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Abstract

Image-text contrastive learning has proven effective for pretraining medical image
models. When targeting localized downstream tasks like semantic segmentation
or object detection, additional local contrastive losses that align image regions
with sentences have shown promising results. We study how local contrastive
losses are related to global (per-sample) contrastive losses and which effects they
have on localized medical downstream tasks. Based on a theoretical comparison,
we propose to remove some components of local losses and replace others by a
novel distribution prior which enforces uniformity of representations within each
sample. We empirically study this approach on chest X-ray tasks and find it to be
very effective, outperforming methods without local losses on 12 of 18 tasks.

1 Introduction

Image-text contrastive learning [Radford et al., 2021, Jia et al., 2021] has been well established
as a pretraining method for image models recently. By utilizing companion text like radiological
reports or captions, it can improve the downstream performance of image models on tasks like image
classification. Such image-text methods have also proven effective on medical images like chest X-
rays [Zhang et al., 2020, Müller et al., 2022a]. Typically, such methods use (global) contrastive
losses to align per-sample representation of images and the related text. However, when targeting
localized downstream tasks like semantic segmentation or object detection, it has proven beneficial
to also introduce local contrastive losses to align image regions (e.g. patches) with sentences [Müller
et al., 2022b, Liao et al., 2021].

In this work we study how local contrastive losses are related to global contrastive losses and which
effects they have on localized downstream tasks. Following Wang and Isola [2020], we decompose
the global and local losses into alignment components (pulling representations close to each other)
and distribution priors (pushing representations away from each other). We found that the alignment
components of global and local losses are related and assume that they have similar effects, while the
distribution priors of global and local losses have complementary effects. We empirically study these
findings on localized downstream tasks on chest X-rays and therefore propose a pre-training method
consisting of a global contrastive loss and local uniformity regularizers (i.e. distribution priors) but
without local alignment components. Our results show that this method typically performs well
on tasks where local contrastive methods outperform global contrastive methods, thus proving our
assumptions and indicating the relevance of local uniformity for localized downstream tasks. For
simplicity, we focus our study on the LoVT method [Müller et al., 2022b], but argue that our findings
are also relevant for related approaches (see Appendix A).
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2 Analysis of the Relation between Global and Local Contrastive Losses

We now theoretically study the relationship of the global and local contrastive losses of
LoVT [Müller et al., 2022b]. For a detailed derivation we refer to Appendix C. Like many image-
text contrastive works, LoVT uses two independent encoders (one for images and one for text, i.e.
radiological reports) to compute global (i.e. per-image/per-report) and local (i.e. patch/sentence)
representations. The global image and text representations (denoted by z̄I

i and z̄R
i ) are then aligned

using a NTXent-based [Chen et al., 2020] contrastive loss, denoted by Lglobal. The local represen-
tations are first transferred to the other modality using an attention model, such that for each patch
representation zI

i,k (of patch k from the image model) we have a representation zR→I
i,k with informa-

tion from the report and vice-versa for each sentence representation zR
i,m (of sentence m) we have a

representation zI→R
i,m with information from the image. The representation pairs (zI

i,k, z
R→I
i,k ) and

(zR
i,m, zI→R

i,m ) are then aligned using the local NTXent-based losses Llocal-image and Llocal-report, re-
spectively. Following Wang and Isola [2020], each of the three contrastive losses can be decomposed
into an alignment component, maximizing the similarity of related representations (i.e. pulling them
close to each other), and a distribution prior component, imposing a distribution on the representa-
tions to prevent them from collapsing to a constant (i.e. pushing non-related representations away
form each other). We can therefore decompose the three losses into three alignment components
(Lglobal-align for global, LI

local-align for local image, and LR
local-align for local text alignment) and three

distribution priors (Lglobal-dist as global, LI
local-dist as local image, and LR

local-dist as local report prior).

2.1 Alignment Components

In order to study the relations between the alignment components Lglobal-align, LI
local-align, and

LR
local-align, we make some simplifying assumptions: i) We assume that the representations z̄I

i and
zI→R
i,m are computed as weighted sums from region representations zI

i,k, and similarly z̄R
i and

zR→I
i,k as weighted sums from sentence representations zR

i,m, and ii) we ignore the normalization
terms of the cosine similarity, i.e. we treat all cosine similarities as dot products, denoted by dot(·, ·).
Using these assumptions, and given the batch size N , with K patches per image, and Mi sentences
in sample i, each of the three alignment components can be written as a weighted sum (with weights
ξi,k,m) of dot products between region representations zI

i,k and sentence representations zR
i,m:

Lalign = − 1

N

N∑
i=1

K∑
k=1

Mi∑
m=1

ξi,k,mdot
(
zI
i,k, z

R
i,m

)
, (1)

where the exact form of weights ξi,k,m depends on the specific loss function (see Appendix C.4 for
details). Therefore, the only difference between the three alignment components is the definition of
ξi,k,m. Assuming there are better and worse aligned pairs of local representations in each sample
(i.e. pair of image and report), the main difference between those losses is how the best aligned pairs
are weighted against the worse aligned pairs. This means that in the special case where the local
representations of each modality are constant within each sample, they are identical. One major dif-
ference between global and local alignment components is, that for local alignments LI

local-align and
LR

local-align, the ξi,k,m are not separable into components containing only information from a single
modality (image or report). The reason for this is that the attention weights used to compute zR→I

i,k

and zI→R
i,m are not separable in that way, as they are computed from both, image and report, repre-

sentations. They therefore allow for pairwise interactions between both modalities, which are not
possible with the global alignment component Lglobal-align (as ξi,k,m is separable in that case). Sum-
marizing our findings, we identified the following main differences between the global alignment
and the local alignment components:

• Local alignment allows for more complex pairwise interactions between local representa-
tions, not restricted by the separability of the attention weights.

• Local and global alignment differ in how they weight well aligned pairs of local represen-
tations compared to less aligned pairs. Local alignment can incorporate pairwise distances
between zI

i,k and zR
i,m and may thus focus on the best aligned pairs.

• Local and global alignment losses differ in where normalization (of the cosine similarity)
happens, i.e. before or after the summation over local representations.

2



• Using global and local alignment together allows for decoupling of local from global rep-
resentations by using independent projection heads.

Despite these differences, we argue that local and global alignment losses both enforce well aligned
local as well as global representations. In Sec. 3 we therefore empirically study removing the local
while keeping only the global alignment components.

