background objects (Bkg), missed objects
(Miss), false positives (FalsePos), and false negatives (FalseNeg).

Method Cls Loc Dupe Bkg Miss FalsePos FalseNeg
SoCo 3.39 6.45 0.21 4.15 6.89 16.81 14.57
ADePT (sep) 3.18 6.28 0.22 4.35 6.61 17.40 13.59
ADePT (joint) 3.31 6.44 0.22 4.40 6.54 17.45 13.75

Table 4: Stratified errors as computed by the TIDE toolbox [1]. ADePT (separate training) exhibits
the lowest localization error, which is visualized in Fig 3. Other error types (e.g. background and
false positives) are more challenging for our method. We conjecture that reliance on selective search
proposals may cause the detector to “hallucinate” objects.

We observe that ADePT achieves the lowest localization error, with ADePT (separate) achieving a
significant reduction with respect to the baselines. The classification errors of these models are addition-
ally reduced compared to SoCo. Notably, ADePT has low error in the “missed objects” category along
with low “false negative” error, which may be interpreted intuitively in terms of the rate of successfully
locating all objects in images. Conversely, the “background object” error and “false positive” rates are
higher, which we conjecture to illustrate that the greater reliance on selective search proposals produces
a model that is prone to false positives, finding objects where they do not exist. We conclude that RPN
pre-training can reduce the localization error, which corroborates our affirmative answer to Q1.

C.2.2 Qualitative Examples

In Fig. 1 and Fig. 4, we present qualitative examples of model predictions on the SODA10M and MS
COCO datasets. These examples confirm what is shown by our error analysis: ADePT tends to find
most objects in an image including small objects instances that benefit from RPN pre-training.

D Additional Visualizations

In Fig. 5 - Fig. 7, we provide additional visualizations to better understand the contributions and limita-
tions of the proposed method. By comparing Fig. 5 and Fig. 6, we conjecture that RPN pre-training helps
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(a) BYOL (b) SwAV (c) SoCo (d) ADePT (sepa-
rate)

(e) ADePT (joint)

Figure 4: Qualitative comparison on the MS COCO dataset [18]. Top: our models have the highest
confidence in their predictions and ADePT (joint) additionally detects the person in the distance despite
difficult illumination. Bottom: all models successfully capture the large stop-sign in the foreground.
Notably, our models detect the “person” object in a small “picture”. Both examples imply that RPN
pre-training can improve the localization of small objects.

more under normal imaging conditions when the pre-training and fine-tuning datasets have similar distri-
bution. As shown in Fig. 7, ADePT fails under several challenging imaging conditions, such as darkness
and overexposure, when the pre-training and fine-tuning datasets are drastically different. In practice,
we suggest that the pre-training dataset should be selected to be similar to the fine-tuning dataset.

(a) BYOL (b) SwAV (c) SoCo (d) ADePT (separate) (e) ADePT (joint)

Figure 5: Example predictions on the COCO dataset [18]. BYOL [14] fails to catch the sheep on the
left-hand side of the picture. SwAV [3] overcounts sheep by incorrectly predicting a (single) sheep
in the middle of the picture as multiple instances. SoCo [25] fails to detect a sheep in the middle of
the picture and also makes a prediction that incorrectly splits a single sheep into two (right-hand side).
Our ADePT models (both separate and joint training) catch all instances with high confidence. Best
viewed with digital zoom.
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(a) BYOL (b) SwAV (c) SoCo (d) ADePT (separate) (e) ADePT (joint)

Figure 6: An example failure case of ADePT predictions on the COCO dataset [18]. All methods
successfully detect the person in the middle of the image, while missing additional smaller objects.
BYOL and SwAV manage to detect the TV in the background under blurry imaging conditions. SoCo
can detect the partially occluded phone in the hand of the person. Our models fail to detect the TV
and the phone objects and the joint training also introduces a false positive, due to the background
appearance, under this challenging situation.

(a) BYOL (b) SwAV (c) SoCo (d) ADePT (separate) (e) ADePT (joint)

Figure 7: Example cases of prediction failure, pertaining to the SODA10M dataset [15]. Top: BYOL
and SwAV both fail to detect a truck. SoCo successfully detects three trucks. ADePT (separate)
incorrectly predicts the small, distant truck as two separate vehicles while ADePT (joint) fails to detect
it. Bottom: BYOL and SwAV can detect the dark car in the challenging night scenario, while SoCo
and ADePT both fail to predict it. Best viewed with digital zoom.
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