2.2 Distribution Prior Components and Uniformity

Studying the distribution prior components Lglobal-dist, LI
local-dist, and LR

local-dist, we found that they
all follow a similar form: They all minimize the (weighted) average of logsumexp-aggregations
over pairwise cosine-similarities between weighted sums of the local representations zI

i,k and zR
i,m

(see Appendix C.5). However, while in the global distribution prior Lglobal-dist the logsumexp-
aggregation is done over the samples in the batch, in the local distribution priors LI

local-dist and
LR

local-dist the logsumexp-aggregation is done over the local representations of each sample (i.e. we
sum over the regions or sentences per sample). This means that while the Lglobal-dist loss imposes rep-
resentations to be roughly uniformly distributed over the whole dataset (i.e. pushing representations
from different samples away from each other), LI

local-dist and LR
local-dist impose uniform distributions

of (local) representations over each sample (i.e. pushing representations within each sample away
from other representations from the same sample).

We argue that the contrast between local representations (including patch representations), which
is enforced by the local distributions priors, is essential for the success of pretraining methods on
localized downstream tasks. Therefore, instead of removing these local distribution priors, we pro-
pose to replace them by distribution priors that impose a per-sample uniform distribution on each
modality (image and text) independently. Following Wang and Isola [2020], we use a loss based on
pairwise Gaussian potentials but adapt it to impose uniform distributions within each sample instead
of imposing them over the whole dataset. This Gaussian uniformity (uni-gauss) loss is then applied
to the image and report modality independently. For images it is defined as

LI
uni-gauss =

1

N

N∑
i=1

log
1

K2

K∑
k=1

K∑
k′=1

exp

(
−
cos(zI

i,k, z
I
i,k′)

τ ′

)
, (2)

while for reports it is defined as

LR
uni-gauss =

1

N

N∑
i=1

log
1

M2
i

Mi∑
m=1

Mi∑
m′=1

exp

(
−
cos(zR

i,m, zR
i,m′)

τ ′

)
. (3)

We will empirically study the effect of this loss in the next section.

3 Empirical Study

3.1 Experimental Setup

Following the insights from Sec. 2, we empirically study the effect of removing local alignment
components and replacing local distribution components of LoVT’s loss function, resulting in:

LLoVT-uni-gauss = γ · Lglobal + η ·
(
LI

uni-gauss + LR
uni-gauss

)
, (4)

where γ (we used the same value as LoVT) and η (determined by hyperparameter tuning) are loss
coefficients. Apart from the changes to the loss function, we follow the same framework and training
procedure as used in LoVT. Note however that we share the projection heads for local and global
representations (per modality). We pretrain on 30% of MIMIC-CXRv2 [Johnson et al., 2019a,b,c]
and then evaluate our models trained on the same evaluation framework [Müller et al., 2022a] as
used in LoVT, which consists of 18 localized medical tasks (semantic segmentation and object
detection) on five public chest X-ray datasets. We compare the results against methods only having
global losses, i.e. CLIP [Radford et al., 2021], ConVIRT [Zhang et al., 2020], and LoVT with the
local contrastive losses removed (LoVT /wo local), and against the unmodified LoVT. Note that
we experimented with different temperatures τ ′ and also studied a cross-entropy-based variant of
the proposed uniformity loss, which we call uni-xent (see Appendix C.5.2), but found the Gaussian
uniformity loss to be more effective. We refer to Appendix D for detailed ablation studies.
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Table 1: Correlation of downstream results of our uniformity-based modification of LoVT and the
unmodified LoVT. We consider (in the rows) the number of tasks where uniformity-based models
i) outperform CLIP, ii) outperform LoVT, iii) outperform LoVT /wo local, and iv) outperform all
studied methods, and (in the columns) on how many of them a) LoVT outperforms CLIP (↑) or
vice-versa (↓) and b) LoVT /wo local performs worse (↓) or better (↑) than LoVT with local losses.

LoVT vs. CLIP LoVT /wo local Total TotalLoVT ↑ CLIP ↑ ↓ ↑ > 95% conf.
Uni > CLIP 10 (4) 4 (3) 10 (5) 4 (2) 10 of 14
Uni > LoVT 5 (1) 4 (3) 6 (1) 3 (2) 6 of 9
Uni > LoVT /wo local 10 (4) 5 (4) 12 (7) 3 (2) 12 of 15
Uni is best 6 (2) 3 (2) 7 (2) 2 (1) 4 of 9

Total of of of of of of
12 (5) 6 (4) 13 (7) 5 (2) 18 18

Note: The numbers in paranthesis always specify the number of tasks where the column is true for more than the 95%-confidence interval (of
the better model). Bold numbers indicate that the cell is the best in its row and block. Underlined numbers indicate that the cells relative

number of tasks (normalized by the column total) is larger than of the other cells in the same row and block. Cells containing a majority of
tasks (more than half of the total tasks) in their column are marked with blue background.

3.2 Results

We found that the best LoVT-uni-gauss method outperforms LoVT /wo local on 10 of 18 tasks
and CLIP on 9 tasks. On 6 tasks it could even outperform LoVT, showing that LoVT-uni-gauss is
competitive with LoVT. If we choose the local temperature τ ′ individually per downstream task (out
of two studied temperatures), the LoVT-uni-gauss method outperforms LoVT /wo local on 12, CLIP
on 13 and LoVT on 7 of 18 tasks. This highlights the importance of the local temperature τ ′ and
indicates that different tasks require different strengths of uniformity.

In order to study the effect of local uniformity in general, without the restriction to a single unifor-
mity loss variant, we now consider both uniformity variants, uni-gauss and uni-xent. On 12 of 18
tasks (on 10 tasks by more then the 95%-confidence interval) uniformity based methods (uni-gauss
or uni-xent) outperform all studied image-text methods without local losses (i.e. ConVIRT, CLIP,
and LoVT /wo local). These results indicate that with well-tuned hyperparameters, uniformity-
based methods outperform image-text methods that only rely on global losses on the large majority
of studied tasks, even significantly on most of them. However, on 9 of 18 tasks LoVT outperforms
all uniformity-based methods, from which we conclude that on some tasks the additional local align-
ment components of LoVT are still beneficial.

We also study how good performance of our uniformity-based methods correlate with good perfor-
mance of LoVT when comparing them against methods without local losses. In Tab. 1 we therefore
consider the cases (i.e. tasks) where uniformity-based methods (uni-gauss or uni-xent) are i) better
than CLIP, ii) better than LoVT, iii) better than LoVT /wo local, and iv) better than all studied meth-
ods. For each of these cases we then compare on how many of them a) LoVT or CLIP is better
and b) LoVT /wo local is better or worse than LoVT. We observe that on tasks where uniformity-
based methods are better than CLIP or better than LoVT /wo local, LoVT often also outperforms
CLIP and LoVT /wo local, indicating that local uniformity plays an important role in the success of
LoVT. For detailed results we refer to Appendix E and for a comparison of the effective uniformity
of representations we refer to Appendix B.

3.3 Conclusion

We studied the relationship of global and local contrastive losses of image-text methods for localized
medical downstream tasks. Considering LoVT’s loss functions, we found that the alignment com-
ponents of the global and local losses are highly related and proposed to drop the local alignment
components. We found that the distribution priors of the losses act complementary and proposed a
local uniformity loss replacing the local distribution priors while keeping the global priors. Empir-
ically, we found that our proposed method typically works well on chest X-ray tasks where local
losses improve the results, indicating that local uniformity plays an important role when pretraining
for localized tasks. On some tasks however the uniformity-based approaches are still outperformed
by LoVT, suggesting that local contrastive losses cannot fully be replaced by local uniformity losses.
We hope that our findings inspire future research to further improve pretraining on localized tasks.
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A Relation to other Image-text Methods

While our study focuses on LoVT’s loss functions, we now shortly explain the relation to other
text-supervised methods.

Comparison to ConVIRT, CLIP, and ALIGN ConVIRT [Zhang et al., 2020], CLIP [Radford
et al., 2021], and ALIGN [Jia et al., 2021] all follow a similar framework as LoVT but they do
not align local representations explicitly, i.e. they only optimize Lglobal-align and Lglobal-dist but none
of the local loss components. However, all of these methods consider only a single sentence per
sample (in the case of reports, they randomly sample a single sentence from it). This means that
Lglobal-align effectively aligns local report representations (i.e. sentences) with global image repre-
sentations. However, Lglobal-dist still imposes a uniform distribution over the dataset and there is
(unlike in LoVT) no component that enforces (local) representations to be uniformly distributed
within each sample. Additionally, only CLIP uses (like LoVT) attention pooling to compute image
representations while the other methods use average pooling.

Comparison to local-mi In the local-MI [Liao et al., 2021] work mutual information is maxi-
mized between (randomly sampled) sentence representations and the best matching image region
representations. This should therefore have a similar effect as minimizing the local alignment com-
ponents LI

local-align and LR
local-align. However, when estimating the mutual information they consider

the whole dataset. While it is not explicitly stated whether they also include other (non-matching)
region-sentence pairs from the same sample during mutual information estimation, it is probable that
their mutual information estimation imposes a distribution prior that is rather similar to Lglobal-dist

than to the local distribution priors LI
local-dist and LR

local-dist.

Comparison to VirTex and ICMLM VirTex [Desai and Johnson, 2020] and ICMLM [Sariyildiz
et al., 2020] follow a different framework. Instead of using contrastive losses for pretraining, they
use generative objectives by generating captions for images. While generative objectives may im-
plicitly enforce alignment and distributions priors in order to achieve good generation performance,
they are not enforced explicitly. Above all, image region representations are not enforced (at least
not explicitly) to be distributed uniformly within each sample.

B Comparison of Uniformity

Fig. 1 shows the uniformity of local (i.e. scan region or report sentence) and global (i.e. scan or
report) representations of different models. Local uniformity is measured using −LI

uni-gauss and
−LR

uni-gauss on the local representations yI
i,k and yR

i,m (before projection), respectively, while the
global uniformity is measured using the negative uniformity loss as defined in Wang and Isola [2020]
on the scan ȳI

i and report ȳR
i representations (again before projection). Our local uniformity-based

methods have, as expected, much larger per-sample uniformities (especially compared to LoVT /wo
local), while at the same time having (slightly) smaller global uniformities. Larger temperatures
increase this effect. Also, the effect is more present in the uni-xent methods compared to the uni-
gauss methods.
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Figure 1: Uniformity of global and per-sample uniformity of local representations. Left: Image
(ȳI

i ) and image region (yI
i,k) representations. Right: Report (ȳR

i ) and report sentence (yR
i,m) rep-

resentations. The models were trained on 30% of frontal MIMIC-CXR and then evaluated on the
whole test set.

C Detailed Derivations

C.1 Image-text Contrastive Framework of LoVT

Most image-text contrastive works [Radford et al., 2021, Jia et al., 2021, Zhang et al., 2020, Müller
et al., 2022b, Liao et al., 2021] follow a similar framework. They use two independent encoders,
one for encoding images and one for encoding the text (e.g. radiological reports). In the case of
LoVT [Müller et al., 2022b], ResNet50 [He et al., 2016] is used to encode the images and BERT [De-
vlin et al., 2019] is used to encode the full reports. Each image xI

i is encoded into K = H×W (we
use K = 7× 7) region representations yI

i,k, taking the last feature map of the ResNet50. Similarly,
each report xR

i is encoded into Mi sentence representations yR
i,m by max-pooling over all the token

representations (encoded by BERT) of each sentence. The global (i.e. per-sample) representations
of images ȳI

i and reports ȳR
i are each computed by an attention pooling layer on the region and

sentence representations, respectively. All the local and global representations are then projected
independently using (non-shared) projection heads based on multi-layer perceptrons (MLPs). We
denote the local projected representations by zI

i,k and zR
i,m, and the global representations by z̄I

i

and z̄R
i . LoVT additionally computes cross-modality representations zR→I

i,k and zI→R
i,m using an

attention layer where the local representations of one modality attend to the representations of the
other. These representations are then aligned using LoVT’s loss function, which we will recapitulate
in the following section.

C.2 Definition of LoVT’s Loss Function

We will denote LoVT’s loss function as LLoVT. It consists of three parts, the global contrasive loss
Lglobal, the local contrastive loss for image regions (aligned with cross-modality sentence represen-
tations) Llocal-image and the local contrastive loss for report sentences (aligned with cross-modality
region representations) Llocal-report:

LLoVT = γ · Lglobal + µ · Llocal-image + ν · Llocal-report , (5)

where γ, µ, and ν are loss coefficients (hyperparameters).

The global contrastive loss Lglobal is applied to the global representations z̄I
i and z̄R

i and is defined
as follows:

ℓ
I∥R
global = − log

ecos(z̄
I
i ,z̄R

i )/τ∑
j e

cos(z̄I
i ,z̄R

j )/τ
(6)

ℓ
R∥I
global = − log

ecos(z̄
R
i ,z̄I

i )/τ∑
j e

cos(z̄R
i ,z̄I

j )/τ
(7)
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Lglobal =
1

N

N∑
i=1

[
λ · ℓI∥Rglobal + (1− λ) · ℓR∥I

global

]
, (8)

where τ is the global temperatures, λ ∈ [0, 1] is a hyperparameter, and N denotes the batch size.

The local contrastive loss Llocal-image for image regions is applied to zI
i,k and zR→I

i,k and is defined
as:

ℓ
I∥R→I
local-image = −

K∑
l=1

pIk,l log
ecos(z

I
i,k,z

R→I
i,l )/τ ′

∑
k′ e

cos
(
zI
i,k,z

R→I
i,k′

)
/τ ′

(9)

ℓ
R→I∥I
local-image = −

K∑
l=1

pIk,l log
ecos(z

R→I
i,k ,zI

i,l)/τ
′

∑
k′ e

cos
(
zR→I
i,k ,zI

i,k′

)
/τ ′

(10)

Llocal-image =
1

2N

N∑
i=1

K∑
k=1

wI
i,k ·

[
ℓ
I∥R→I
local-image + ℓ

R→I∥I
local-image

]
, (11)

where τ ′ is the local temperature, wI
i,k is the weight for image region k (computed based on the

image of sample i) and pIk,l is the positiveness weight for the region pair (k, l) (computed based on
their spatial distance).

The local contrastive loss Llocal-report for report sentences is applied to zR
i,m and zI→R

i,m and is defined
as:

ℓ
R∥I→R
local-report = − log

ecos(z
R
i,m,zI→R

i,m )/τ ′

∑
m′ e

cos
(
zR
i,m,zI→R

i,m′

)
/τ ′

(12)

ℓ
I→R∥R
local-report = − log

ecos(z
I→R
i,m ,zR

i,m)/τ
′

∑
m′ e

cos
(
zI→R
i,m ,zR

i,m′

)
/τ ′

(13)

Llocal-report =
1

2N

N∑
i=1

Mi∑
m=1

wR
i,m ·

[
ℓ
R∥I→R
local-report + ℓ

I→R∥R
local-report

]
, (14)

where wR
i,m is the weight for sentence m (computed based on the report of sample i).

For a detailed explanation of the components and their intuition we refer to the original publication
of LoVT [Müller et al., 2022b].

C.3 Decomposition of the Contrastive Losses of LoVT

We now start our analysis with the decomposition of LoVT’s loss function. Each of the three parts of
LoVT’s loss function (i.e. Lglobal, Llocal-image, and Llocal-report) are NTXent-based [Chen et al., 2020]
contrastive loss functions and following previous works [Wang and Isola, 2020] can therefore each
be decomposed into an alignment and a distribution prior component. We decompose Lglobal:

Lglobal = Lglobal-align + Lglobal-dist (15)
into the global alignment component

Lglobal-align = −1

τ

1

N

N∑
i=1

cos
(
z̄I
i , z̄

R
i

)
(16)

and the global distribution prior

Lglobal-dist = λ
1

N

N∑
i=1

log

N∑
j=1

exp

(
cos
(
z̄I
i , z̄

R
j

)
τ

)

+ (1− λ)
1

N

N∑
i=1

log

N∑
j=1

exp

(
cos
(
z̄R
i , z̄I

j

)
τ

) (17)
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Similarly, we can decompose the local losses Llocal-image and Llocal-report:

Llocal-image = LI
local-align + LI

local-dist (18)

·Llocal-report = LR
local-align + LR

local-dist (19)

into the local alignment component for scan regions

LI
local-align = − 1

τ ′
1

N

N∑
i=1

K∑
k=1

K∑
l=1

wI
i,kp

I
k,l + wI

i,lp
I
l,k

2
cos
(
zI
i,k, z

R→I
i,l

)
(20)

and the alignment for report sentences

LR
local-align = − 1

τ ′
1

N

N∑
i=1

Mi∑
m=1

wR
i,m cos

(
zR
i,m, zI→R

i,m

)
(21)

as well as into the distribution prior for scan regions

LI
local-dist =

1

2N

N∑
i=1

K∑
k=1

wI
i,k log

K∑
k′=1

exp

cos
(
zI
i,k, z

R→I
i,k′

)
τ ′


+

1

2N

N∑
i=1

K∑
k=1

wI
i,k log

K∑
k′=1

exp

cos
(
zR→I
i,k , zI

i,k′

)
τ ′


(22)

and the prior for report sentences

LR
local-dist =

1

2N

N∑
i=1

Mi∑
m=1

wR
i,m log

Mi∑
m′=1

exp

(
cos
(
zR
i,m, zI→R

i,m′

)
τ ′

)

+
1

2N

N∑
i=1

Mi∑
m=1

wR
i,m log

Mi∑
m′=1

exp

(
cos
(
zI→R
i,m , zR

i,m′

)
τ ′

)
.

(23)

In the following sections we will now analyze each of these components individually.

C.4 Alignment Components

We now study the three alignment components Lglobal-align, LI
local-align, and LR

local-align. The global
alignment component Lglobal-align forces (global) image and report representations from the same
sample to be aligned by maximizing their cosine similarity. The local alignment components
LI

local-align and LR
local-align on the other hand align local representations of image regions or report

sentences with local cross-modality representations computed using attention on local representa-
tions from the other modality. The individual (local) cosine similarities are aggregated as weighted
sums per modality and then maximized.

We will now study how the global alignment component is related to the local alignment com-
ponents and will therefore make some simplifying assumptions. First, we simplify the attention
pooling operation used to compute global representations and replace it by a weighted sum (ignor-
ing that attention pooling uses multiple heads and linear projections). Second, we ignore that local
representations zI

i,k and zR
i,m are projected independently from the global representations z̄I

i and
z̄R
i . Instead, we assume that z̄I

i and z̄R
i are computed as a weighted sum of local representations:

z̄I
i =

K∑
k=1

wI
i,kz

I
i,k z̄R

i =

Mi∑
m=1

wR
i,mzR

i,m (24)

Similarly, we simplify the computation of the cross-modality representations zI→R
i,m and zR→I

i,k by
ignoring the linear projections of the attention mechanism used in LoVT and assume:

zI→R
i,m =

K∑
k=1

αI→R
i,m,kz

I
i,k zR→I

i,k =

Mi∑
m=1

αR→I
i,k,mzR

i,m (25)
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We also ignore the normalization terms of the cosine similarity, i.e. we treat all cosine similarities
as dot products. Note that this is equal to assuming that zI

i,k, zR
i,m, z̄I

i , z̄R
i , zI→R

i,m and zR→I
i,k are

unit vectors which however does not hold considering Eqs. (24) and (25).

Using these simplifications we can rewrite the alignment losses. The global alignment loss is rewrit-
ten as

Lglobal-align = −1

τ

1

N

N∑
i=1

dot

(
K∑

k=1

wI
i,kz

I
i,k,

Mi∑
m=1

wR
i,mzR

i,m

)
(26)

= − 1

N

N∑
i=1

K∑
k=1

Mi∑
m=1

wI
i,kw

R
i,m

τ
dot
(
zI
i,k, z

R
i,m

)
(27)

= − 1

N

N∑
i=1

K∑
k=1

Mi∑
m=1

ξGi,k,mdot
(
zI
i,k, z

R
i,m

)
, (28)

the local scan alignment as

LI
local-align = − 1

τ ′
1

N

N∑
i=1

K∑
k=1

K∑
l=1

wI
i,kp

I
k,l + wI

i,lp
I
l,k

2
dot

(
zI
i,k,

Mi∑
m=1

αR→I
i,l,m zR

i,m

)
(29)

= − 1

N

N∑
i=1

K∑
k=1

Mi∑
m=1

∑K
l=1(w

I
i,kp

I
k,l + wI

i,lp
I
l,k) · αR→I

i,l,m

τ ′
dot
(
zI
i,k, z

R
i,m

)
(30)

= − 1

N

N∑
i=1

K∑
k=1

Mi∑
m=1

ξIi,k,mdot
(
zI
i,k, z

R
i,m

)
, (31)

and the local report alignment is rewritten as

LR
local-align = − 1

τ ′
1

N

N∑
i=1

Mi∑
m=1

wR
i,mdot

(
zR
i,m,

Mi∑
m=1

αI→R
i,m,kz

I
i,k

)
(32)

= − 1

N

N∑
i=1

K∑
k=1

Mi∑
m=1

wR
i,mαI→R

i,m,k

τ ′
dot
(
zR
i,m, zI

i,k

)
(33)

= − 1

N

N∑
i=1

K∑
k=1

Mi∑
m=1

ξRi,k,mdot
(
zR
i,m, zI

i,k

)
. (34)

Comparing Eqs. (28), (31) and (34), we realize that they are all special cases of the same general
form of alignment loss that maximizes a weighted sum of all possible pairs of cosine similarities
between two local representations from different modalities. The only difference between the three
losses is how the weights of the sum, i.e. ξi,k,m, are defined.

We also realize that ξIi,k,m and ξRi,k,m are, unlike ξGi,k,m, not separable into components contain-
ing only information from a single modality (image or report). Thus, LI

local-align and LR
local-align

cannot be rewritten in the original form of Lglobal-align. If we assume that αR→I
i,l,m and αI→R

i,m,k are
not computed as in LoVT but are instead separable by modality, i.e. αR→I

i,l,m = α̃R→I
i,l α̂R→I

i,m and
αI→R
i,m,k = α̃I→R

i,m α̂I→R
i,k , then we can rewrite ξIi,k,m and ξRi,k,m as

ξIi,k,m =
1

τ ′

K∑
l=1

(wI
i,kp

I
k,l + wI

i,lp
I
l,k) · α̃R→I

i,l α̂R→I
i,m (35)

ξRi,k,m =
1

τ ′
wR

i,mα̃I→R
i,m α̂I→R

i,k (36)

and therefore as

ξIi,k,m = ξ̃Ii,k ξ̂
I
i,m ξRi,k,m = ξ̃Ri,k ξ̂

R
i,m (37)
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with

ξ̃Ii,k =

√
1

τ ′

K∑
l=1

(wI
i,kp

I
k,l + wI

i,lp
I
l,k) · α̃R→I

i,l ξ̂Ii,m =

√
1

τ ′
α̂R→I
i,m (38)

ξ̃Ri,k =

√
1

τ ′
α̂I→R
i,k ξ̂Ri,m =

√
1

τ ′
wR

i,mα̃I→R
i,m (39)

Using these definitions, we can write

LI
local-align = − 1

N

N∑
i=1

K∑
k=1

Mi∑
m=1

ξ̃Ii,k ξ̂
I
i,mdot

(
zI
i,k, z

R
i,m

)
= − 1

N

N∑
i=1

dot

(
K∑

k=1

ξ̃Ii,kz
I
i,k,

Mi∑
m=1

ξ̂Ii,mzR
i,m

) (40)

and

LR
local-align = − 1

N

N∑
i=1

K∑
k=1

Mi∑
m=1

ξ̃Ri,k ξ̂
R
i,mdot

(
zI
i,k, z

R
i,m

)
= − 1

N

N∑
i=1

dot

(
K∑

k=1

ξ̃Ri,kz
I
i,k,

Mi∑
m=1

ξ̂Ri,mzR
i,m

) (41)

Comparing Eqs. (40) and (41) with the global alignment loss as defined in Eq. (26), we see that they
only differ in the computations of the weights in the weighted sums within the cosine similarity.
We therefore conclude, that the non-separability of ξIi,k,m and ξRi,k,m is an important aspect when
comparing the global with the local contrastive losses.

C.5 Distribution Prior Components

C.5.1 Comparison of the Distributions Priors

We now consider the distribution priors of the loss function decomposition. The global distribution
component Lglobal-dist imposes a prior on the distribution of image and sentence representations such
that they do not collapse to a constant value. Minimizing Lglobal-dist introduces contrast by pushing
representations from both modalities away from each other, i.e. maximizing the distance between
z̄I
i and z̄R

j for all i, j. Considering that Lglobal-align pushes the scan and report representations from
the same sample i closer to each other, it can be expected that Lglobal-dist pushes representations from
different samples (i ̸= j) further apart than the representations from the same sample (i = j). It
thus pushes representations (even from the same modality) further apart and therefore imposes a
uniform distribution on the representations from each modality, i.e. it enforces both, z̄I

i and z̄R
i , to

be roughly uniformly distributed. To understand this, consider the extreme case where Lglobal-align is
constant, i.e. cos(z̄I

i , z̄
R
i ) = ci for each i. The only way to minimize Lglobal-dist is then to also push

representations from the same modality (e.g. z̄I
j for different samples j ̸= i) further apart, i.e. to

maximize cos(z̄I
i , z̄

I
j ) for i ̸= j.

For comparing the global distribution prior Lglobal-dist to the local distribution priors LI
local-dist and

LR
local-dist, we first rewrite them by again assuming Eqs. (24) and (25) hold, such that we have

Lglobal-dist = λ
1

N

N∑
i=1

log

N∑
j=1

exp

cos
(∑K

k=1 w
I
i,kz

I
i,k,
∑Mi

m=1 w
R
j,mzR

j,m

)
τ


+ (1− λ)

1

N

N∑
i=1

log

N∑
j=1

exp

cos
(∑Mi

m=1 w
R
i,mzR

i,m,
∑K

k=1 w
I
j,sz

I
j,k

)
τ

 .

(42)
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Similarly, we rewrite LI
local-dist as

LI
local-dist =

1

2N

N∑
i=1

K∑
k=1

wI
i,k log

K∑
k′=1

exp

cos
(
zI
i,k,
∑Mi

m=1 α
R→I
i,k′,mzR

i,m

)
τ ′


+

1

2N

N∑
i=1

K∑
k=1

wI
i,k log

K∑
k′=1

exp

cos
(∑Mi

m=1 α
R→I
i,k,mzR

i,m, zI
i,k′

)
τ ′


(43)

and LR
local-dist as

LR
local-dist =

1

2N

N∑
i=1

Mi∑
m=1

wR
i,m log

Mi∑
m′=1

exp

cos
(
zR
i,m,

∑K
k=1 α

I→R
i,m′,kz

I
i,k

)
τ ′


+

1

2N

N∑
i=1

Mi∑
m=1

wR
i,m log

Mi∑
m′=1

exp

cos
(∑K

k=1 α
I→R
i,m,kz

I
i,k, z

R
i,m′

)
τ ′

 .

(44)

Comparing Eq. (42) with Eq. (43) and Eq. (44), we realize that they follow a similar form as they
both minimize the (weighted) average of logsumexp-aggregations over pairwise cosine-similarities
between local representations zI

i,k and zR
i,m (or weighted sums of them). However while in Lglobal-dist

the logsumexp-aggregation is done over the samples in the batch (i.e. we sum over N samples), in
LI

local-dist and LR
local-dist logsumexp-aggregation is done over the local representations of each sample

(i.e. we sum over K or Mi regions or sentences, respectively, per sample). This means that while the
Lglobal-dist loss imposes representations to be roughly uniformly distributed over the whole dataset,
LI

local-dist and LR
local-dist impose uniform distributions of (local) representations over each sample, i.e.

it pushes (local) representations within each sample away from each other and not across samples.

C.5.2 Cross-Entropy Uniformity Applied to each Modality Independently

We now propose to replace the local distribution component LI
local-dist and LR

local-dist by distribution
components that impose a per-sample uniform distribution on each modality independently. There-
fore, instead of using cosine similarities between (local) representations from different modalities,
we apply the cosine similarities to pairs of (local) representations from the same modality. Addi-
tionally, we ignore the local weights wI

i,k and wR
i,m and use unweighted averages instead. We call

the resulting local distributions components cross-entropy uniformity (uni-xent) as it is similar to the
distribution component of the cross-entropy loss. We define the (local) cross-entropy uniformity for
scans as:

LI
uni-xent =

1

N

N∑
i=1

1

K

K∑
k=1

log

K∑
k′=1

exp

(
−
cos(zI

i,k, z
I
i,k′)

τ ′

)
(45)

and for reports as:

LR
uni-xent =

1

N

N∑
i=1

1

Mi

Mi∑
m=1

log

Mi∑
m′=1

exp

(
−
cos(zR

i,m, zR
i,m′)

τ ′

)
. (46)

Like the local distribution components LI
local-dist and LR

local-dist, the uniformity losses LI
uni-xent and

LR
uni-xent minimize the cosine similarity of region (or sentence) representations within each sample

and therefore push local representations within each sample away from each other. However, unlike
LI

local-dist and LR
local-dist, LI

uni-xent and LR
uni-xent do not have a repulsive effect between the modalities, i.e.

they do not push regions and sentence representations away from each other. The global distribution
prior Lglobal-dist has a similar repulsive effect and we therefore argue that we can replace LI

local-dist by
LI

uni-xent and LR
local-dist by LR

uni-xent while still imposing similar prior distributions.

C.5.3 Pairwise Gaussian Potential

Following Wang and Isola [2020] we now study replacing the cross-entropy-based (local) uniformity
losses LI

uni-xent and LR
uni-xent by losses based on pairwise Gaussian potentials. We therefore adapt the
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uniformity loss proposed by Wang and Isola [2020] to impose uniform distribution within each
sample instead of over the whole dataset. This leads to the Gaussian uniformity (uni-gauss) loss.
For scans we denote it as LI

uni-gauss and define it as follows:

LI
uni-gauss =

1

N

N∑
i=1

log
1

K2

K∑
k=1

K∑
k′=1

exp

(
∥z̃I

i,k − z̃I
i,k′∥22

τ ′

)
(47)

=
1

N

N∑
i=1

log
1

K2

K∑
k=1

K∑
k′=1

exp

(
2− 2 · cos(zI

i,k, z
I
i,k′)

τ ′

)
(48)

=
1

N

N∑
i=1

log
1

K2

K∑
k=1

K∑
k′=1

exp

(
−
cos(zI

i,k, z
I
i,k′)

τ ′

)
+ C , (49)

where C is come constant and can therefore be dropped when minimizing LI
uni-gauss, leading to our

final definition:

LI
uni-gauss =

1

N

N∑
i=1

log
1

K2

K∑
k=1

K∑
k′=1

exp

(
−
cos(zI

i,k, z
I
i,k′)

τ ′

)
. (50)

Similarly, we define the uniformity loss for reports as

LR
uni-gauss =

1

N

N∑
i=1

log
1

M2
i

Mi∑
m=1

Mi∑
m′=1

exp

(
−
cos(zR

i,m, zR
i,m′)

τ ′

)
. (51)

In Appendix D.1, we empirically compare the effects of cross-entropy and Gaussian uniformity.

D Ablation Studies and Hyperparameters

D.1 Effects of Temperature and Uniformity Variant

Table 2: Comparison of different uniformity-based models (uni-gauss and uni-xent with different
local temperatures τ ′) on the evaluation tasks. For each model we show on how many of the 18
evaluation tasks it i) outperformed uniformity-based models with the same type of uniformity loss
but with different temperatures τ ′, ii) other uniformity-based models, iii) LoVT without local losses,
iv) LoVT, v) CLIP, and vi) on how many it is the best of all studied methods (including the image-
only and supervised baselines studied by Müller et al. [2022a]). In brackets, we additionally show
the number of tasks considering the 95%-confidence interval over five evaluation runs. For detailed
results we refer to Appendix E.

Best τ ′ Best Uni > /wo local > LoVT > CLIP Best model
Uni-Gauss τ ′ = 0.2 10 (3) 6 (1) 10 (5) 6 (2) 9 (5) 3 (1)
Uni-Gauss τ ′ = 0.5 7 (6) 5 (3) 11 (9) 7 (6) 10 (6) 3 (2)
Uni-Gauss any τ ′ - 11 (5) 12 (11) 8 (6) 13 (9) 3 (2)
Uni-Xent τ ′ = 0.2 13 (7) 5 (1) 12 (7) 7 (5) 12 (7) 2 (1)
Uni-Xent τ ′ = 0.3 4 (2) 2 (2) 9 (6) 4 (3) 7 (6) 1 (1)
Uni-Xent any τ ′ - 7 (3) 14 (8) 7 (5) 12 (9) 3 (2)
Uni (any) - - 15 (12) 9 (6) 14 (10) 9 (4)
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D.2 Shared Head and Attention Pooling

Table 3: Effect of sharing the projection heads for local representations (zI
i,k and zR

i,m, used in the
uniformity losses) with the heads for global representations (z̄I

i and z̄R
i ), and the effect of using at-

tention pooling to compute global representations. Note that attention heads are only shared between
representations of the same modality, i.e. image and report representations are always projected in-
dependently. When no attention pooling is used, global representations are instead computed using
global average pooling. We found that using shared attention heads is in general beneficial. We
assume that this assures a stronger coupling between the alignment effect of the global contrastive
loss and the distribution priors of the local uniformity losses. We also found that attention pooling
is beneficial, confirming the results of Müller et al. [2022b].

Uniformity τ ′ Shared head Att. Pool
RSNA

YOLOv3 Frozen
10%

RSNA
Lin. Seg.

10%

Gauss-Uniformity 0.2
✓ ✓ 18.4 48.5
✓ ✗ 14.9 49.3
✗ ✓ 15.6 48.2

Gauss-Uniformity 0.5
✓ ✓ 17.6 49.4
✓ ✗ 15.9 49.2
✗ ✓ 16.4 49.1

Xent-Uniformity 0.2
✓ ✓ 17.4 49.3
✓ ✗ 16.3 49.2
✗ ✓ 16.4 49.2

Xent-Uniformity 0.3
✓ ✓ 17.6 49.2
✓ ✗ 15.9 48.5
✗ ✓ 17.1 49.6

D.3 Hyperparameter Tuning Results

Table 4: Hyperparameter tuning results of the local temperature τ ′, tuned using the evaluation task
RSNA YOLOv3 Frozen 10%. The coefficient η was fixed to 0.25 for Gauss-Unifomity and to 0.5 for
Xent-Uniformity. We also show the results on RSNA Lin. Seg. 10%. In our main studies we use the
two best temperatures per variant (marked in blue).

Uniformity τ ′
RSNA

YOLOv3 Frozen
10%

RSNA
Lin. Seg.

10%

Gauss-Uniformity

0.1 15.3 48.9
0.2 18.4 48.5
0.3 16.0 49.3
0.5 17.6 49.4
1.0 15.9 49.6

Xent-Uniformity

0.05 16.1 49.1
0.1 17.2 49.4
0.2 17.4 49.3
0.3 17.6 49.2
0.5 14.9 49.7
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Table 5: Hyperparameter tuning results of the uniformity loss coefficient η, tuned using the evalu-
ation task RSNA YOLOv3 Frozen 10%. We also show the results on RSNA Lin. Seg. 10%. In our
main studies we use the configurations marked in blue.

Uniformity τ ′ η
RSNA

YOLOv3 Frozen
10%

RSNA
Lin. Seg.

10%

Gauss-Uniformity 0.2
0.1 15.5 50.0

0.25 18.4 48.5
0.5 15.7 49.0

Gauss-Uniformity 0.5
0.1 16.5 49.7

0.25 17.6 49.4
0.5 16.6 49.2

Xent-Uniformity 0.2
0.25 16.2 49.2
0.5 17.4 49.3

0.75 15.6 49.6

Xent-Uniformity 0.3
0.25 15.8 50.0
0.5 17.6 49.2

0.75 13.9 49.4

E Detailed Experiment Results

Table 6: Results on the RSNA pneumonia detection tasks with different training set sizes. All results
are averaged over five evaluation runs and the 95%-confidence interval over these runs is shown. The
best results per task are underlined, the second best results are dash-underlined and the best results
per block are highlighted in bold. Note that the RSNA YOLOv3 Frozen 10% task was used for tuning
of all methods and may therefore not be representative as methods may overfit on this task.

RSNA YOLOv3 Finetune RSNA YOLOv3 Frozen RSNA Lin. Seg.
mAP (%) mAP (%) Dice (%)

1% 10% 100% 1% 10% 100% 1% 10% 100%

Random 2.4±0.5 5.1±1.2 14.9±1.7 1.0±0.2 4.0±0.3 8.9±0.9 21.9±1.2 5.3±0.0 5.3±0.0
ImageNet [Russakovsky et al., 2015] 5.0±0.7 12.4±0.8 19.0±0.2 3.6±1.4 8.0±0.1 15.7±0.3 27.5±0.6 38.3±0.0 43.3±0.0

CheXpert [Irvin et al., 2019] 8.3±0.8 12.4±1.6 21.3±0.3 7.0±1.0 14.8±0.8 18.8±0.4 38.9±0.2 45.5±0.2 48.1±0.0
BYOL [Grill et al., 2020] 7.0±1.0 11.9±1.1 18.8±0.2 9.6±0.2 14.0±1.2 21.0±0.2 42.9±0.1 47.8±0.2 50.0±0.0
SimCLR [Chen et al., 2020] 6.7±0.5 12.9±0.5 20.4±1.8 7.9±1.0 11.9±0.1 19.9±0.2 43.1±0.0 46.0±0.0 48.2±0.0
PixelPro [Xie et al., 2020] 4.8±0.6 12.6±1.2 19.8±0.4 3.1±0.2 6.4±0.5 13.4±0.3 25.9±0.2 34.6±0.0 39.8±0.1
ConVIRT [Zhang et al., 2020] 7.4±1.3 12.7±1.5 18.3±0.4 9.8±0.3 14.8±1.1 8.4±1.1 42.1±0.1 47.1±0.2 50.2±0.0
CLIP [Radford et al., 2021]* 7.2±0.8 12.8±1.2 19.7±0.5 9.3±0.4 16.1±1.1 19.6±1.4 44.3±0.1 48.8±0.1 50.7±0.0
LoVT [Müller et al., 2022b] 7.7±1.0 11.7±0.5 17.2±1.3 8.6±1.5 17.9±0.4 18.0±0.1 46.0±0.0 49.4±0.0 51.5±0.0

LoVT /wo local 5.3±0.9 12.5±1.3 19.9±0.0 6.8±0.8 17.4±0.9 18.1±0.1 44.6±0.1 48.7±0.0 51.2±0.0
+ Uni-Gauss τ ′ = 0.2 7.3±0.9 11.7±1.1 18.0±0.9 7.4±1.4 18.4±0.8 22.1±0.1 44.7±0.4 48.8±0.1 50.8±0.0
+ Uni-Gauss τ ′ = 0.5 6.4±0.8 10.6±0.9 19.5±0.2 8.3±1.3 17.6±0.1 19.1±1.0 45.9±0.0 49.4±0.0 50.8±0.0
+ Uni-Xent τ ′ = 0.2 5.8±1.2 10.8±1.4 20.0±1.0 7.0±1.1 17.4±1.4 21.6±0.5 45.7±0.3 49.3±0.0 51.1±0.0
+ Uni-Xent τ ′ = 0.3 5.6±1.3 11.2±0.9 18.0±2.7 6.6±1.1 17.6±0.6 19.1±0.1 45.7±0.1 49.2±0.0 51.3±0.0

Task Nr. 1 2 3 4 5 6 7 8 9

* Modified to use the same image and text encoders as ConVIRT and LoVT.
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Table 7: Results on downstream tasks on the COVID Rural, SIIM Pneumothorax, Object CXR,
and NIH CXR datasets. All results are averaged over five evaluation runs and the 95%-confidence
interval over these runs is shown. The best results per task are underlined, the second best results
are dash-underlined and the best results per block are highlighted in bold.

COVID Rural SIIM-ACR Pneumoth. Object CXR NIH CXR
UNet UNet Linear UNet UNet YOLOv3 YOLOv3 Linear Linear

Finetune Frozen Finetune Frozen Finetune Frozen

Dice (%) Dice (%) Dice (%) Dice (%) Dice (%) fROC (%) fROC (%) Dice (%) Avg
Dice (%)

Random 34.0±1.1 32.2±1.8 6.0±0.0 23.2±1.0 23.9±1.6 49.5±1.2 28.4±1.4 6.9±0.0 0.5±0.4
ImageNet [Russakovsky et al., 2015] 43.9±2.0 41.9±1.7 32.6±0.7 38.5±0.9 36.9±0.7 62.5±0.4 52.7±1.3 37.8±0.0 2.6±1.6

CheXpert [Irvin et al., 2019] 43.5±4.9 44.1±3.2 32.1±2.0 38.9±0.9 40.7±0.7 62.2±0.6 46.3±1.9 16.5±7.7 8.7±0.6
BYOL [Grill et al., 2020] 46.2±1.6 47.5±1.6 36.9±1.7 43.1±0.6 42.9±0.3 59.6±1.0 55.7±1.0 32.3±0.1 6.0±0.1
SimCLR [Chen et al., 2020] 44.9±2.9 41.4±3.7 33.0±0.0 42.6±0.4 39.2±0.7 61.9±0.8 54.3±1.0 33.2±0.1 13.3±0.5
PixelPro [Xie et al., 2020] 47.0±3.4 38.5±3.9 26.6±0.4 39.3±0.8 39.1±0.3 63.1±0.7 46.3±0.2 29.9±0.2 1.8±0.0
ConVIRT [Zhang et al., 2020] 48.8±2.2 44.2±3.1 45.0±3.0 42.5±1.0 42.5±0.2 62.5±0.1 54.0±0.7 37.7±0.1 11.4±0.8
CLIP [Radford et al., 2021]* 49.3±2.0 46.5±2.3 46.2±0.3 42.8±1.5 42.5±0.6 62.9±0.8 55.5±2.1 39.0±0.0 12.5±1.0
LoVT [Müller et al., 2022b] 49.5±1.3 49.2±4.6 49.2±0.2 43.4±0.7 43.1±0.6 61.0±1.3 55.8±1.1 37.6±0.2 13.4±0.8

LoVT /wo local 48.2±1.1 48.7±3.7 45.6±0.0 43.5±0.9 42.6±0.4 60.4±1.6 54.8±1.1 38.5±0.2 13.2±0.9
+ Uni-Gauss τ ′ = 0.2 51.4±3.1 48.7±0.8 45.7±2.3 43.2±0.8 41.6±0.4 61.8±1.6 54.5±1.1 39.1±0.0 11.7±1.3
+ Uni-Gauss τ ′ = 0.5 50.3±1.2 48.3±3.7 44.2±0.7 43.1±1.3 44.3±0.4 63.4±0.8 57.8±0.9 38.9±0.0 8.9±1.6
+ Uni-Xent τ ′ = 0.2 50.5±1.1 51.3±4.8 44.0±0.0 43.4±0.9 44.0±0.5 63.2±1.3 54.9±1.9 39.8±0.0 11.9±0.9
+ Uni-Xent τ ′ = 0.3 46.2±2.1 48.1±1.4 42.1±0.2 43.1±1.4 44.8±0.3 60.7±1.2 52.2±2.4 38.7±0.1 8.4±1.2

Task Nr. 10 11 12 13 14 15 16 17 18

* Modified to use the same image and text encoders as ConVIRT and LoVT.
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